CN106653567A - 一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法 - Google Patents

一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法 Download PDF

Info

Publication number
CN106653567A
CN106653567A CN201611089713.5A CN201611089713A CN106653567A CN 106653567 A CN106653567 A CN 106653567A CN 201611089713 A CN201611089713 A CN 201611089713A CN 106653567 A CN106653567 A CN 106653567A
Authority
CN
China
Prior art keywords
ion beam
focused ion
gaas
gallium arsenide
orderly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611089713.5A
Other languages
English (en)
Inventor
徐星亮
李俊焘
代刚
向安
肖承全
张�林
周阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201611089713.5A priority Critical patent/CN106653567A/zh
Publication of CN106653567A publication Critical patent/CN106653567A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Abstract

本发明公开了一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法,涉及半导体材料制备技术领域,该方法包括下步骤:提供GaAs衬底材料,并对GaAs衬底材料进行表面清洁;利用聚焦离子束(FIB)轰击GaAs衬底,通过改变离子束照射参数,诱导有序Ga金属纳米液滴形成;把GaAs衬底放入分子束外延(MBE)***中,打开As4源,形成GaAs量子点;本发明利用FIB诱导形成的有序Ga液滴作为加工GaAs量子点的模板,实现有序GaAs量子点的生长。

Description

一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法
技术领域
本发明涉及半导体材料制备技术领域,具体涉及一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法。
背景技术
近年来,量子点在纳米科学技术领域扮演着越来越重要的角色。由于量子点明显的量子限制效应和小尺寸效应带来的独特的电子和光电子性质,引起了科研工作者广泛的兴趣。
由于发射光谱窄、发射波长可调和化学稳定性能好等优异的光学、电学性能,量子点在纳米半导体器件制造中有广泛的应用,如量子点激光器、量子点光电探测器、量子点太阳能电池、量子点发光二极管和量子点异质结场效应晶体管等。量子点结构的器件往往要求制备的量子点有序统一的结构排布。但是如何获得高质量的有序量子点结构从始至终都是研究者们研究的难题。
一般来讲,量子点的制备方法可以分为两种:
一种是自上而下的制备方法,利用先进的薄膜生长技术结合超微细加工工艺来制备量子点,比如光刻和刻蚀技术。由于生长和加工设备的限制,这种方法难以制备出尺寸极小而且形貌可控的高质量量子点,同时获得的量子点侧壁分辨率低、易损伤等缺点。
另一种方法是自下而上的自组装方法,主要包括分子束外延和金属有机气相沉积法等方法。相比于自上而下的方式,外延生长制备量子点更加快捷,同时材料质量更好。
纯粹利用外延生长技术制备量子点,形成的量子点结构必然是随机分布的。基于此,我们提出一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法,该方法结合FIB技术和外延生长技术,为有序量子点的制备提供了一种可行的方案。
发明内容
本发明的目的在于,提供一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法,该方法通过FIB生长有序Ga液滴,并以此作为加工模板,利用分子束外延生长实现有序GaAs量子点的制备。
本发明的技术方案如下:
一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法,包括如下步骤:
步骤一:提供GaAs衬底材料,对所述GaAs衬底材料进行表面清洁;
步骤二:利用聚焦离子束(FIB)轰击GaAs衬底,通过改变离子束照射参数,诱导有序Ga金属纳米液滴形成;
步骤三:把GaAs衬底放入分子束外延(MBE)***中,打开As4源,形成有序GaAs量子点。
对GaAs衬底的表面进行清洗。
所述聚焦离子束的照射角度范围为37°—60°。
所述聚焦离子束的加速电压范围为5keV—15keV。
所述聚焦离子束的束流范围为0.06nA—5nA。
当GaAs衬底放入分子束外延***进行分子束外延时,生长温度范围控制在100℃—580℃。
本发明的有益效果如下:
本发明通过聚焦离子束(FIB)生长有序Ga液滴,并以此作为加工模板,利用分子束外延生长实现有序GaAs量子点的制备。
附图说明
图1为使用本方法制备有序砷化镓量子点的示意图;
其中,附图标记为:110-衬底,210-有序Ga金属纳米液滴,310-有序GaAs量子点。
具体实施方式
如图1 所示,本发明涉及一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法,包括如下步骤:
步骤一:选择一衬底110,该衬底为半绝缘GaAs单晶片,晶向为(100),厚度为325um; 对GaAs基片进行RCA清洗。
步骤二:利用聚焦离子束(FIB)轰击衬底110,通过改变离子束照射参数,诱导有序Ga金属纳米液滴210形成。有序Ga金属纳米液滴210的形成可以理解为:高能Ga+溅射到GaAs表面,当能量到达一定值,会破坏Ga-As化学键,衬底上大量液滴镓聚集成核形成镓液滴。其中,FIB的入射角为55°,加速电压为10keV,离子束电流为0.93nA,轰击时间为5min。
步骤三:把GaAs衬底放入分子束外延(MBE)***中,打开As4源,形成有序GaAs量子点310。其中,分子束外延生长速率为1ML/s,温度为500℃,真空度为10-8Torr。
以上所述,仅为本发明中具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围,可轻易想到的变化或者替换,都应涵盖在本发明的保护范围之中。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法,其特征在于包括如下步骤:
步骤一:提供GaAs衬底材料,对所述GaAs衬底材料进行表面清洁;
步骤二:利用聚焦离子束轰击GaAs衬底,通过改变离子束照射参数,诱导有序Ga金属纳米液滴形成;
步骤三:把GaAs衬底放入分子束外延***中,打开As4源,形成有序GaAs量子点。
2.根据权利要求1所述的基于聚焦离子束诱导的有序砷化镓量子点的制备方法,其特征在于:所述聚焦离子束的照射角度范围为37°~60°。
3.根据权利要求1所述的基于聚焦离子束诱导的有序砷化镓量子点的制备方法,其特征在于:所述聚焦离子束的加速电压范围为5keV~15keV。
4.根据权利要求1所述的基于聚焦离子束诱导的有序砷化镓量子点的制备方法,其特征在于:所述聚焦离子束的束流范围为0.06nA~5nA。
5.根据权利要求1所述的基于聚焦离子束诱导的有序砷化镓量子点的制备方法,其特征在于:当GaAs衬底放入分子束外延***进行分子束外延时,生长温度范围控制在100℃—580℃。
CN201611089713.5A 2016-12-01 2016-12-01 一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法 Pending CN106653567A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611089713.5A CN106653567A (zh) 2016-12-01 2016-12-01 一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611089713.5A CN106653567A (zh) 2016-12-01 2016-12-01 一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法

