CN106637415A - 一种用高温固融法制备铝掺杂氧化锌晶须的方法 - Google Patents

一种用高温固融法制备铝掺杂氧化锌晶须的方法 Download PDF

Info

Publication number
CN106637415A
CN106637415A CN201610851895.9A CN201610851895A CN106637415A CN 106637415 A CN106637415 A CN 106637415A CN 201610851895 A CN201610851895 A CN 201610851895A CN 106637415 A CN106637415 A CN 106637415A
Authority
CN
China
Prior art keywords
zinc oxide
oxide crystal
crystal whiskers
znow
doped zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610851895.9A
Other languages
English (en)
Inventor
王越
胡烁鹏
蒋毅坚
王强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610851895.9A priority Critical patent/CN106637415A/zh
Publication of CN106637415A publication Critical patent/CN106637415A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/04Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion materials in the liquid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Abstract

一种用高温固融法制备铝掺杂氧化锌晶须的方法,其特征在于:(1)将ZnO粉料用光学浮区法自主生长氧化锌晶须;(2)将氧化锌晶须和硝酸铝在乙醇溶液中进行高温固融,硝酸铝溶液浓度为0.03mol/L,其中氧化锌晶须和硝酸铝的用量比为0.2g:0.0006mol;搅拌均匀,过滤烘干得到掺杂后的氧化锌晶须;将掺杂后的氧化锌晶须置于管式炉中在氮气气氛下500℃进行退火处理,退火时间为10‑15h,退火结束后得到铝掺杂的氧化锌晶须。本工艺大大的提高了效率;得到的铝掺杂氧化锌晶须为mm尺寸,大大的提高了晶须电阻率测量的精确性,并且真正的得到了单根氧化锌晶须的电阻率。

Description

一种用高温固融法制备铝掺杂氧化锌晶须的方法
技术领域
本发明属于Al掺杂ZnO晶须的制备领域。
背景技术
ZnO作为II-VI族n型直接宽禁带氧化物半导体,是一种多功能材料,有许多优点,因此,引起了很多人的注意。首先,常温下ZnO的禁带宽度为3.37eV,激子束缚能为60meV,大约是室温热离化能的2.4倍,高于其他几种宽禁带半导体材料;其次,高质量的ZnO单晶可以通过简单的技术制备出来,Zn元素的含量在地壳中较多,因此ZnO器件的价格也比较低;最后,ZnO对环境无毒无害,是一种环保材料,而且熔点很高,具有很强的热稳定性和化学稳定性。所以是近年来被重点研究和开发的材料。铝掺杂氧化锌更是提高了ZnO的性能,特别是光电性能,从而使其广泛应用于抗静电材料、光催化材料、光电材料以及透明导电电极材料等。目前在利用氧化锌晶须制备高分子抗静电材料方面,均将氧化锌晶须直接掺杂到高分子材料当中,常规方法生长的氧化锌晶须电阻率高且不稳定,存在添加量大和抗静电效果较差的问题,即使达到最大的添加量,抗静电涂料的电阻率最多只能接近纯氧化锌晶须压缩后的电阻率。另外,添加量过大还会导致复合材料的力学性能下降,性能重现性较差、加工难度大和成本过高等问题。因而,解决上述难题的根本途径在于有效降低氧化锌晶须的本体电阻率。针对上述问题,我们通过光学浮区的方法生长出低电阻率且长度为mm级别的氧化锌晶须,并且通过高温固融掺杂处理的方法,制备了稳定的低电阻率铝掺杂氧化锌晶须,对最佳制备工艺问题进行了初步探讨。
目前,国际上陆续报导了一些通过掺杂改性来降低氧化锌晶须电阻率的研究工作,如Suping Huang等人于2009年在Journal of Alloys and Compounds杂志发表了题为“Hydrothermal synthesis and conductive properties of Al-doped ZnO rod-likewhiskers(铝掺杂氧化锌纳米棒晶须的水热合成及导电性能研究)”一文,通过水热法制备的铝掺杂氧化锌晶须的电阻率最低为3.959*104Ω/㎝。
中南大学的Cuifeng Wan等人于2008年在Materials Science and Engineering:B杂志发表了题为“Highly conductive Al-doped tetra-needle-like ZnO whiskersprepared by a solid state method(固态法制备高导电性的掺铝四针状氧化锌晶须)”一文,通过高温固融的方法制备的通过水热法制备的铝掺杂氧化锌晶须的电阻率最低为102Ω/㎝。
研究结果表明,在ZnO晶须中掺杂Al,可降低其电阻率。但目前的研究工作仍存在着如下问题:1,大部分课题组采用的为um级别的氧化锌晶须,无法实现单根晶须的测量,给出的氧化锌晶须的电阻率实际为压片测量的结果并非是氧化锌晶须本身的电阻率,反而类似于氧化锌粉末的电阻率;2,将氯离子溶于乙醇溶液形成胶体的时间过长(以小时为单位),晶须放置于溶液后搅拌时间过长(5小时),3,铝的含量无法标定,溶液中的胶体铝离子进入晶须的范围无法判断,无法证明铝元素的含量变化的具体范围。
发明内容
本发明的目的在于在改变液体中铝离子的含量,提供一种高温固融方式下的、周期短、耗能低、得到最低电阻率的铝掺杂氧化锌晶须。
一种用高温固融法制备铝掺杂氧化锌晶须的方法,其特征在于:
(1)将ZnO粉料用光学浮区法自主生长氧化锌晶须;
(2)将氧化锌晶须和硝酸铝在乙醇溶液中进行高温固融,硝酸铝溶液浓度为0.03mol/L,其中氧化锌晶须和硝酸铝的用量比为0.2g:0.0006mol;搅拌均匀,过滤烘干得到掺杂后的氧化锌晶须;
(3)将掺杂后的氧化锌晶须置于管式炉中在氮气气氛下500℃进行退火处理,退火时间为10-15h,退火结束后得到铝掺杂的氧化锌晶须。
进一步,在步骤(2)搅拌的时候增加超声。
与现有工艺相比,本发明工艺的明显优点
(1)采用光学浮区法自主生长了尺寸为mm级别的六角纤锌矿结构氧化锌微米管,使用此大尺寸氧化锌晶须进行高温固融;
(2)相对于现有的高温固融工艺,采用搅拌和超声一起使用的方式,缩短了胶体与晶须混合的时间大大的提高了制备效率;
(3)本工艺最后得到的铝掺杂氧化锌晶须为mm尺寸,可以单根的进行电阻率的测量,大大的提高了晶须电阻率测量的精确性,并且真正的得到了单根氧化锌晶须的电阻率,而不是采用压片的方式,测量大量的氧化锌晶须残渣的总电阻率,压片后的氧化锌晶须中氧化锌颗粒有大量的晶界存在,使得电阻率变得非常大。
附图说明
图1为不同的退火时间得到的氧化锌晶须的PL图谱
图2为不同退火时间得到的氧化锌晶须的XRD
具体实施方式
(1)将高纯ZnO(99.99%)称量后,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨24h,烘干、过筛后,制成料棒,吊烧后得到氧化锌陶瓷棒,将陶瓷棒置于光学浮区炉中生长,得到氧化锌晶须;
(2)将生长得到的晶须0.2g置于烧杯中。加入20ml乙醇溶液,超声清洗10min,加入硝酸铝,通过改变加入硝酸铝的量,得到不同浓度的硝酸铝溶液。再次超声并搅拌溶液20min,使得铝离子充分的附着于晶须表面,过滤,烘干得到铝离子附着的氧化锌晶须。
(3)将烘干后的晶须放置于瓷舟中,将瓷舟放到管式炉正中心,通入氮气,维持压强20Mpa,保持温度500℃,退火时间10-40h。退火结束后得到铝掺杂的氧化锌晶须,将晶须进行电阻率,PL,XRD分析。
结论:铝杂氧化锌晶须高温固融法最佳工艺:温度:500℃,硝酸铝溶液浓度:0.03mol/L,退火时间:10-15h,得到的晶须最低的电阻率为0.0107mol/L。
表1为实验得到的铝掺杂的氧化锌晶须的电阻率。

Claims (2)

1.一种用高温固融法制备铝掺杂氧化锌晶须的方法,其特征在于:
(1)将ZnO粉料用光学浮区法自主生长氧化锌晶须;
(2)将氧化锌晶须和硝酸铝在乙醇溶液中进行高温固融,硝酸铝溶液浓度为0.03mol/L,其中氧化锌晶须和硝酸铝的用量比为0.2g:0.0006mol;搅拌均匀,过滤烘干得到掺杂后的氧化锌晶须;
(3)将掺杂后的氧化锌晶须置于管式炉中在氮气气氛下500℃进行退火处理,退火时间为10-15h,退火结束后得到铝掺杂的氧化锌晶须。
2.根据权利要求1所述的的方法,其特征在于:
在步骤(2)搅拌的时候增加超声。
CN201610851895.9A 2016-09-26 2016-09-26 一种用高温固融法制备铝掺杂氧化锌晶须的方法 Pending CN106637415A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610851895.9A CN106637415A (zh) 2016-09-26 2016-09-26 一种用高温固融法制备铝掺杂氧化锌晶须的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610851895.9A CN106637415A (zh) 2016-09-26 2016-09-26 一种用高温固融法制备铝掺杂氧化锌晶须的方法

