CN106633161A - 负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用 - Google Patents

负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用 Download PDF

Info

Publication number
CN106633161A
CN106633161A CN201611082413.4A CN201611082413A CN106633161A CN 106633161 A CN106633161 A CN 106633161A CN 201611082413 A CN201611082413 A CN 201611082413A CN 106633161 A CN106633161 A CN 106633161A
Authority
CN
China
Prior art keywords
silk gum
polyvinyl alcohol
solution
film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611082413.4A
Other languages
English (en)
Inventor
王叶菁
蔡蕊
陶刚
赵萍
夏庆友
何华伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201611082413.4A priority Critical patent/CN106633161A/zh
Publication of CN106633161A publication Critical patent/CN106633161A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用,其制备方法是将蚕茧经高温高压得丝胶溶液,然后与配制好的聚乙烯醇溶液共混,倒入容器中,经过冷冻‑解冻循环得到丝胶‑聚乙烯醇共混凝胶,烘干,得到丝胶‑聚乙烯醇共混薄膜;最后将制备好的薄膜置于AgNO3溶液中,利用紫外辐照还原法获得负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜。所制得的负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜具有良好的力学性能、吸水性能和抗菌性能,有望应用于生物医疗材料领域。

Description

负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法及其 产品和应用
技术领域
本发明属于生物医学复合抗菌材料领域,涉及负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用。
背景技术
丝胶是一种球状蛋白,以鳞状粒片不规则地附着于丝素的***,约占茧层质量的25%。丝胶蛋白分子由丝氨酸(33.43%)、天门冬氨酸(16.71%)、甘氨酸(13.49%)等18种氨基酸组成,其中极性侧链氨基酸占74.32%,非极性侧链氨基酸占25.68%。丝胶蛋白具有良好的生物反应活性、保湿性、亲水性、细胞粘附性、生物相容性、生物可降解性和促进细胞增殖等特性,是一种理想的生物医学材料。在缫丝工业中,丝胶常常被视为废弃物而随污水排掉,造成了严重的资源浪费和环境污染。因此,进一步开展丝胶的基础研究和应用研究,对于丝胶的回收利用、减少环境污染和拓展丝胶用途有着极其重要的意义。但是由纯丝胶制备的薄膜其力学性能较差,难以满足生物材料的要求。
因此,急需一种力学性能好、吸水性、抗菌活性和生物相容性好的生物材料。
发明内容
有鉴于此,本发明的目的之一在于提供一种负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法;本发明的目的之二在于提供由所述制备方法制得的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜;本发明的目的之三在于提供负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜在制备抗菌材料中的应用。
为达到上述目的,本发明提供如下技术方案:
1、负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:取蚕茧进行脱胶,收集丝胶溶液,然后将丝胶溶液冻结后进行冷冻干燥,得丝胶粉末;再将丝胶粉末加水溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:将步骤(1)制得丝胶溶液与聚乙烯醇溶液共混,倒入容器中,经过冷冻-解冻循环得到丝胶-聚乙烯醇共混凝胶,取出凝胶烘干,得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于AgNO3溶液中,利用紫外辐照还原法在丝胶-聚乙烯醇共混薄膜的表面合成纳米银,获得负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
本发明中步骤(1)为取蚕茧剪碎,浴比为1:30加水,于120℃、0.1Mpa条件下脱胶20~30min;然后在-80℃冻结后经过冷冻干燥,得丝胶粉末;再向丝胶粉末中按浓度为4%(w/t)加水,80℃加热溶解,得丝胶溶液。
本发明步骤(2)中,所述聚乙烯醇溶液由以下方法制备:按浓度为5%(w/t)向聚乙烯醇固体粉末中加水,溶胀30min,然后在90℃条件下水浴加热,同时不断搅拌溶解,得聚乙烯醇溶液。
本发明步骤(2)中,所述共混按丝胶溶液与聚乙烯醇溶液的质量比为3:1~3:4;所述冷冻-解冻循环是在-20℃条件下冷冻4个小时,然后放于18-25℃条件下解冻2个小时,循环4次;所述烘干温度为55℃。
本发明步骤(3)中,所述AgNO3溶液的浓度为100mM。
本发明步骤(3)中,所述紫外辐照的时间为至少10min。
2、由所述制备方法制得的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
3、所述负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜在制备抗菌材料中的应用。
优选的,所述抗菌材料为抗革兰氏阳性菌或/和革兰氏阴性菌材料。
更优选的,所述抗革兰氏阳性菌为大肠杆菌,所述革兰氏阴性菌为金黄色葡萄球菌。
本发明的有益效果在于:本发明公开了负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜制备方法,采用加热共混、冷冻解冻的方法制得丝胶-聚乙烯醇薄膜,然后用紫外辐照的方法在共混薄膜表面修饰纳米银。该制备方法简便、快捷、绿色,且制得的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜具有良好的吸水性、保湿性和力学性能,且具有良好的抗菌性能,对革兰氏阳性菌和革兰氏阴性菌都有很好的抑制作用。负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜克服了丝胶自身的脆性,且具有良好的保湿性、吸水性和抗菌性,有望用于制备生物抗菌敷料。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为不同比例的(丝胶:聚乙烯醇(SS:PAV)=3:1;3:2;3:3;3:4)丝胶-聚乙烯醇共混薄膜的应变-应力曲线图。
图2为不同比例的(丝胶:聚乙烯醇(SS:PAV)=3:1;3:2;3:3;3:4)丝胶-聚乙烯醇共混薄膜的溶胀率和溶失率对比图。
图3为(丝胶:聚乙烯醇(SS:PAV)=3:3)丝胶-聚乙烯醇共混薄膜的保水率。
图4为负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的表面扫描电子显微镜照片(A:丝胶-聚乙烯醇共混薄膜;B:丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中紫外照射10min;C:丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中紫外照射30min;D:丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中紫外照射60min)。
图5为负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的XRD图谱。
图6为负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的FT-IR图谱(a:丝胶;b:丝胶-聚乙烯醇共混薄膜;c:负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜)。
图7为添加负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜后大肠杆菌和金黄色葡萄球菌的生长曲线(A:大肠杆菌的生长曲线;B:金黄色葡萄球菌的生长曲线)。
图8为添加负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜后大肠杆菌和金黄色葡萄球菌的抑菌环(A为大肠杆菌的抑菌环图;B为金黄色葡萄球菌的抑菌环图)。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
实施例1
负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:将蚕茧剪碎按浴比为1:30置于去离子水中高温高压(120℃、0.1Mpa)30min,收集丝胶溶液,用纱网过滤,将过滤后的丝胶溶液在-80℃冰箱冻结,然后利用冷冻干燥机将冻结的丝胶制成丝胶粉末,然后将制得的丝胶粉加入去离子水中配制成浓度为4%(w/t,g/ml),加热(80℃)溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:按浓度为5%(w/t,g/ml)称取聚乙烯醇固体粉末加入去离子水,溶胀30min,然后在90℃条件下水浴加热,不断搅拌溶解,得聚乙烯醇溶液;将步骤(1)制得的丝胶溶液与聚乙烯醇溶液按质量比为3:1共混,然后在65℃条件下水浴加热同时搅拌至混合均匀,再静置除去气泡后倒入平底容器中,于-20℃条件下冷冻4小时,然后取出在室温(18~25℃)条件下解冻2小时,反复进行冷冻-解冻过程4次后,得到丝胶-聚乙烯醇共混凝胶,最后在55℃下烘干得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,365nm紫外光下密闭照射10min进行纳米银修饰,然后干燥,得到负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
实施例2
负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:将蚕茧剪碎按浴比为1:30置于去离子水中高温高压(120℃、0.1Mpa)30min,收集丝胶溶液,用纱网过滤,将过滤后的丝胶溶液在-80℃冰箱冻结,然后利用冷冻干燥机将冻结的丝胶制成丝胶粉末,然后将制得的丝胶粉末加入去离子水中配制成浓度为4%(w/t,g/ml),加热(80℃)溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:按浓度为5%(w/t,g/ml)称取聚乙烯醇固体粉末加入去离子水,溶胀30min,然后在90℃条件下水浴加热,不断搅拌溶解,得聚乙烯醇溶液;将步骤(1)制得的丝胶溶液与聚乙烯醇溶液按质量比为3:2共混,然后在65℃条件下水浴加热同时搅拌至混合均匀,再静置除去气泡后倒入平底容器中,于-20℃条件下冷冻4小时,然后取出在室温(18~25℃)条件下解冻2小时,反复进行冷冻-解冻过程4次后,得到丝胶-聚乙烯醇共混凝胶,最后在55℃下烘干得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,365nm紫外光下密闭照射10min进行纳米银修饰,然后干燥,得到负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
实施例3
负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:将蚕茧剪碎按浴比为1:30置于去离子水中高温高压(120℃、0.1Mpa)20min,收集丝胶溶液,用纱网过滤,将过滤后的丝胶溶液在-80℃冰箱冻结,然后利用冷冻干燥机将冻结的丝胶制成丝胶粉末,然后将制得的丝胶粉末加入去离子水中配制成浓度为4%(w/t,g/ml),加热(80℃)溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:按浓度为5%(w/t,g/ml)称取聚乙烯醇固体粉末加入去离子水,溶胀30min,然后在90℃条件下水浴加热,不断搅拌溶解,得聚乙烯醇溶液;将步骤(1)制得的丝胶溶液与聚乙烯醇溶液按质量比为3:3共混,然后在65℃条件下水浴加热同时搅拌至混合均匀,再静置除去气泡后倒入平底容器中,于-20℃条件下冷冻4小时,然后取出在室温(18~25℃)条件下解冻2小时,反复进行冷冻-解冻过程4次后,得到丝胶-聚乙烯醇共混凝胶,最后在55℃下烘干得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,365nm紫外光下密闭照射10min进行纳米银修饰,然后干燥,得到负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
实施例4
负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:将蚕茧剪碎按浴比为1:30置于去离子水中高温高压(120℃、0.1Mpa)30min,收集丝胶溶液,用纱网过滤,将过滤后的丝胶溶液在-80℃冰箱冻结,然后利用冷冻干燥机将冻结的丝胶制成丝胶粉末,然后将制得的丝胶粉末加入去离子水中配制成浓度为4%(w/t,g/ml),加热(80℃)溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:按浓度为5%(w/t,g/ml)称取聚乙烯醇固体粉末加入去离子水,溶胀30min,然后在90℃条件下水浴加热,不断搅拌溶解,得聚乙烯醇溶液;将步骤(1)制得的丝胶溶液与聚乙烯醇溶液按质量比为3:4共混,然后在65℃条件下水浴加热同时搅拌至混合均匀,再静置除去气泡后倒入平底容器中,于-20℃条件下冷冻4小时,然后取出在室温(18~25℃)条件下解冻2小时,反复进行冷冻-解冻过程4次后,得到丝胶-聚乙烯醇共混凝胶,最后在55℃下烘干得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,365nm紫外光下密闭照射10min进行纳米银修饰,然后干燥,得到负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
实施例5
负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:将蚕茧剪碎按浴比为1:30置于去离子水中高温高压(120℃、0.1Mpa)30min,收集丝胶溶液,用纱网过滤,将过滤后的丝胶溶液在-80℃冰箱冻结,然后利用冷冻干燥机将冻结的丝胶制成丝胶粉末,然后将制得的丝胶粉末加入去离子水中配制成浓度为4%(w/t,g/ml),加热(80℃)溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:按浓度为5%(w/t,g/ml)称取聚乙烯醇固体粉末加入去离子水,溶胀30min,然后在90℃条件下水浴加热,不断搅拌溶解,得聚乙烯醇溶液;将步骤(1)制得的丝胶溶液与聚乙烯醇溶液按质量比为3:3共混,然后在65℃条件下水浴加热同时搅拌至混合均匀,再静置除去气泡后倒入平底容器中,于-20℃条件下冷冻4小时,然后取出在室温(18~25℃)条件下解冻2小时,反复进行冷冻-解冻过程4次后,得到丝胶-聚乙烯醇共混凝胶,最后在55℃下烘干得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,365nm紫外光下密闭照射10min进行纳米银修饰,然后干燥,得到负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
实施例6