Publications (1)

Publication Number Publication Date
CN106653567A true CN106653567A (zh) 2017-05-10

Family

ID=58813944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611089713.5A Pending CN106653567A (zh) 2016-12-01 2016-12-01 一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法

Country Status (1)

Country Link
CN (1) CN106653567A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646425A (zh) * 2020-04-26 2020-09-11 北京大学 一种离子束诱导的液膜图案化印刷方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424794A (zh) * 2003-01-03 2003-06-18 复旦大学 一种波长连续可调的半导体激光器及其制备方法
CN103477418A (zh) * 2010-12-13 2013-12-25 挪威科技大学 石墨基板上的纳米线外延

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424794A (zh) * 2003-01-03 2003-06-18 复旦大学 一种波长连续可调的半导体激光器及其制备方法
CN103477418A (zh) * 2010-12-13 2013-12-25 挪威科技大学 石墨基板上的纳米线外延

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐星亮: "聚焦离子束刻蚀诱导液滴形成及其迁移", 《万方数据知识服务平台》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646425A (zh) * 2020-04-26 2020-09-11 北京大学 一种离子束诱导的液膜图案化印刷方法
CN111646425B (zh) * 2020-04-26 2023-06-09 北京大学 一种离子束诱导的液膜图案化印刷方法

Similar Documents

Publication Publication Date Title
CN108156828A (zh) 用于在石墨基板上生长纳米线或纳米角锥体的方法
US7767272B2 (en) Method of producing compound nanorods and thin films
Chen et al. GaN nanowire fabricated by selective wet-etching of GaN micro truncated-pyramid
CN104377114B (zh) 一种锗量子点的生长方法、锗量子点复合材料及其应用
Adolph et al. Nucleation and epitaxial growth of ZnO on GaN (0001)
Chau et al. Fabrication of ZnO thin films by femtosecond pulsed laser deposition
Dahiya et al. Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst
CN106653567A (zh) 一种基于聚焦离子束诱导的有序砷化镓量子点的制备方法
JP2013251411A (ja) 酸化亜鉛(ZnO)系単結晶ナノ構造体、ZnO系薄膜及びZnO系単結晶性薄膜の製造方法、並びにZnO系単結晶性薄膜及び該ZnO系単結晶性薄膜からなるZnO系材料
Solodovnik et al. MBE formation of self-catalyzed GaAs nanowires using ZnO nanosized films
Kramer et al. Self-assembled and ordered growth of silicon and germanium nanowires
CN103757693B (zh) 一种GaN纳米线的生长方法
Ji-Hong et al. Fabrication and optical characterization of GaN-based nanopillar light emitting diodes
Tsai et al. Effects of temperature and nitradition on phase transformation of GaN quantum dots grown by droplet epitaxy
CN107919269B (zh) 一种预后制备量子点的量子点耦合微结构及其制备方法
Shekari et al. Optical and structural characterizations of GaN nanostructures
Reznik et al. MBE growth and structural properties of GaP and InP nanowires on a SiC substrate with a graphene layer
Lazarenko et al. Preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy
Dhungana et al. Controlling nanowire nucleation for integration on silicon
Lendyashova et al. Effect of wet KOH etching on structural properties of GaN nanowires grown on patterned SiOx/Si substrates
Liudi Mulyo Molecular Beam Epitaxy of GaN/AlGaN Nanocolumns on Graphene for Potential Application in Ultraviolet Light-Emitting Diodes
JP6635462B2 (ja) 半導体量子ドット素子の製造方法
WO2023173619A1 (zh) 一种有序半导体量子点制备方法及装置
Yoen et al. Growth of catalyst-free GaAs nanowire with As pulse injection for full zinc-blende structure
Shamsudin et al. Synthesizing vertically aligned zinc oxide nanowires on borosilicate glass using vapor trapping approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510