Publications (1)

Publication Number Publication Date
CN106637415A true CN106637415A (zh) 2017-05-10

Family

ID=58854061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610851895.9A Pending CN106637415A (zh) 2016-09-26 2016-09-26 一种用高温固融法制备铝掺杂氧化锌晶须的方法

Country Status (1)

Country Link
CN (1) CN106637415A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560059A (zh) * 2009-05-27 2009-10-21 中南大学 掺铝氧化锌涂膜和纳米棒阵列材料及其制备方法
CN103395826A (zh) * 2013-08-06 2013-11-20 大连交通大学 铝掺杂氧化锌纳米粉体的制备方法
CN103496732A (zh) * 2013-09-30 2014-01-08 华南理工大学 一种高电导率铝掺杂氧化锌纳米粉体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560059A (zh) * 2009-05-27 2009-10-21 中南大学 掺铝氧化锌涂膜和纳米棒阵列材料及其制备方法
CN103395826A (zh) * 2013-08-06 2013-11-20 大连交通大学 铝掺杂氧化锌纳米粉体的制备方法
CN103496732A (zh) * 2013-09-30 2014-01-08 华南理工大学 一种高电导率铝掺杂氧化锌纳米粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CUIFENG WAN ET AL: "Highly conductive Al-doped tetra-needle-like ZnO whiskers prepared by a solid state method", 《MATERIALS SCIENCE AND ENGINEERING B》 *

Similar Documents

Publication Publication Date Title
Sawicka-Chudy et al. Simulation of TiO2/CuO solar cells with SCAPS-1D software
Cao et al. Vertical SnSe nanorod arrays: from controlled synthesis and growth mechanism to thermistor and photoresistor
Morihama et al. Crystallographic and optical properties of Cu2Zn (Sn1− xGex) Se4 solid solution
Carter et al. Cu2ZnSn (S, Se) 4 solar cells from inks of heterogeneous Cu–Zn–Sn–S nanocrystals
Peksu et al. Characterization of Cu2ZnSnS4 thin films deposited by one-step thermal evaporation for a third generation solar cell
Fan et al. Enhanced thermoelectric properties of Bi2Sr2Co2Oy by alkali metal element doping and SiC dispersion
CN104681123B (zh) 太阳能电池背银浆料及其制备方法、太阳能电池及其制备方法
Sun et al. Improvement of wettability of Te-modified lead-free glass frit and its effect to front side silver paste in crystalline silicon solar cells
Khan et al. Tungsten dopant incorporation for bandgap and type engineering of perovskite crystals
Cui et al. Enhanced interfacial wettability change materials based on graphene-doped Pb–Te–Si glass frit for wide sintering window of solar cells
CN102560627B (zh) 一种掺杂电阻率均匀的n型直拉硅单晶及其制备方法
Muska et al. Influence of compositional deviations on the properties of Cu2ZnSnSe4 monograin powders
CN103274583B (zh) 石英坩埚及其制作方法、p型硅铸锭及其制作方法
CN106637415A (zh) 一种用高温固融法制备铝掺杂氧化锌晶须的方法
CN108342775A (zh) 一种钽掺杂β氧化镓晶态材料及其制备方法和应用
TWI439578B (zh) 硒化銅奈米粉體和電泳沉積硒化銅薄膜之製造方法
Jiang et al. In–Zn–Sn–O Ceramic targets: Preparation following the cold sintering process and properties of the materials
JP5300424B2 (ja) 化合物半導体粒子の製法および化合物半導体粒子、ならびに化合物半導体膜
Zhou et al. Preparation and characterization of high-quality perovskite CH3NH3PbX3 (I, Br) single crystal
CN105669182A (zh) 一种用放电等离子烧结研究镓掺杂氧化锌陶瓷最佳烧结工艺的方法
Kösemen Electrochemical growth of Y doped ZnO nanorods for use in inverted type organic solar cells as electron transport layer
Zhang et al. Direct synthesis of highly pure CdS nanofilms via solvothermal method
Öcebe et al. From particles to films: production of Cs 2 AgBiBr 6-based perovskite solar cells and enhancement of cell performance via ionic liquid utilization at the TiO 2/perovskite interface
EP2771498A2 (en) Method of manufacturing znmgo film
Liu et al. Preparation and characterization of nanostructured Bi 2 Se 3 and Sn 0.5-Bi 2 Se 3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170510

WD01 Invention patent application deemed withdrawn after publication