CN106574349A8 - 用于制造具有改善的可成形性的高强度钢板的方法及所获得的板 - Google Patents

用于制造具有改善的可成形性的高强度钢板的方法及所获得的板 Download PDF

Info

Publication number
CN106574349A8
CN106574349A8 CN201580036404.9A CN201580036404A CN106574349A8 CN 106574349 A8 CN106574349 A8 CN 106574349A8 CN 201580036404 A CN201580036404 A CN 201580036404A CN 106574349 A8 CN106574349 A8 CN 106574349A8
Authority
CN
China
Prior art keywords
steel
plate
temperature
sheet
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580036404.9A
Other languages
English (en)
Other versions
CN106574349B (zh
CN106574349A (zh
Inventor
徐伟
阿特姆·阿拉扎罗夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN106574349A publication Critical patent/CN106574349A/zh
Publication of CN106574349A8 publication Critical patent/CN106574349A8/zh
Application granted granted Critical
Publication of CN106574349B publication Critical patent/CN106574349B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种用于制造具有改善的可成形性偏析的高强度板的方法,根据该方法,钢的化学组成以重量百分比计包含:0.1%≤C≤0.4%;4.2%≤Mn≤8.0%;1%≤Si≤3%;0.2%≤Mo≤0.5%;剩余部分为Fe和不可避免的杂质,该方法包括以下步骤:通过在高于钢的Ac3转变点的退火温度AT下对由所述钢制成的轧制板进行均热处理,以对该轧制板进行退火;通过将该板冷却至在Ms转变点与Mf转变点之间的淬火温度QT,对该板进行淬火,以获得包含至少65%的马氏体和至少20%的残余奥氏体,铁素体含量加贝氏体含量之和小于10%的最终组织;将该板加热至在300℃与500℃之间的过时效温度PT并将板保持在所述温度下大于10秒的时间Pt;以及将该板冷却至环境温度。获得该板。

Description

用于制造具有改善的可成形性的高强度钢板的方法及所获得的板
[0001] 本发明涉及在可成形性和强度方面优异的高强度钢板,并且涉及用于制造高强度钢材的方法。
[0002] 为了制造诸如机动车部件、拖车、卡车等的各种设备,使用由诸如DP (双相)或TRIP(相变诱导塑性)钢的钢制成的高强度钢板。
[0003] 为了减少设备的重量(这是非常期望的以减少能耗)非常期望的是使钢具有更好的机械性能,如屈服强度或拉伸强度。但是,这种钢应该具有良好的可成形性。
[0004] 为此,建议使用包含约0.2%(:、2.5%111、1.5%31且具有由马氏体和残留奥氏体组成的组织的钢。通过由退火、分级淬火和过时效组成的热处理,在连续退火线上生产板。过时效的目的是通过从马氏体转变来产生残留奥氏体的碳富集,以便增加残留奥氏体的稳定性。在这些钢中,Mn含量总是保持小于3.5%。尽管通过这种钢可以获得令人感兴趣的性能,但是仍然期望获得具有更好稳定性的残留奥氏体,以便获得更好的特性。但是,具有良好成形性所需的延展性应保持良好,并且特别地,期望的是良好的延伸凸缘性(stretchflangeabiIity)。
[0005] 出于这些原因,仍需要具有一种钢以及一种在连续热处理生产线上容易地制造高强度钢板的方法。
[0006] 为此,本发明涉及一种用于容易地制造具有改善的可成形性的高强度板的方法,根据该方法,钢的化学组成以重量百分比计包含:
[0007] 0.1%^C^0.4%
[0008] 4.2%^Mn^8.0%
[0009]
[0010] OKMoS0.5%
[0011] 剩余部分为Fe和不可避免的杂质,该方法包括以下步骤:
[0012]-通过在高于钢的Ac3转变点的退火温度AT下对由所述钢制成的乳制板进行均热处理,以对该乳制板进行退火,
[0013]-通过将该板冷却至钢的Ms转变点与Mf转变点之间的淬火温度QT来对该板进行淬火,以获得包含至少50%的马氏体和至少10%的残余奥氏体,铁素体加贝氏体之和小于10%的组织,
[0014]-将板加热至300°C与500°C之间的过时效温度PT并将该板保持在所述温度下大于10秒的时间Pt,以及
[0015]-将板冷却至室温。
[0016] 优选地,钢的化学组成包含4.5%彡Mn彡5.5%。
[0017] 优选地,钢的化学组成使得:
[0018] 0.15%^C^0.25%
[0019] 1.4%^Si^l.8%
[0020] 0.2% 彡Mo彡0.35%。
[0021] 优选地,钢的化学组成包含:
[0022] 0.15%^C^0.25%
[0023] 4.5%^Mn^5.5%
[0024] 1.4%^Si^l.8%
[0025] 0.2% 彡Mo彡0.35%,
[0026] 并且退火温度AT大于780 °C且小于950 V,淬火温度在130 °C与180°C之间,并且过时效时间在100秒与600秒之间。
[0027] 任选地,该板可以例如在发生合金化或没有发生合金化的情况下通过热浸镀被进一步涂覆,该涂覆可以在将板冷却至室温之前进行。
[0028] 本发明还涉及由钢制成的高强度(high-tensile)钢板,该钢的化学组成以重量百分比计包含:
[0029] 0.1%^C^0.4%
[0030] 4.2%^Mn^8%
[0031] l%^Si^3%
[0032] 0.2%^Mo^0.5%
[0033] 剩余部分为Fe和不可避免的杂质,该钢具有包含至少50%的马氏体、至少10%的残留奥氏体、小于10%的铁素体加贝氏体之和的组织,并且当用光学显微镜观察时,不存在中心偏析。
[0034] 特别地,钢的化学组成使得4.2%彡Mn彡8.0%。
[0035] 优选地,钢的化学组成使得4.5%彡Mn彡5.5%。
[0036] 优选地,钢的化学组成包含:
[0037] 0.15% 彡 C彡 0.25%
[0038] 4.5%^Mn^5.5%
[0039] 1.4%^Si^l.8%
[0040] 0.2% 彡Mo彡0.35%。
[0041] 屈服强度YS可以大于或等于lOOOMPa,拉伸强度大于或等于1300MPa,均匀延伸率UE大于或等于10%,总延伸率大于或等于13%,并且根据标准ISO 16630:2009测量的扩孔率HER大于或等于15%。
[0042] 任选地,板的至少一个面例如通过金属热浸镀而涂覆。
[0043] 现在将通过示例详细地描述并说明本发明,而不引入限制。
[0044] 根据本发明的钢的组成以重量百分比计包含:
[0045] -0.1 %彡C彡0.4%,并且优选地为0.15%彡C和/或C彡0.25%,以便获得令人满意的强度并提高残留奥氏体的稳定性。如果碳含量过高,则可焊接性降低。
[0046] -4.2%彡Mn彡8.0tMn含量高于4.2%,以通过奥氏体中Mn的更高富集以及通过减小奥氏体晶粒尺寸来改善残留奥氏体的稳定性。奥氏体晶粒尺寸的减小具有下述优势:使将碳和锰从马氏体转变成奥氏体所需的扩散距离减小,因此在过时效步骤期间确保(fasten)这些元素的扩散。此外,锰含量高于4.2 %使Ms、AcjPAc3转变点降低,这使得更容易实现热处理。优选地,Mn含量高于4.5%。但是,为了不过度地降低延展性,锰含量必须保持小于8%,并且优选小于5.5%。
[0047] -Si彡1%并且优选地为Si彡1.4%,并且Si彡3%并且优选Si彡1.8%。硅可用于使奥氏体稳定化,以提供固溶体强化并且在从马氏体至奥氏体的碳再分布期间减慢碳化物的形成。但是,在过高的硅含量下,在板的表面处将形成氧化硅,这对于可涂覆性和延展性是有害的。
[0048] -0.2%彡Mo彡0.5%,Mo应当高于0.2 %以减少中心偏析,这种中心偏析可能是由高的猛含量所导致的并且对延伸凸缘性(stretch flangeability)有害。高于0.5%,钼可能形成过多的碳化物,这可能对延展性是有害的。优选地,Mo含量低于或等于0.35%。
[0049] 剩余部分是Fe和由熔炼产生的杂质。这些杂质包括N、S、P和如Cr、N1、B和Al的残余元素。
[0050] 通常,N含量保持小于0.01%, S含量小于0.01%, P含量小于0.02%, Cr含量小于0.1%,Ni含量小于0.1%,Cu含量小于0.2%,B含量小于0.0005%,并且Al含量小于
0.001 %。然而,必须指出的是,可以添加Al以使钢脱氧。在这种情况下,Al含量可以达到
0.04%。此外,Al可形成AlN的小的析出物,该析出物能够用于在退火期间限制奥氏体晶粒生长。
[0051] 根据本发明的钢中没有微合金化,如T1、V和Nb。这些元素含量各自限制到
0.050%,优选地,Nb、T1、V的总和限制到O Λ%ο
[0052] 具有在2mm与5mm之间的厚度的热乳板可以利用这种钢以已知的方式制造。在热乳之后,可以在400 °C与600 °C之间的温度下对板进行分批退火并持续300秒至10小时。热乳板可以被酸洗和冷乳,以获得具有在0.5_与2_之间的厚度的冷乳板。
[0053] 随后,在连续退火线上对板进行热处理。
[0054] 在热处理之前,确定最佳淬火温度QTop。该最佳淬火温度是淬火必须被停止以获得最佳残留奥氏体含量的温度。该最佳淬火温度可以通过如下计算:使用Andrews和Koistinen Marburger关系:
[0055] Ms = 539-423 X C-30.4 XMn-12.I X Cr-7.5 XΜο-7.5 X Si
[0056]和
[0057] fa,= 1-exp {-0.011 X (Ms-T)}
[0058] fa’为在淬火期间在温度T下马氏体的比例,
[0059] 并且通过下述假设:在淬火至温度QT之后,钢在高于QT的温度下被过时效化,并且由于过时效,完全实现了马氏体与剩余奥氏体之间的碳的配分(partit1ning)。
[0060] 本领域技术人员知道如何进行该计算。
[0061] 热处理的目的是获得由至少50 %并且优选地至少65 %的马氏体、至少1 %并且优选至少20%的残留奥氏体以及尽可能少的铁素体或贝氏体组成的组织。铁素体加贝氏体表面分数之和小于10%并且优选地小于5%。
[0062] 对于本领域技术人员而言清楚的是,该组织是最终组织:S卩,在完成处理之后的组织。在刚淬火之后,该组织仅含有马氏体和奥氏体。
[0063]马氏体、铁素体和贝氏体的比例是这些成分的面积分数。残余奥氏体的比例是通过RX衍射进行测量的。本领域技术人员知道如何确定这些比例。
[0064] 为此,为了不使奥氏体晶粒粗化太多,在高于钢的Ac3转变点但优选地小于950°C的退火温度AT下对板进行退火。
[0065] 随后,通过以大于0.1°C/秒的冷却速度冷却至低于钢的Ms转变点且优选地在QTop-20°C与QTQP+2(TC之间的淬火温度QT,对板进行淬火。这是本发明的重要特征,原因在于根据本发明的钢的淬硬性较高。因此,即使在以如3°C/秒的低冷却速率下进行冷却之后,也不会形成铁素体,因此不需要进行加速冷却。优选地,冷却速率在0.1°C/秒与70°C/秒之间。
[0066] 在淬火之后,将该板加热至300°C与500 °C之间的过时效温度,并保持在该温度或大约该温度下至少10秒并且优选地保持100秒与600秒的时间,以将碳从马氏体转移至奥氏体而不形成碳化物。
[0067]对于组成包含0.15% 至0.25 %C、4.5% 至5.5%Mn、1.4% 至1.8% Si和0.2% 至
0.35%Mo的钢而言,退火温度可以在780°C与950°C之间,并且淬火温度在130°C与180°C之间。
[0068] 在过时效之后,将板冷却至室温。使用该钢和该方法,可以获得这样的板:该板具有大于100MPa的屈服强度YS、大于1300MPa的拉伸强度TS、大于或等于10%的均匀延伸率UE以及大于或等于13%的总延伸率TE,而在用光学显微镜观察时没有中心偏析。
[0069]作为实施例(Ex)和比较例(Comp),制备了钢,所述钢的以重量%计的组成、转变点和最佳淬火温度QTop在表I中给出。对于化学组成而言,仅给出了C、S1、Mn和Mo含量,剩余部分为Fe和杂质。测量了Aci值和Ac3值。使用Andrews和Koistinen Marburger关系计算了Ms值和Mf值。
[0070]表 I
I CIaI…Ws…..M fofBpn
I % 丨% 丨 % 丨 % 丨aC丨15C i 0C I $ 丨 %
[0071] »g—'广g1、、、、广雨、、、、r薇、、、、丁、、、、疏一{—、97—Γΐ77"~
I 1:ί ΐ::! I:!
…θ!'2—I—ΐ^8—^ —5——I—-——i—S62……I—742—!.—284—I—Ϊ04—I—ΐδΟ..''
I_-J_I_I_I_I_ί____________________ί_I_ί_;
[0072] 制备了厚度为2.4mm的热乳板。在600 V下对板材进行分批退火5小时,随后酸洗,随后冷乳,以得到厚度为1.2mm的冷乳板。通过改变淬火温度QT对三个冷乳钢板样品进行热处理。
[0073] 热处理条件和由热处理得到的机械性能记录在表2中。
[0074]表 2
wX 丨《C I nC 丨 eC S MPa I MPa % % I % i {ft} % |
…Έ.Γ..「丽..HW'!'''丽't涵''''™TW''fTi^™™TT~ 同
'Ti[「丽'Τ'ΐ.Γ暮言'丽'™ΐ 丽 1-ΐ 丽,Tj m'TIFT'W—2ϊΊ........l Ϊ2ΪΓΤΐ367^"1α7~~Ϊ4;δ1.....Ϊ9.....ί~~: 2ΪΊ
_ί_UZJ_ί___I___i_I__
[0075] 1x 4 τ 820 Γ Ϊ55 I 400 ; 500 1143 | 1399: 12.2 15,1 |18 | - 23 I
I Εχ 5 Γθ20 |175 | 4<)0 I 5001002 Γ 1436 TH,6~~13.9 ] 15 1- W] I Ex 6 I 820 ί 20 Γ 400 J 5001374 ] 1497 ' JJ§Τΐ:一|一™' 1™|
ϊ2^γ]''139ο''τ'|^T:'''I''']...运歹『了丽丽丁丽―„丽….广飞蔽十石..—石...^™;™I:
t ; 丨 5 5......«...^ ί j
I Comp I 800 I 140 ~~~~两^ lFT~~l™
[0076] 在该表2中,AT是退火温度,QT是淬火温度,PT是过时效温度,Pt是过时效时间,YS是屈服强度,TS是拉伸强度,UE是均匀延伸率,TE是总延伸率,HER是扩孔率,α是通过弯曲试验测量的折叠角,并且RA是显微组织中的残留奥氏体的量。作为延伸凸缘性的量度的扩孔率是使用根据标准ISO 16630:2009的方法进行测量的。由于测量的方法之间的差异,根据ISO标准的比率HER的值相对于根据JFS T 1001标准(日本钢铁联盟标准)的比率λ的值非常不同,并且不能相比。折叠角是使用本领域技术人员已知的任何方法进行测量的。
[0077]可以看出,对于类似的QT温度,与不含钼的钢“comp”相比,使用根据本发明的钢,可以同时获得高屈服强度、高拉伸强度、非常好的延伸率和显著更好的扩孔率。
[0078] 实施例1和2与实施例3和4的比较表明:当高于钢的Ac3转变点的退火温度AT升高时,奥氏体晶粒尺寸增大,这通常导致更好的延伸性能。
[0079]实施例4和5的比较表明:当淬火温度升高时,屈服强度减小,而拉伸强度增大,这是由于在显微组织中的回火马氏体的含量较低。
[0080] 实施例6的钢在低于Mf的淬火温度下淬火,这导致这样的组织:该组织含有过低的残留奥氏体含量并且因此具有不令人满意的延伸性能。
[0081]实施例7和8的淬火温度在钢的钢点的Ms转变点与Mf转变点之间,但不会使得获得含有至少10%的残余奥氏体的最终组织。特别地,实施例7的淬火温度过低,从而不能确保残余奥氏体含量为至少10%。实施例8的淬火温度过高,因此当钢达到淬火温度时,马氏体的量过低,从而在板保持在过时效温度时不能确保奥氏体的充分稳定化。因此,实施例6、7和8的均匀延伸率和总延伸率不足。
[0082] 此外,显微镜检查显示:在根据本发明的钢中,当用光学显微镜观察钢的显微组织时,不存在中心偏析。这是可成形性得以改善的原因,原因在于中心偏析对使用性能是有害的。
[0083] 上述板未被涂覆。但是清楚的是,板可以通过任何方式(S卩,通过热浸镀、通过电镀、通过诸如JVD或PVD等的真空镀)涂覆。当板被热浸镀时,所述涂覆可以是在发生合金化或没有发生合金化的情况下被镀锌(镀锌扩散退火)处理。在这些情况下,必须考虑在将板冷却至环境温度之前进行与热浸镀对应并且最终与合金化对应的热处理。本领域技术人员知道如何进行热处理(例如通过试验)以使过时效温度和时间最佳化。在这种情况下,板的至少一个面可以被涂覆,并且更具体地被金属涂覆。

Claims (12)

1.一种用于制造具有改善的可成形性的高强度板的方法,根据该方法,钢的化学组成以重量百分比计包含: 0.1%^C^0.4% 4.2%^Mn^8.0% OKMo 彡 0.5% 剩余部分为Fe和不可避免的杂质, 所述方法包括以下步骤: -通过在高于所述钢的Ac3转变点的退火温度AT下对由所述钢制成的乳制板进行均热处理,以对所述乳制板进行退火, -通过将板冷却至所述钢的Ms转变点与Mf转变点之间的淬火温度QT来对所述板进行淬火,以获得包含至少50%的马氏体和至少10%的残余奥氏体,铁素体加贝氏体之和小于10%的最终组织, -将所述板加热至在300°C与500°C之间的过时效温度PT并将所述板保持在所述温度下大于1秒的时间Pt,以及 -将所述板冷却至环境温度。
2.根据权利要求1所述的方法,其特征在于,所述钢的化学组成包含: 4.5%<Μη<5.5%0
3.根据权利要求1或2中的任一项所述的方法,其特征在于,所述钢的化学组成使得: 0.15%^C^0.25% 1.4%^Si^l.8% 0.2%^Mo^0.35% 其特征在于,所述退火温度AT大于780°C且小于950°C,所述淬火温度在130°C与180°C之间,并且所述过时效时间在100秒与600秒之间。
4.根据权利要求1至3中的任一项所述的方法,其特征在于,所述板被冷却至所述淬火温度QT,使得所述最终组织满足以下条件中的一个或更多个条件: -马氏体的含量为至少65%, -残留奥氏体的含量为至少20%, -铁素体加贝氏体之和小于5 %。
5.根据权利要求1至4中的任一项所述的方法,其特征在于,所述板被进一步地涂覆。
6.根据权利要求5所述的方法,其特征在于,所述板在发生合金化或没有发生合金化的情况下通过热浸镀而被涂覆,所述涂覆在将所述板冷却至环境温度之前进行。
7.—种由钢制成的高强度钢板,所述钢的化学组成以重量百分比计包含: 0.1%^C^0.4% 4.2%^Mn^8.0% OKMo 彡 0.5% 剩余部分为Fe和不可避免的杂质,所述钢具有包含多于50%的马氏体、多于10%的残留奥氏体、少于10%的铁素体加贝氏体之和的组织,当用光学显微镜观察时,不存在中心偏 析。
8.根据权利要求7所述的高强度钢板,其特征在于,所述钢的化学组成包含4.5%彡Mn
9.根据权利要求7或8中的任一项所述的高强度钢板,其特征在于,所述钢的化学组成使得: 0.15%^C^0.25% 1.4%^Si^l.8% 0.2%彡 Mo 彡 0.35%。
10.根据权利要求8和9所述的高强度钢板,其特征在于,屈服强度YS大于或等于lOOOMPa,拉伸强度大于或等于1300MPa,均匀延伸率UE大于或等于10%,总延伸率大于或等于13%,扩孔率HER大于或等于15%。
11.根据权利要求7至10中的任一项所述的高强度钢板,其特征在于,所述组织满足以下条件中的一个或更多个条件: -马氏体的含量为至少65%, -残留奥氏体的含量为至少20%, -铁素体加贝氏体之和小于5 %。
12.根据权利要求7至11中的任一项所述的高强度钢板,其特征在于,所述板的至少一个面被涂覆。
CN201580036404.9A 2014-07-03 2015-07-03 用于制造具有改善的可成形性的高强度钢板的方法及所获得的板 Active CN106574349B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2014/002235 2014-07-03
PCT/IB2014/002235 WO2016001699A1 (en) 2014-07-03 2014-07-03 Method for manufacturing a high strength steel sheet having improved formability and sheet obtained
PCT/IB2015/055031 WO2016001887A2 (en) 2014-07-03 2015-07-03 Method for manufacturing a high strength steel sheet having improved formability and sheet obtained

Publications (3)

Publication Number Publication Date
CN106574349A CN106574349A (zh) 2017-04-19
CN106574349A8 true CN106574349A8 (zh) 2017-05-10
CN106574349B CN106574349B (zh) 2018-09-04

Family

ID=52000880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580036404.9A Active CN106574349B (zh) 2014-07-03 2015-07-03 用于制造具有改善的可成形性的高强度钢板的方法及所获得的板

Country Status (17)

Country Link
US (1) US20170145537A1 (zh)
EP (1) EP3164515B1 (zh)
JP (2) JP6668265B2 (zh)
KR (1) KR102423654B1 (zh)
CN (1) CN106574349B (zh)
BR (1) BR112017000008B1 (zh)
CA (1) CA2954132C (zh)
ES (1) ES2737226T3 (zh)
HU (1) HUE044408T2 (zh)
MA (1) MA40198B1 (zh)
MX (1) MX2017000190A (zh)
PL (1) PL3164515T3 (zh)
RU (1) RU2677888C2 (zh)
TR (1) TR201910618T4 (zh)
UA (1) UA119061C2 (zh)
WO (2) WO2016001699A1 (zh)
ZA (1) ZA201700056B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055425A1 (en) * 2016-09-22 2018-03-29 Arcelormittal High strength and high formability steel sheet and manufacturing method
KR101839235B1 (ko) 2016-10-24 2018-03-16 주식회사 포스코 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
KR101977491B1 (ko) * 2017-11-08 2019-05-10 주식회사 포스코 냉간 성형성이 우수한 초고강도 고연성 강판 및 그 제조방법
WO2019122961A1 (en) * 2017-12-19 2019-06-27 Arcelormittal High strength and high formability steel sheet and manufacturing method
WO2019122965A1 (en) * 2017-12-19 2019-06-27 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
JP6669325B1 (ja) * 2018-07-18 2020-03-18 日本製鉄株式会社 鋼板
EP3754037B1 (en) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Method of heat treating a high strength cold rolled steel strip
CZ308468B6 (cs) * 2019-07-30 2020-09-02 Západočeská Univerzita V Plzni Způsob výroby součástí z ocelí kalením s vyrovnáním teplot na teplotu Ms
WO2021105489A1 (en) 2019-11-27 2021-06-03 Tata Steel Ijmuiden B.V. Method of making a cold formable high strength steel strip and steel strip

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261388B1 (en) * 1998-05-20 2001-07-17 Nippon Steel Corporation Cold forging steel having improved resistance to grain coarsening and delayed fracture and process for producing same
WO2004022794A1 (en) * 2002-09-04 2004-03-18 Colorado School Of Mines Method for producing steel with retained austenite
CN101376945B (zh) * 2007-08-28 2011-06-15 宝山钢铁股份有限公司 2000MPa级超高强度高韧性钢板及其制造方法
EP2123787A1 (fr) * 2008-05-06 2009-11-25 Industeel Creusot Acier à hautes caractéristiques pour pièces massives
KR101027250B1 (ko) * 2008-05-20 2011-04-06 주식회사 포스코 고연성 및 내지연파괴 특성이 우수한 고강도 냉연강판,용융아연 도금강판 및 그 제조방법
JP5418047B2 (ja) * 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN101638749B (zh) * 2009-08-12 2011-01-26 钢铁研究总院 一种低成本高强塑积汽车用钢及其制备方法
JP5287770B2 (ja) * 2010-03-09 2013-09-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5327106B2 (ja) * 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
KR20120071583A (ko) * 2010-12-23 2012-07-03 주식회사 포스코 저온인성이 우수한 고강도 고망간강
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
EP2772556B1 (en) * 2011-10-24 2018-12-19 JFE Steel Corporation Method for producing high-strength steel sheet having superior workability
JP5857905B2 (ja) * 2012-07-25 2016-02-10 新日鐵住金株式会社 鋼材およびその製造方法
WO2014020640A1 (ja) * 2012-07-31 2014-02-06 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
CN102912219A (zh) * 2012-10-23 2013-02-06 鞍钢股份有限公司 一种高强塑积trip钢板及其制备方法
CN105247082B (zh) * 2013-04-01 2016-11-02 日立金属株式会社 刀具用钢的生产方法

Also Published As

Publication number Publication date
JP6668265B2 (ja) 2020-03-18
HUE044408T2 (hu) 2019-10-28
MA40198B1 (fr) 2019-08-30
JP2020045577A (ja) 2020-03-26
CA2954132A1 (en) 2016-01-07
US20170145537A1 (en) 2017-05-25
CN106574349B (zh) 2018-09-04
RU2016151793A (ru) 2018-06-28
KR102423654B1 (ko) 2022-07-20
EP3164515A2 (en) 2017-05-10
EP3164515B1 (en) 2019-04-24
PL3164515T3 (pl) 2019-10-31
CN106574349A (zh) 2017-04-19
WO2016001887A2 (en) 2016-01-07
BR112017000008A2 (pt) 2017-11-07
WO2016001699A1 (en) 2016-01-07
JP2017524822A (ja) 2017-08-31
MX2017000190A (es) 2017-05-01
RU2016151793A3 (zh) 2018-12-07
UA119061C2 (uk) 2019-04-25
ES2737226T3 (es) 2020-01-10
MA40198A (fr) 2017-05-10
RU2677888C2 (ru) 2019-01-22
WO2016001887A3 (en) 2016-03-10
KR20170026405A (ko) 2017-03-08
TR201910618T4 (tr) 2019-08-21
BR112017000008B1 (pt) 2021-03-23
CA2954132C (en) 2022-08-30
ZA201700056B (en) 2018-08-29

Similar Documents

Publication Publication Date Title
CA3007647C (en) Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
US11492676B2 (en) Method for producing a high strength coated steel sheet having improved strength, ductility and formability
JP6894476B2 (ja) 高強度鋼板を製造する方法およびこの方法により得られる鋼板
CN106574349A8 (zh) 用于制造具有改善的可成形性的高强度钢板的方法及所获得的板
JP6685244B2 (ja) 強度、延性および成形性が改善された高強度鋼板を製造する方法
CA2954142C (en) Method for manufacturing a high strength steel sheet having improved formability and ductility and sheet obtained
US11718888B2 (en) Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
JP2022528445A (ja) 高強度および高成形性を有する鋼板およびその製造方法
US10941460B2 (en) Plated steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CI01 Publication of corrected invention patent application
CI01 Publication of corrected invention patent application

Correction item: Inventor

Correct: Xu Wei|Artem Alazarov

False: Xu Wei|Artem Alazarov

Number: 16

Volume: 33

CI02 Correction of invention patent application
CI02 Correction of invention patent application

Correction item: Inventor

Correct: Xu Wei|Artem Alazarov

False: Xu Wei|Artem Alazarov

Number: 16

Page: The title page

Volume: 33

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant