CN106670464B - 一种双连通网状结构钛-镁双金属复合材料的制备方法 - Google Patents

一种双连通网状结构钛-镁双金属复合材料的制备方法 Download PDF

Info

Publication number
CN106670464B
CN106670464B CN201710023783.9A CN201710023783A CN106670464B CN 106670464 B CN106670464 B CN 106670464B CN 201710023783 A CN201710023783 A CN 201710023783A CN 106670464 B CN106670464 B CN 106670464B
Authority
CN
China
Prior art keywords
titanium
composite material
doubly
magnesium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710023783.9A
Other languages
English (en)
Other versions
CN106670464A (zh
Inventor
黄陆军
姜山
耿林
王帅
安琦
王晓军
张春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710023783.9A priority Critical patent/CN106670464B/zh
Publication of CN106670464A publication Critical patent/CN106670464A/zh
Application granted granted Critical
Publication of CN106670464B publication Critical patent/CN106670464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

一种双连通网状结构钛‑镁双金属复合材料的制备方法。本发明涉及一种双连通网状结构钛‑镁双金属复合材料的制备方法。本发明是为了解决传统生物医用金属材料如不锈钢、钛合金等弹性模量高而导致“应力屏蔽”、生物活性差的问题。方法:将具有较低弹性模量和良好的成骨诱导性能的镁合金熔化后,利用浸渗的方法渗入低弹性模量的多孔钛中,冷却制备成双连通网状结构钛‑镁双金属复合材料。本发明用于制备双连通网状结构钛‑镁双金属复合材料。

Description

一种双连通网状结构钛-镁双金属复合材料的制备方法
技术领域
本发明涉及一种双连通网状结构钛-镁双金属复合材料的制备方法。
背景技术
作为生物材料,钛及钛合金以其密度较低更接近人骨、强度高、生物相容性较好以及耐腐蚀性好等优点,在生物医用方面得到了广泛的应用并具有广阔的发展前景。然而钛及钛合金的弹性模量较高(TC4钛合金:110GPa;纯钛:108GPa),远远大于人骨的弹性模量(3.5~20GPa),这会引起“应力屏蔽效应”,使得植入体周围的骨组织得不到适当的应力刺激而产生骨质疏松、植入体脱落甚至自体骨断裂等严重后果。目前最有效的降低钛及钛合金弹性模量的方法为引入多孔结构,但同时多孔结构的引入会带来力学性能的大幅降低及力学性能的不稳定,限制了多孔钛作为植入物的使用范围与服役时间。另外,钛是生物惰性材料,虽然具有良好的骨整合性,但是其成骨诱导性较差,不能促进骨组织的生长。
镁合金也是一种具有广阔发展空间的生物材料,其弹性模量为41~45GPa,是最接近人骨弹性模量的金属材料。而且镁是人体常量元素之一,是骨生长的必需元素。镁合金的可降解性一方面可以使镁合金在植入人体后可以自行降解,从而不需要二次手术取出;另一方面,镁合金降解后产生的离子也有利于骨骼生长,同时镁的降解也为组织提供了生长的空间,加强植入材料与骨组织的结合。然而镁的耐腐蚀性较差,在生理电解质环境中,含有大量的侵蚀性离子,会显著加速镁合金的腐蚀降解。镁合金在植入后,降解速度过快,在组织愈合前就发生失效,失去了对患处的固定和支撑作用。镁合金在人体中过快降解已成为限制其在生物与医疗领域中应用的最大问题。
发明内容
本发明是为了解决传统生物医用金属材料如不锈钢、钛合金等弹性模量高而导致“应力屏蔽”、生物活性差的问题,而提供一种双连通网状结构钛-镁双金属复合材料的制备方法。
本发明一种双连通网状结构钛-镁双金属复合材料的制备方法按以下步骤进行:
一、冷压松装钛粉中温预烧结:将钛粉装入模具中,施加8MPa~12MPa的压力使钛粉压实后,将压实的钛粉连同模具一起放入抽真空的密闭容器中进行真空烧结,将烧结温度从室温升温至800℃~1000℃后,在温度为800℃~1000℃的条件下保温0.5h~1.5h,冷却到室温,得到多孔钛预烧结体;
二、多孔钛预烧结体粗加工:通过机械加工的手段将多孔钛预烧结体粗加工成为器件毛坯所需的形状和尺寸,预留出后期多孔钛预烧结体体积收缩以及进行精加工的尺寸余量,得到待烧结件;
三、高温最终烧结:将待烧结件放入清洁的密闭容器中进行真空高温烧结,烧结温度为1100℃~1500℃,烧结时间为2h~5h,得到多孔钛预制体;所述多孔钛预制体的压缩强度为100MPa~300MPa;
四、镁合金浸渗:将镁合金在保护气的保护下熔化为镁合金液,然后在高于镁合金熔点50℃~80℃的条件下保温0.5h~1h后,浸渗入多孔钛预制件中,空冷或水冷至室温,得到双连通网状结构钛-镁双金属复合材料。
本发明的有益效果:
本发明将具有较低弹性模量和良好的成骨诱导性能的镁合金熔化后,利用浸渗的方法渗入低弹性模量的多孔钛中,冷却制备成双连通网状结构钛-镁双金属复合材料。一方面大大降低材料的弹性模量,解决传统金属生物材料因弹性模量高产生的“应力屏蔽”问题;另一方面,材料中的镁合金在人体内降解产生的镁离子可以促进骨生长,使材料具有优异的成骨诱导性能,同时镁合金降解留下的孔洞可供人体内的养分运输以及组织生长,使材料具有优异的骨整合性能。从而达到集优异的力学性能、生物相容性、成骨诱导性与成骨整合性一体化的新型生物医用复合材料。
本发明制备的网状结构钛-镁双金属复合材料与传统生物医用金属材料相比,具有以下优势:(1)弹性模量低且可调控,解决了“应力屏蔽”问题;(2)不含诸如Ni、Al、Cr、Co等细胞毒性元素;(3)同时具备骨整合性和骨诱导性,在植入体内后与骨组织结合牢固;(4)可以根据不同的服役要求选用不同性能的镁合金和多孔钛对复合材料的性能进行性能调控,更易于针对个体个性化设计。
附图说明
图1为双连通网状结构钛-镁双金属复合材料的金相照片;
图2为双连通网状结构钛-镁双金属复合材料的扫描电镜图。
具体实施方式
具体实施方式一:本实施方式的一种双连通网状结构钛-镁双金属复合材料的制备方法按以下步骤进行:
一、冷压松装钛粉中温预烧结:将钛粉装入模具中,施加8MPa~12MPa的压力使钛粉压实后,将压实的钛粉连同模具一起放入抽真空的密闭容器中进行真空烧结,将烧结温度从室温升温至800℃~1000℃后,在温度为800℃~1000℃的条件下保温0.5h~1.5h,冷却到室温,得到多孔钛预烧结体;
二、多孔钛预烧结体粗加工:通过机械加工的手段将多孔钛预烧结体粗加工成为器件毛坯所需的形状和尺寸,预留出后期多孔钛预烧结体体积收缩以及进行精加工的尺寸余量,得到待烧结件;
三、高温最终烧结:将待烧结件放入清洁的密闭容器中进行真空高温烧结,烧结温度为1100℃~1500℃,烧结时间为2h~5h,得到多孔钛预制体;所述多孔钛预制体的压缩强度为100MPa~300MPa;
四、镁合金浸渗:将镁合金在保护气的保护下熔化为镁合金液,然后在高于镁合金熔点50℃~80℃的条件下保温0.5h~1h后,浸渗入多孔钛预制件中,空冷或水冷至室温,得到双连通网状结构钛-镁双金属复合材料。
本实施方式步骤一得到的多孔钛预烧结体的多孔钛中钛颗粒之间的结合较弱,机加工较容易,而且在加工过程中不会因为加工而形成闭孔。一方面降低了加工成本,另一方面确保了后期的浸渗质量。
本实施方式步骤三中得到的多孔钛预制体钛粉之间的结合强度高,多孔钛的压缩强度可以达到100~300MPa,已达到在人体骨承载的强度要求。
本实施方式得到的网状钛-镁双金属复合材料利用具有优异的成骨诱导性能的镁合金填补了多孔钛中的多孔结构,弥补了多孔钛力学性能不稳定和成骨诱导性能不足的缺陷。
本实施方式步骤四中进行保温可以让镁合金液温度均匀,且流动性较好,更有利于浸渗。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述钛粉为纯钛、Ti-Nb合金或Ti-Mo合金。其他步骤及参数与具体实施方式一相同。
本实施方式可以选择不同粒径不同形状的钛粉,可以获得不同孔隙特征的多孔钛,从而可以根据不同的服役要求对其力学性能进行调控。钛粉成分可以选择纯钛粉以及不含对人体有害合金元素的钛合金粉例如Ti-Nb、Ti-Mo合金粉。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中所述钛粉的粒径为180μm~220μm。其他步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中施加10MPa的压力使钛粉充分接触。其他步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中将烧结温度从室温升温至900℃。其他步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤一中在温度为900℃的条件下保温1h。其他步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤三中烧结温度为1200℃。其他步骤及参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤四中所述镁合金为Mg-Zn合金、Mg-Ca合金或Mg-Zn-Ca合金。其他步骤及参数与具体实施方式一至七之一相同。
本实施方式选择耐腐蚀性与力学性能均较好,且不含对人体有害合金元素的Mg-Zn合金、Mg-Ca合金或者Mg-Zn-Ca合金等,可以通过不同服役要求对镁合金的合金成分进行调整,以控制镁合金的力学性能、生物性能以及腐蚀速率。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤四中所述浸渗的方式为超声波辅助浸渗。其他步骤及参数与具体实施方式一至八之一相同。
用以下实施例验证本发明的有益效果:
实施例一:一种双连通网状结构钛-镁双金属复合材料的制备方法按以下步骤进行:
一、冷压松装钛粉中温预烧结:将粒径为180μm~220μm的球形纯钛粉装入模具中,施加10MPa的压力使钛粉压实后,将压实的钛粉连同模具一起放入抽真空的密闭容器中进行无压烧结,烧结温度从室温升温至900℃后,在温度为900℃的条件下保温1h,冷却到室温,得到多孔钛预烧结体;
二、多孔钛预烧结体粗加工:通过机械加工的手段将多孔钛预烧结体粗加工成为器件毛坯所需的形状和尺寸,预留出后期多孔钛预烧结体体积收缩以及进行精加工的尺寸余量,得到待烧结件;
三、高温最终烧结:将待烧结件放入清洁的密闭容器中进行真空高温烧结,烧结温度为1200℃,烧结时间为3h,得到多孔钛预制体;所述多孔钛预制体的压缩强度为100MPa~300MPa;
四、镁合金浸渗:将Mg-Zn-Ca合金在保护气的保护下熔化为镁合金液,然后在高于镁合金熔点50℃~80℃的条件下,超声波辅助浸渗入多孔钛预制件中,空冷或水冷至室温,得到双连通网状结构钛-镁双金属复合材料。
得到的双连通网状结构钛-镁双金属复合材料的弹性模量为16.6GPa,抗压强度为268MPa,在模拟体液中浸泡10天,质量损失约为0.9%。既可满足在人体中的承载需求,又可以消除因弹性模量过高而引起的“应力屏蔽”效应。
实施例二:本实施例与实施例一的不同之处在于:步骤一中将粒径为180μm~220μm的等轴不规则形状纯钛粉装入模具中。其他与实施例一相同。
实施例三:本实施例与实施例一的不同之处在于:步骤一中将粒径为180μm~220μm的球形Ti-Nb系合金粉装入模具中。其他与实施例一相同。
实施例四:本实施例与实施例一的不同之处在于:步骤一中将粒径为180μm~220μm的球形Ti-Mo系合金粉装入模具中。其他与实施例一相同。
实施例五:本实施例与实施例一的不同之处在于:步骤四中将Mg-Ca合金粉在保护气的保护下熔化为镁合金液。其他与实施例一相同。
实施例六:本实施例与实施例一的不同之处在于:步骤四中将Mg-Zn合金粉在保护气的保护下熔化为镁合金液。其他与实施例一相同。

Claims (1)

1.一种双连通网状结构钛-镁双金属复合材料的制备方法,其特征在于双连通网状结构钛-镁双金属复合材料的制备方法按以下步骤进行:
一、冷压松装钛粉中温预烧结:将粒径为180μm~220μm的球形纯钛粉装入模具中,施加10MPa的压力使钛粉压实后,将压实的钛粉连同模具一起放入抽真空的密闭容器中进行无压烧结,烧结温度从室温升温至900℃后,在温度为900℃的条件下保温1h,冷却到室温,得到多孔钛预烧结体;
二、多孔钛预烧结体粗加工:通过机械加工的手段将多孔钛预烧结体粗加工成为器件毛坯所需的形状和尺寸,预留出后期多孔钛预烧结体体积收缩以及进行精加工的尺寸余量,得到待烧结件;
三、高温最终烧结:将待烧结件放入清洁的密闭容器中进行真空高温烧结,烧结温度为1200℃,烧结时间为3h,得到多孔钛预制体;所述多孔钛预制体的压缩强度为100MPa~300MPa;
四、镁合金浸渗:将Mg-Zn-Ca合金在保护气的保护下熔化为镁合金液,然后在高于镁合金熔点50℃~80℃的条件下,超声波辅助浸渗入多孔钛预制件中,空冷或水冷至室温,得到双连通网状结构钛-镁双金属复合材料;得到的双连通网状结构钛-镁双金属复合材料的弹性模量为16.6GPa,抗压强度为268MPa,在模拟体液中浸泡10天,质量损失约为0.9%。
CN201710023783.9A 2017-01-13 2017-01-13 一种双连通网状结构钛-镁双金属复合材料的制备方法 Active CN106670464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710023783.9A CN106670464B (zh) 2017-01-13 2017-01-13 一种双连通网状结构钛-镁双金属复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710023783.9A CN106670464B (zh) 2017-01-13 2017-01-13 一种双连通网状结构钛-镁双金属复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106670464A CN106670464A (zh) 2017-05-17
CN106670464B true CN106670464B (zh) 2019-06-11

Family

ID=58858889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710023783.9A Active CN106670464B (zh) 2017-01-13 2017-01-13 一种双连通网状结构钛-镁双金属复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106670464B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918998B (zh) * 2019-11-24 2022-02-11 桂林理工大学 一种高阻尼5083Al/Ti复合材料及其制备方法
CN111266592B (zh) * 2020-03-25 2022-04-22 燕山大学 一种双连通结构钛镁复合材料及其制备方法和应用
CN111250703B (zh) * 2020-05-06 2020-08-14 季华实验室 以钛或钛合金为骨架增强体的镁基复合材料及制备方法
CN113172224B (zh) * 2021-04-27 2022-03-01 浙江大学 一种钛基复合结构材料的制备方法
CN114042898B (zh) * 2021-11-10 2023-02-28 温州医科大学附属口腔医院 一种大面积电偶腐蚀结构的生物医用可降解金属骨架增强Zn基复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357063A (zh) * 2012-04-10 2013-10-23 中国科学院金属研究所 一种可引导骨生长的金属复合材料及其应用
CN104368816A (zh) * 2013-08-14 2015-02-25 东睦新材料集团股份有限公司 一种铁基粉末冶金零件的制造方法
CN104525952A (zh) * 2015-01-22 2015-04-22 四川科力特硬质合金股份有限公司 一种可适应常规机械加工的硬质合金压坯的制备方法
CN105331853A (zh) * 2015-10-26 2016-02-17 北京有色金属研究总院 一种超声无压浸渗制备SiC/Al复合材料的装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120035740A1 (en) * 2009-04-22 2012-02-09 Ja-Kyo Koo Biodegradable implant and method for manufacturing same
CN102021504B (zh) * 2009-09-23 2012-03-21 中国科学院金属研究所 镁基非晶/多孔钛双相三维连通复合材料及其制备方法
CN103599560B (zh) * 2013-11-05 2015-04-15 上海交通大学 医用钛/镁复合材料及其制备方法
MX365570B (es) * 2015-02-10 2019-05-17 Inst Politecnico Nacional Proceso de obtencion de compositos metalicos porosos con hidroxiapatita para implantes y el composito de metal-hidroxiapatita.
CN104689368A (zh) * 2015-02-25 2015-06-10 上海交通大学 一种可降解的三维多孔镁基生物材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357063A (zh) * 2012-04-10 2013-10-23 中国科学院金属研究所 一种可引导骨生长的金属复合材料及其应用
CN104368816A (zh) * 2013-08-14 2015-02-25 东睦新材料集团股份有限公司 一种铁基粉末冶金零件的制造方法
CN104525952A (zh) * 2015-01-22 2015-04-22 四川科力特硬质合金股份有限公司 一种可适应常规机械加工的硬质合金压坯的制备方法
CN105331853A (zh) * 2015-10-26 2016-02-17 北京有色金属研究总院 一种超声无压浸渗制备SiC/Al复合材料的装置及方法

Also Published As

Publication number Publication date
CN106670464A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106670464B (zh) 一种双连通网状结构钛-镁双金属复合材料的制备方法
CN103357063B (zh) 一种可引导骨生长的金属复合材料及其应用
Torres et al. Design, processing and characterization of titanium with radial graded porosity for bone implants
Dewidar et al. Processing and mechanical properties of porous 316L stainless steel for biomedical applications
US6945448B2 (en) Method for attaching a porous metal layer to a metal substrate
JP4385285B2 (ja) 外科用インプラントの製造方法および外科用インプラント
CN103599561B (zh) 一种镁合金/羟基磷灰石复合材料的制备方法
CN105397090B (zh) 一种多孔镍钛/羟基磷灰石复合材料的制备方法
Esen et al. Titanium–magnesium based composites: mechanical properties and in-vitro corrosion response in Ringer's solution
CN108380891B (zh) 一种钛基生物医用梯度复合材料的制备方法
Yamanoglu et al. Production of porous Ti5Al2. 5Fe alloy via pressureless spark plasma sintering
CN108273126B (zh) 一种径向梯度医用复合材料的制备方法
CA2839407A1 (en) Micro-alloyed porous metal having optimized chemical composition and method of manufacturing the same
CN107190190A (zh) 骨缺损修复用的梯度多孔镁合金材料
EP1663330B1 (en) Biocompatible porous ti-ni material
CN109847110A (zh) 一种多孔Ti-Nb-Zr复合人造骨植入材料及其制备方法和应用
CN105400990B (zh) 一种低模量高强度生物医用钛合金及其制备方法
Bhushan et al. Fabrication and characterization of a new range of β-type Ti-Nb-Ta-Zr-xHaP (x= 0, 10) alloy by mechanical alloying and spark plasma sintering for biomedical applications
CN109172862A (zh) 一种医用多孔钛钽复合材料
EP3122497B1 (en) Method for manufacturing a porous metal material for biomedical applications
CN111266592B (zh) 一种双连通结构钛镁复合材料及其制备方法和应用
JPH0349766A (ja) 骨親和性に優れた多孔質体の製造方法
CN112063886B (zh) 一种具有微/纳米孔隙的含镁生物β钛合金及其制备方法
Che Daud et al. The effect of sintering on the properties of powder metallurgy (PM) F-75 alloy
CN111569155A (zh) 一种梯度结构钛钽层状复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant