CN106589731A - 一种超声辅助ipn结构pmma‑pu高透明度复合板的制备方法 - Google Patents

一种超声辅助ipn结构pmma‑pu高透明度复合板的制备方法 Download PDF

Info

Publication number
CN106589731A
CN106589731A CN201611003998.6A CN201611003998A CN106589731A CN 106589731 A CN106589731 A CN 106589731A CN 201611003998 A CN201611003998 A CN 201611003998A CN 106589731 A CN106589731 A CN 106589731A
Authority
CN
China
Prior art keywords
pmma
transparency
ipn
ultrasonic wave
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611003998.6A
Other languages
English (en)
Other versions
CN106589731B (zh
Inventor
丛欣泉
卢金山
冯志军
李喜宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201611003998.6A priority Critical patent/CN106589731B/zh
Publication of CN106589731A publication Critical patent/CN106589731A/zh
Application granted granted Critical
Publication of CN106589731B publication Critical patent/CN106589731B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/04Polymer mixtures characterised by other features containing interpenetrating networks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开一种超声辅助IPN结构PMMA‑PU高透明度复合板的制备方法,属于复合材料领域。本发明包括以下步骤:(1)将聚甲基丙烯酸甲酯(PMMA)和聚氨酯(PU)的原料(单体、引发剂/催化剂、交联剂、扩链剂等)机械混合均匀,真空脱气后倒入聚四氟乙烯模具内;(2)在模具上方放上密封压头,施加恒定压力;(3)将模具放入可调温低频超声容器内,在超声波作用下进行顺序聚合反应,制备出高透明度互穿网络(IPN)结构PMMA‑PU复合板。本发明采用超声辅助作用,制备出的IPN结构PMMA‑PU复合板具有微相分离程度低、透明度高等特性,有望应用于轻质防弹透明材料。

Description

一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法
技术领域
本发明涉及一种IPN结构PMMA-PU透明复合板的制备方法,尤其是在超声辅助作用下PMMA-PU高透明度复合板的制备方法,属于复合材料领域。
背景技术
互穿网络(IPN)结构聚合物是两种或两种以上的共混聚合物,不同聚合物网络相互贯穿,并至少一种聚合物分子链以化学键方式交联形成的网络结构复合材料。IPN结构复合材料可以将不同物理化学性质的两种及以上的聚合物通过相互交错的网络在宏观尺度上组成一个均匀的整体,可以在力学、电学、热学、光学性能等方面实现最优化组合,广泛应用于在工程塑料、涂料、生物医学材料、阻尼材料等领域(CN200780010113.8,CN200480018292.6, CN201510056145.8, CN200710100042.2)。
目前IPN结构聚合物材料已有大量研究工作,但多数集中于工程塑料领域,对于透明材料的研究很少。根据组分聚合物聚合时间顺序差异,IPN结构聚合物分为同步聚合和顺序聚合两类,两者差别在于组分聚合物聚合时间顺序,前者是不同组分聚合物的聚合反应同时进行,而后者是一种组分的聚合反应首先进行,预聚到一定程度时通过升高反应温度,引发其他组分的聚合反应,形成相互贯穿的聚合物网络。Jehl等研究了IPN结构PMMA-PU聚合物的透明度,由于扩链剂聚丙二醇PPG与PMMA具有不同折射率,PPG过量时将有残余物存在,导致聚合物失去透明性,任何能够提高两相分散性的方法都有利于透明度(The transparency of polyurethane-poly(methyl methacrylate) interpenetrating and semi-interpenetrating polymer networks[J], European Polymer Journal, 1983; 19 (7): 597-600)。由于同步聚合法中不同聚合物原料组分之间折射率失配且分相严重,导致透明度低,因此,通常采用顺序聚合法制备透明互穿网络聚合物(Simultaneous interpenetrating networks of a polyurethane and poly(methyl methacrylate). 1.Metastable phase diagrams[J], Journal of Applied Polymer Science, 1995; 58 (2): 331-346)。
Fang等采用种子乳液聚合法在水性PU中掺入PMMA,制备出具有核-壳形貌、纳米结构多相性的PU-PMMA复合材料(Tailoring elastomeric properties of waterborne polyurethane by incorporation of polymethyl methacrylate with nanostructural heterogeneity[J], RSC Advance, 2016; 6: 13589-13599),实现PU材料弹性模量、拉伸强度、断后伸长率、热稳定性以及耐水性可控调节,但其透光性较低。Heim等采用同步聚合法制备出添加少量PU(小于10%)强化的PMMA浇注板,板材透明度与冲击性能的变化趋势相反,但都与PMMA结点尺寸有关,后者取决于MMA开始聚合时溶涨PU网络的交联密度,当PMMA结点尺寸超过1微米时板材透光性较差(High impact cast sheets of poly(methyl methacrylate) with low levels of polyurethane[J], Polymer, 1993; 34(8): 1653- 1660)。
Kim等研究了外界压力对于同步聚合法制备IPN结构PMMA-PU复合材料形貌的影响,随着压力升高,PU相的区域尺度由30 nm降低至3 nm,PU与PMMA相容性提高,复合材料由常压下不透明转变为透明(Polyurethane interpenetrating polymer networks synthesized under high pressure. 1. [J], Macromolecules, 1984; 17: 268-272)。Bird等对比研究了同步聚合法和顺序聚合法制备的IPN结构PMMA-PU聚合物的物理性能,同步聚合法的透明度为40-70%,顺序聚合法由于相分离程度低(分散度高),透明度达到70-90%(Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate)[J], Polymer Engineering and Science, 2013; 53(4): 716-723)。Berrebi等采用同步聚合法制备了IPN结构的脂肪族聚碳酸酯PC/PMMA聚合物,其透明度高达95%,这与两种相的折射率相近(n = 1.498(PC), 1.491 (PMMA))以及相分离程度低有关(Development of organic glass using interpenetrating polymer networks with enhanced resistance towards scratches and solvents[J], European Polymer Journal, 2015; 63: 132- 140)。
发明内容
本发明的目的在于提供一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,与传统IPN结构PMMA-PU复合材料相比,本发明是在加压顺序聚合法基础上,通过超声振荡辅助作用,降低PMMA和PU相的区域尺寸,提高两种相的分散性和相容性,从而显著提升复合板的透光性能,制备出高透明度IPN结构PMMA-PU复合材料。
本发明的目的是这样实现的,一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征在于通过以下工艺步骤实现:
1)将定量的脂肪族异氰酸酯、聚醚多元醇、扩链剂和催化剂机械混合均匀,配置聚氨酯(PU)的原料溶液;
2)将定量的甲基丙烯酸甲酯(MMA)、引发剂和交联剂机械混合均匀,配置聚甲基丙烯酸甲酯(PMMA)的原料溶液;
3)将PMMA和PU的原料溶液混合均匀,真空脱气,倒入聚四氟乙烯模具中,通过模具的上压头对混合溶液进行密封,并施加恒定压力,在一定温度下进行混合溶液的预聚;
4)将模具浸没于调温低频超声容器内水中,采用梯次升温的顺序聚合法,结合一定温度下的超声振荡,制备出IPN结构的PMMA-PU透明复合板。
所述的PMMA和PU的质量比为4。
所述的脂肪族异氰酸酯为异佛尔酮二异氰酸酯(IPDI),聚醚多元醇为聚丙二醇(PPG),分子量为900~1100;异氰酸酯指数(K=NCO/OH)为1.1;扩链剂为1,4–丁二醇(BDO),其使用量为PPG质量的10~20%;催化剂为二月桂酸二丁基锡(DBTDL),其使用量是PPG和BDO质量总和的1%。
所述的引发剂为偶氮二异丁腈(AIBN),其使用量为MMA质量的0.2%~1.0%;交联剂为三羟甲基丙烷三甲基丙烯酸酯(TMPTMA),其使用量为MMA质量的2%~8%。
所述的恒定压力为100~200 MPa;混合溶液的预聚温度50 摄氏度,预聚时间0.5~2 h。
所述的梯次升温的顺序聚合工艺是60摄氏度恒温5 h,升温至70摄氏度恒温5 h,升温至80摄氏度恒温5 h,升温至95摄氏度恒温2 h。
所述的超声振荡频率为20~40 kHz,超声功率为30~60 W,超声振荡的温度是60摄氏度。
所述聚四氟乙烯模具由方形容器和上压头组成,方形容器为调温低频超声容器,调温低频超声容器内安装水,在其底端上设有支架,支架上安装密封模具,密封模具内置有上压头和复合板,支架底端设有超声振荡仪器。实验过程中模具浸没于调温低频超声容器内水中,并在上压头施加恒定压力P。
与现有的IPN结构PMMA-PU复合材料制备方法相比,本发明具有实质进步和技术创新,具体体现在:
1)超声振荡的机械效应可以提高PU预聚体与MMA单体溶液的混合均匀性,在聚合反应过程中,通过超声振荡剪切作用,减小PU和PMMA分子链长度,提高分子链之间贯穿程度;在外部压力作用下的分子扩散阻力增大,抑制分子链移动,从而显著降低单一聚合物的微相尺寸和微相分离程度,获得高透明度IPN结构复合板;
2)超声振荡的空化效应有利于降低PU预聚体与MMA单体溶液中的气泡核密度,减少复合板中气孔缺陷;超声振荡的热效应及化学效应可以加快PU的分步聚合反应和PMMA的自由基聚合反应。
综上所述,本发明采用超声辅助作用,有利于显著减小顺序聚合过程中不同相的区域尺寸,提高两相的分散性与相容性,制备出高透明度IPN结构PMMA-PU复合板。
附图说明
附图1本发明实验装置示意图,图中聚四氟乙烯模具由方形容器和上压头组成,实验过程中模具浸没于调温低频超声容器内水中,并在上压头施加恒定压力P。
附图2为本发明的超声辅助IPN结构PMMA-PU透明复合板。
在图中,1、调温低频超声容器,2、上压头,3、水,4、支架,5、密封模具,6、复合板,7、超声振荡仪器。
具体实施方式
实施例1
配制100 g的PMMA单体溶液,取94.5 g MMA单体,加入5.0 g 交联剂TMPTMA和0.5 g引发剂AIBN,机械搅拌5 min,备用。
配制100 g 的PU单体溶液,取34.8 g 异佛尔酮二异氰酸酯IPDI,加入56.8 g聚丙二醇PPG、7.7 g扩链剂BDO和0.7 g催化剂DBTDL,机械搅拌5 min,备用。
分别使用250目和2000目金刚砂纸对试样进行粗磨和细磨,并利用液体石蜡和超细二氧化硅粉体配制研磨膏,在绒布表面进行抛光处理,得到厚度约为3.5 mm的透明复合板,如图2所示。利用光电雾度计测试复合板的光学性能,其透明度为91.6%。
实施例2
将实例1中的PMMA和PU单体溶液机械混合均匀,真空脱气,倒入聚四氟乙烯模具中,通过模具的上压头对混合溶液进行密封,施加恒定压力P=120 MPa,50 摄氏度下预聚2 h。将模具浸没于调温低频超声容器内水中,水温为60 摄氏度,恒温5 h,升温至70 摄氏度恒温5h,升温至80 摄氏度恒温5 h,升温至95 摄氏度恒温2 h,制备出IPN结构的PMMA-PU透明复合板。
分别使用250目和2000目金刚砂纸对试样进行粗磨和细磨,并利用液体石蜡和超细二氧化硅粉体配制研磨膏,在绒布表面进行抛光处理,得到厚度约为3.4 mm的透明复合板。利用光电雾度计测试复合板的光学性能,其透明度为88.2%。
如图1-2所示,所述聚四氟乙烯模具由方形容器和上压/2组成,方形容器为调温低频超声容器1,调温低频超声容器1内安装水3,在其底端上设有支架4,支架上安装密封模具5,密封模具5内置有上压头2和复合板6,支架底端设有超声振荡仪器7。实验过程中模具浸没于调温低频超声容器1内水3中,并在上压头施加恒定压力P。

Claims (7)

1.一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征包括以下工艺步骤:
1)将定量的脂肪族异氰酸酯、聚醚多元醇、扩链剂和催化剂机械混合均匀,配置聚氨酯(PU)的原料溶液;
2)将定量的甲基丙烯酸甲酯(MMA)、引发剂和交联剂机械混合均匀,配置聚甲基丙烯酸甲酯(PMMA)的原料溶液;
3)将PMMA和PU的原料溶液混合均匀,真空脱气,倒入聚四氟乙烯模具中,通过模具的上压头对混合溶液进行密封,并施加恒定压力,在一定温度下进行混合溶液的预聚;
4)将模具浸没于调温低频超声容器内水中,采用梯次升温的顺序聚合工艺,结合一定温度下的超声振荡,制备出IPN结构的PMMA- PU透明复合板。
2.根据权利要求1所述的一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征在于:PMMA和PU的质量比为4。
3.根据权利要求1所述的一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征在于:所述的脂肪族异氰酸酯为异佛尔酮二异氰酸酯(IPDI),聚醚多元醇为聚丙二醇(PPG),分子量为900~1100;异氰酸酯指数(K=NCO/OH)为1.1;扩链剂为1,4–丁二醇(BDO),其使用量为PPG质量的10~20%;催化剂为二月桂酸二丁基锡(DBTDL),其使用量是PPG和BDO质量总和的1%。
4.根据权利要求1所述的一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征在于:所述的引发剂为偶氮二异丁腈(AIBN),其使用量为MMA质量的0.2%~1.0%;交联剂为三羟甲基丙烷三甲基丙烯酸酯(TMPTMA),其使用量为MMA质量的2%~8%。
5.根据权利要求1所述的一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征在于:所述的恒定压力为100~200 MPa;混合溶液的预聚温度为50 摄氏度,预聚时间0.5~2 h。
6.根据权利要求1所述的一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征在于:所述的梯次升温的顺序聚合工艺是60摄氏度恒温5 h,升温至70摄氏度恒温5h,升温至80摄氏度恒温5 h,升温至95摄氏度恒温2 h。
7.根据权利要求1所述的一种超声辅助IPN结构PMMA-PU高透明度复合板的制备方法,其特征在于:所述的超声振荡频率为20~40 kHz,超声功率为30~60 W,超声振荡的温度是60摄氏度。
CN201611003998.6A 2016-11-15 2016-11-15 一种超声辅助ipn结构pmma-pu高透明度复合板的制备方法 Expired - Fee Related CN106589731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611003998.6A CN106589731B (zh) 2016-11-15 2016-11-15 一种超声辅助ipn结构pmma-pu高透明度复合板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611003998.6A CN106589731B (zh) 2016-11-15 2016-11-15 一种超声辅助ipn结构pmma-pu高透明度复合板的制备方法

Publications (2)

Publication Number Publication Date
CN106589731A true CN106589731A (zh) 2017-04-26
CN106589731B CN106589731B (zh) 2018-09-21

Family

ID=58591315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611003998.6A Expired - Fee Related CN106589731B (zh) 2016-11-15 2016-11-15 一种超声辅助ipn结构pmma-pu高透明度复合板的制备方法

Country Status (1)

Country Link
CN (1) CN106589731B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083002A (zh) * 2017-04-27 2017-08-22 蚌埠承永玻璃制品有限公司 一种耐热高强度有机玻璃及其制备方法
CN110511657A (zh) * 2019-08-08 2019-11-29 上海航天化工应用研究所 一种可低温固化的防热粘接功能一体化复合材料及其制备方法和应用
CN113580415A (zh) * 2021-08-02 2021-11-02 浙江省林业科学研究院 一种溶液悬浮装置及制备竹纤维玻璃纤维网预制体的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105622857A (zh) * 2016-04-01 2016-06-01 武汉大学 一种互穿网络结构水性聚氨酯纳米复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105622857A (zh) * 2016-04-01 2016-06-01 武汉大学 一种互穿网络结构水性聚氨酯纳米复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. C . KIRN,ETAL: "Polyurethane Interpenetrating Polymer Networks.I. Synthesis and Morphology of Polyurethane-Poly (methyl methacrylate) Interpenetrating Polymer Networks", 《MACROMOLECULES》 *
S.A. BIRD,ETAL.: "Synthesis and Characterization of High Performance,Transparent Interpenetrating Polymer Networks With Polyurethane and Poly(methyl methacrylate)", 《POLYMER ENGINEERING AND SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083002A (zh) * 2017-04-27 2017-08-22 蚌埠承永玻璃制品有限公司 一种耐热高强度有机玻璃及其制备方法
CN110511657A (zh) * 2019-08-08 2019-11-29 上海航天化工应用研究所 一种可低温固化的防热粘接功能一体化复合材料及其制备方法和应用
CN110511657B (zh) * 2019-08-08 2021-06-11 上海航天化工应用研究所 一种可低温固化的防热粘接功能一体化复合材料及其制备方法和应用
CN113580415A (zh) * 2021-08-02 2021-11-02 浙江省林业科学研究院 一种溶液悬浮装置及制备竹纤维玻璃纤维网预制体的方法

Also Published As

Publication number Publication date
CN106589731B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
KR960007008B1 (ko) 수지강화 화장판의 제조방법
CN106589731B (zh) 一种超声辅助ipn结构pmma-pu高透明度复合板的制备方法
CN102604368B (zh) 一种取代nco交联固化的水泥路面用填缝材料
CN112500816B (zh) 自排气oca光学胶及其制备方法及应用
Lee et al. Relationship between mechanical properties of ceramic green body and structures of photo-cured acrylate polymer for ceramic 3D printing based on photo polymerization
CN113121959B (zh) 一种光-热双固化改性纳米纤维素增强环氧树脂复合材料及其制备方法
Li et al. High toughness induced by wormlike-nanostructure in epoxy thermoset containing amphiphilic PDMS–PCL block copolymers
Huang et al. Blending polar rubber with polyurethane to construct self-healing rubber with multiple hydrogen bond networks
JP2004051783A (ja) 多孔質形成性光硬化型樹脂組成物および多孔質樹脂硬化物
CN106283641B (zh) 一种纤维素纤维的改性方法、改性纤维素纤维及其应用
Hwangbo et al. Digital light processing 3D printing of multi-materials with improved adhesion using resins containing low functional acrylates
CN114426767B (zh) 一种片状模塑料及其制备方法
CN110016295B (zh) 一种触摸屏裂纹修复的光学胶及其应用
Xiang et al. 3D-printed high-toughness double network hydrogels via digital light processing
CN111004366A (zh) 一种假人用仿组织器官聚氨酯基复合材料及其制备方法
KR940009922B1 (ko) 충격강도가 높은 주형판 및 그의 제조방법
US20190055392A1 (en) Particle-based multi-network polymers
CN114349913B (zh) 一种制备单网络高强高韧水凝胶用光敏树脂及其在光固化3d打印中的应用
CN1069669C (zh) 热塑性树脂组合物及其合成树脂复合物
CN109320969A (zh) 防蓝光膜成膜液及其制备方法及防蓝光膜
KR20190000014A (ko) 차량의 전파투과 커버용 자외선 경화형 프라이머
CN106751738B (zh) 一种高透明度pmma-pu梯度复合板的制备方法
CN103059491A (zh) 基于液相激光溅射技术无机-高分子纳米复合材料的制备方法
CN111410929B (zh) 一种用于亚克力浴缸的粘接树脂及其制备方法与应用
CN110892030B (zh) 具有高表面粗糙度的涂料体系

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180921

Termination date: 20211115