负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:将蚕茧剪碎按浴比为1:30置于去离子水中高温高压(120℃、0.1Mpa)30min,收集丝胶溶液,用纱网过滤,将过滤后的丝胶溶液在-80℃冰箱冻结,然后利用冷冻干燥机将冻结的丝胶制成丝胶粉末,然后将制得的丝胶粉末加入去离子水中配制成浓度为4%(w/t,g/ml),加热(80℃)溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:按浓度为5%(w/t,g/ml)称取聚乙烯醇固体粉末加入去离子水,溶胀30min,然后在90℃条件下水浴加热,不断搅拌溶解,得聚乙烯醇溶液;将步骤(1)制得的丝胶溶液与聚乙烯醇溶液按质量比为3:3共混,然后在65℃条件下水浴加热同时搅拌至混合均匀,再静置除去气泡后倒入平底容器中,于-20℃条件下冷冻4小时,然后取出在室温(18~25℃)条件下解冻2小时,反复进行冷冻-解冻过程4次后,得到丝胶-聚乙烯醇共混凝胶,最后在55℃下烘干得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,365nm紫外光下密闭照射30min进行纳米银修饰,然后干燥,得到负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
实施例7
负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,包括如下步骤:
(1)丝胶溶液的制备:将蚕茧剪碎按浴比为1:30置于去离子水中高温高压(120℃、0.1Mpa)30min,收集丝胶溶液,用纱网过滤,将过滤后的丝胶溶液在-80℃冰箱冻结,然后利用冷冻干燥机将冻结的丝胶制成丝胶粉末,然后将制得的丝胶粉末加入去离子水中配制成浓度为4%(w/t,g/ml),加热(80℃)溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:按浓度为5%(w/t,g/ml)称取聚乙烯醇固体粉末加入去离子水,溶胀30min,然后在90℃条件下水浴加热,不断搅拌溶解,得聚乙烯醇溶液;将步骤(1)制得的丝胶溶液与聚乙烯醇溶液按质量比为3:3共混,然后在65℃条件下水浴加热同时搅拌至混合均匀,再静置除去气泡后倒入平底容器中,于-20℃条件下冷冻4小时,然后取出在室温(18~25℃)条件下解冻2小时,反复进行冷冻-解冻过程4次后,得到丝胶-聚乙烯醇共混凝胶,最后在55℃下烘干得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,365nm紫外光下密闭照射60min进行纳米银修饰,然后干燥,得到负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
对比实施例1、实施例2、实施例3和实施例4制备的丝胶-聚乙烯醇薄膜分别进行机械性能测试实验和溶胀率、溶失率实验,结果如图1和2所示。结果显示,丝胶与聚乙烯醇的质量比为3:3的混合薄膜的机械性能最好,其应变最大值为44.9±13.5%,应力为26.9±3.4%MPa。丝胶与聚乙烯醇的质量比为3:3的混合薄膜的吸水性很好,到达溶胀平衡时,吸水可达到自身质量的5倍以上,并且其溶失性也很好,即使在37℃的去离子水中浸泡14h,质量溶失最小,为18.8%。
将实施例3制得的丝胶-聚乙烯醇共混薄膜进行保水性实验测试,结果如图3所示。结果显示制备的丝胶-聚乙烯醇薄膜具有良好的保水性能。
对比实施例5、实施例6和实施例7制备的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜分别利用扫描电镜进行观察,结果如图4所示。结果显示,将丝胶-聚乙烯醇共混薄膜置于AgNO3溶液中,紫外辐照10min后,可以清楚的看到丝胶-聚乙烯醇共混薄膜的表面负载了纳米银颗粒,并且随着紫外辐照时间的增加,丝胶-聚乙烯醇共混薄膜的表面负载的纳米银越来越多。
将实施例5、实施例6和实施例7制备的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜进行XRD图谱分析,结果如图5所示。结果显示负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的表面附着有纳米银颗粒,表明负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜成功制备。
将实施例5~7制得的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜进行FT-IR图谱分析,结果如图6所示。结果显示丝胶-聚乙烯醇共混薄膜表面负载纳米银后透射比降低,表明纳米银成功的负载于丝胶-聚乙烯醇共混薄膜的表面,并且纳米银附着在丝胶-聚乙烯醇共混薄膜的表面不会影响丝胶自身的结构。
纳米银修饰的丝胶-聚乙烯醇共混薄膜的抑菌实验:
1.生长曲线实验
本发明通过对自然生长的细菌和加入丝胶-聚乙烯醇共混薄膜和负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的细菌生长曲线进行对比,从而确定负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的抗菌效果,具体方法为:
(1)分别取大肠杆菌和金黄色葡萄球菌的单菌落接种于灭菌的100mL LB液体培养基(pH7.4)中,在转速为220rpm、温度为37℃条件下培养10小时;
(2)分别取步骤(1)活化的大肠杆菌和金黄色葡萄球菌菌悬液100μL加入到9mL LB培养基中,每种菌液准备5组,其中一组为空白组,其余5组分别加入丝胶-聚乙烯醇共混薄膜和负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜置于100mM AgNO3溶液中紫外照射10min、30min、60min后的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜,然后在转速为220rpm、温度为37℃条件下培养,并在0h,1h,2h,3h,4h,5h,6h,8h,12h,16h,20h和24h时取菌悬液0.5mL,于4℃冰箱保藏;
(3)待培养24小时的菌悬液取样后,将不同时间取出的菌悬液从4℃冰箱中取出,室温下放置20-30min后,利用紫外-可见分光光度计检测其在600nm波长处的吸收值,根据测得的吸收值分别绘制大肠杆菌和金黄色葡萄球菌的生长曲线,结果如图7所示。分析加入负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜对细菌生长曲线的影响,结果显示,没有纳米银修饰的丝胶-聚乙烯醇共混薄膜对菌的生长没有影响,负载了纳米银的丝胶-聚乙烯醇共混抗菌薄膜对大肠杆菌和金黄色葡萄球菌的生长都有明显的抑制作用,并且其对金黄色葡萄球菌的抑制能力要高于其对大肠杆菌的抑制能力。对比不同紫外辐照时间形成的纳米银丝胶-聚乙烯醇共混抗菌薄膜的抑制效应,可以发现紫外照射30min和60min制备的纳米银丝胶-聚乙烯醇共混抗菌薄膜,二者对细菌生长的抑制效果差别不大,表明紫外照射30min即可将溶液中的硝酸银充分还原成纳米银颗粒,修饰于丝胶-聚乙烯醇共混薄膜的表面。
2、抑菌圈实验
为了充分确定负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的抑菌效果,利用抑菌环的方法测试了其对大肠杆菌和金黄色葡萄球菌生长的抑制作用。具体方法为:
(1)分别取大肠杆菌和金黄色葡萄球菌的单菌落接种于灭菌的100mL LB液体培养基(pH7.4)中,在转速为220rpm、温度为37℃条件下培养10小时;
(2)将步骤(1)活化的菌悬液稀释100倍后取200-300μL加入LB固体培养基表面,用涂布法使稀释液均匀分布在琼脂培养基表面;
(3)取直径为1.5cm的丝胶-聚乙烯醇共混薄膜置于100mM AgNO3溶液中,紫外照射10min、30min、60min后,制备获得了负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。将这些薄膜平铺在稀释了菌液的LB培养基表面,然后在37℃条件下培养12h,结果如图8所示。结果显示,丝胶-聚乙烯醇薄膜对大肠杆菌和金黄色葡萄球菌的生长几乎没有影响,没有形成明显的抑菌圈,而负载了纳米银的丝胶-聚乙烯醇共混抗菌薄膜对大肠杆菌和金黄色葡萄球菌的生长具有显著的抑制效果,形成了非常明显的抑菌圈,表明负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜具有良好的抑制或杀死大肠杆菌和金黄色葡萄球菌的能力。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (10)

1.负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,其特征在于,包括如下步骤:
(1)丝胶溶液的制备:取蚕茧进行脱胶,收集丝胶溶液,然后将丝胶溶液冻结后进行冷冻干燥,得丝胶粉末;再将丝胶粉末加水溶解,得丝胶溶液;
(2)丝胶-聚乙烯醇共混薄膜的制备:将步骤(1)制得丝胶溶液与聚乙烯醇溶液共混,倒入容器中,经过冷冻-解冻循环得到丝胶-聚乙烯醇共混凝胶,取出凝胶烘干,得到丝胶-聚乙烯醇共混薄膜;
(3)负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备:将步骤(2)制得的丝胶-聚乙烯醇共混薄膜置于AgNO3溶液中,利用紫外辐照还原法在丝胶-聚乙烯醇共混薄膜的表面合成纳米银,获得负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
2.根据权利要求1所述负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,其特征在于:步骤(1)为取蚕茧剪碎,浴比为1:30加水,于120℃、0.1Mpa条件下脱胶20~30min;然后在-80℃冻结后经过冷冻干燥,得丝胶粉末;再向丝胶粉末中按浓度为4%(w/t)加水,80℃加热溶解,得丝胶溶液。
3.根据权利要求1所述负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,其特征在于,步骤(2)中,所述聚乙烯醇溶液由以下方法制备:按浓度为5%(w/t)向聚乙烯醇固体粉末中加水,溶胀30min,然后在90℃条件下水浴加热,同时不断搅拌溶解,得聚乙烯醇溶液。
4.根据权利要求1所述负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,其特征在于:步骤(2)中,所述共混按丝胶溶液与聚乙烯醇溶液的质量比为3:1~3:4;所述冷冻-解冻循环是在-20℃条件下冷冻4个小时,然后放于18-25℃条件下解冻2个小时,循环4次;所述烘干的温度为55℃。
5.根据权利要求1所述的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,其特征在于:步骤(3)中,所述AgNO3溶液的浓度为100mM。
6.根据权利要求1所述的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜的制备方法,其特征在于:步骤(3)中,所述紫外辐照的时间为至少10min。
7.由权利要求1~6任一项所述制备方法制得的负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜。
8.权利要求7所述负载纳米银的丝胶-聚乙烯醇共混抗菌薄膜在制备抗菌材料中的应用。
9.根据权利要求8所述的应用,其特征在于:所述抗菌材料为抗革兰氏阳性菌或/和革兰氏阴性菌材料。
10.根据权利要求9所述的应用,其特征在于:所述抗革兰氏阳性菌为大肠杆菌,所述革兰氏阴性菌为金黄色葡萄球菌。
CN201611082413.4A 2016-11-30 2016-11-30 负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用 Pending CN106633161A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611082413.4A CN106633161A (zh) 2016-11-30 2016-11-30 负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611082413.4A CN106633161A (zh) 2016-11-30 2016-11-30 负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用

Publications (1)

Publication Number Publication Date
CN106633161A true CN106633161A (zh) 2017-05-10

Family

ID=58814418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611082413.4A Pending CN106633161A (zh) 2016-11-30 2016-11-30 负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN106633161A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250478A (zh) * 2018-01-30 2018-07-06 西南大学 纳米银修饰聚电解质层包被的丝胶/琼脂复合膜的制备方法及其产品和应用
CN110004718A (zh) * 2019-04-11 2019-07-12 湖州珍贝羊绒制品有限公司 一种抗静电丝羊绒织物
CN110144093A (zh) * 2019-05-14 2019-08-20 西安理工大学 一种纳米银/纤维素/聚乙烯醇复合薄膜的制备方法
CN110682626A (zh) * 2019-10-08 2020-01-14 刘国成 一种抗菌石墨烯布料及其制备方法
CN112999408A (zh) * 2021-03-02 2021-06-22 华中科技大学同济医学院附属协和医院 冻凝胶支架的制备方法及应用
CN113637183A (zh) * 2021-08-17 2021-11-12 安徽大学 改性石墨烯负载纳米银/聚乙烯醇抗菌水凝胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028536A (zh) * 2007-03-02 2007-09-05 上海交通大学 聚乙烯醇/丝胶共混凝胶薄膜的制备方法
CN105854066A (zh) * 2016-04-14 2016-08-17 西南大学 纳米银修饰聚电解质薄膜包被丝胶凝胶的方法及其产品和应用
CN105903057A (zh) * 2016-04-14 2016-08-31 西南大学 纳米银杂化丝胶多孔凝胶抗菌材料的制备方法及其产品和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028536A (zh) * 2007-03-02 2007-09-05 上海交通大学 聚乙烯醇/丝胶共混凝胶薄膜的制备方法
CN105854066A (zh) * 2016-04-14 2016-08-17 西南大学 纳米银修饰聚电解质薄膜包被丝胶凝胶的方法及其产品和应用
CN105903057A (zh) * 2016-04-14 2016-08-31 西南大学 纳米银杂化丝胶多孔凝胶抗菌材料的制备方法及其产品和应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250478A (zh) * 2018-01-30 2018-07-06 西南大学 纳米银修饰聚电解质层包被的丝胶/琼脂复合膜的制备方法及其产品和应用
CN110004718A (zh) * 2019-04-11 2019-07-12 湖州珍贝羊绒制品有限公司 一种抗静电丝羊绒织物
CN110004718B (zh) * 2019-04-11 2021-10-26 湖州珍贝羊绒制品有限公司 一种抗静电丝羊绒织物
CN110144093A (zh) * 2019-05-14 2019-08-20 西安理工大学 一种纳米银/纤维素/聚乙烯醇复合薄膜的制备方法
CN110144093B (zh) * 2019-05-14 2022-04-12 西安理工大学 一种纳米银/纤维素/聚乙烯醇复合薄膜的制备方法
CN110682626A (zh) * 2019-10-08 2020-01-14 刘国成 一种抗菌石墨烯布料及其制备方法
CN112999408A (zh) * 2021-03-02 2021-06-22 华中科技大学同济医学院附属协和医院 冻凝胶支架的制备方法及应用
CN112999408B (zh) * 2021-03-02 2022-05-10 华中科技大学同济医学院附属协和医院 冻凝胶支架的制备方法及应用
CN113637183A (zh) * 2021-08-17 2021-11-12 安徽大学 改性石墨烯负载纳米银/聚乙烯醇抗菌水凝胶及其制备方法

Similar Documents

Publication Publication Date Title
CN106633161A (zh) 负载纳米银的丝胶‑聚乙烯醇共混抗菌薄膜的制备方法及其产品和应用
CN106977757A (zh) 纳米银功能化的多巴胺‑丝胶复合薄膜的制备方法及其产品和应用
CN106282153B (zh) 负载微生物的夹心微纳米纤维复合膜及其制备方法和应用
Atta et al. Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials
CN105903057B (zh) 纳米银杂化丝胶多孔凝胶抗菌材料的制备方法及其产品和应用
Zhou et al. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel
Aramwit et al. The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment
Naghshineh et al. Preparation of chitosan, sodium alginate, gelatin and collagen biodegradable sponge composites and their application in wound healing and curcumin delivery
Jin et al. Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials
CN104005303A (zh) 一种纳米银复合抗菌纸及其制备方法和应用
Sun et al. Sustainable and hydrophobic polysaccharide-based mulch film with thermally stable and ultraviolet resistance performance
Zhang et al. Carboxymethyl chitosan/sodium alginate hydrogel films with good biocompatibility and reproducibility by in situ ultra-fast crosslinking for efficient preservation of strawberry
CN100551242C (zh) 载银铵改性纳米沸石抗菌剂及其制备方法
Bal et al. Morphology and antimicrobial properties of Luffa cylindrica fibers/chitosan biomaterial as micro-reservoirs for silver delivery
Li et al. Green and efficient in-situ biosynthesis of antioxidant and antibacterial bacterial cellulose using wine pomace
Tangsatianpan et al. Release kinetic model and antimicrobial activity of freeze-dried curcumin-loaded bacterial nanocellulose composite
Yao et al. Electrospinning of peanut protein isolate/poly-L-lactic acid nanofibers containing tetracycline hydrochloride for wound healing
Han et al. Design of biodegradable, climate-specific packaging materials that sense food spoilage and extend shelf life
Albu et al. Preparation and biological activity of new collagen composites, part I: Collagen/zinc titanate nanocomposites
Yasrebi et al. In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor
Feng et al. Antibacterial, antioxidant and fruit packaging ability of biochar-based silver nanoparticles-polyvinyl alcohol-chitosan composite film
Huie et al. Microporous chitosan/polyvinyl alcohol based active packaging materials with integrated gas-transmission, radiation-cooling, anti-microbial, and ultraviolet shielding features
CN105854066B (zh) 纳米银修饰聚电解质薄膜包被丝胶凝胶的方法及其产品和应用
Abdel Bary et al. Aging of membranes prepared from PVA and cellulose nanocrystals by use of thermal compression
Amarjargal et al. A facile one-stone-two-birds strategy for fabricating multifunctional 3D nanofibrous scaffolds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication