CN106571236A - 一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料 - Google Patents

一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料 Download PDF

Info

Publication number
CN106571236A
CN106571236A CN201610929776.0A CN201610929776A CN106571236A CN 106571236 A CN106571236 A CN 106571236A CN 201610929776 A CN201610929776 A CN 201610929776A CN 106571236 A CN106571236 A CN 106571236A
Authority
CN
China
Prior art keywords
palygorskite
carbon nano
parts
electrode material
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610929776.0A
Other languages
English (en)
Inventor
褚诗泉
郑颖
李海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jiangwei Precision Manufacturing Co Ltd
Original Assignee
Anhui Jiangwei Precision Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jiangwei Precision Manufacturing Co Ltd filed Critical Anhui Jiangwei Precision Manufacturing Co Ltd
Priority to CN201610929776.0A priority Critical patent/CN106571236A/zh
Publication of CN106571236A publication Critical patent/CN106571236A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料,由下列重量份的原料制成:多壁碳纳米管10‑12、十二烷基硫酸钠1.5‑1.6、去离子水适量、无水乙醇适量、氯仿适量、聚氧化乙烯14‑15、混旋樟脑磺酸12‑13、坡缕石0.2‑0.3、1mol/L的盐酸溶液适量、苯胺10‑12、过硫酸铵12.6‑1.3。本发明静电纺纤维膜具有优异的孔隙分布,这种结构能为电解质离子的扩散提供良好的通道,具有良好的比电容,用此电极材料制成的超级电容器电化学性能优异。

Description

一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料
技术领域
本发明涉及电容器技术领域,尤其涉及一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料。
背景技术
超级电容器又称电化学电容器,具有功率密度大、循环寿命长、维护简便以及成本相对低廉等特点。超级电容器具有比传统介电电容器更大的能量密度和比电池更高的功率密度,在应急电源、混合动力、数码产品、电子通讯等领域有广阔的应用前景。碳纳米管自从1991年被发现以来, 由于具有优异的力学性能、热学性能、 导电性能, 而成为科学家研究的热点。碳纳米管是理想的复合材料添加相, 具有高达1000以上的长径比, 同时由于sp2轨道杂化形成大量离域p电子, 导电性能优异。聚苯胺作为超级电容器导电性聚合物的电极材料,由于易于合成、良好的环境稳定性、高导电性等优点,已被广泛研究应用。然而,聚苯胺因为体积变化大和较差的循环充电/放电能力等缺点,限制了其在超级电容器电极材料方面的应用。这些问题可以通过将聚苯胺与碳基纳米材料合并加以解决,从而实现电化学双层电容器和赝电容电容器的协同作用。因此,大比表面积和良好导电性的纳米碳材料被用作支持材料以获得高性能和长循环寿命的复合电极。
《碳纳米管/聚苯胺/石墨烯复合纳米碳纸及其电化学电容行为》一文中通过真空抽滤的方法制备碳纳米管纸, 并对其进行循环伏安电化学氧化处理,以该电化学氧化处理的碳纳米管纸为基体, 采用电化学聚合沉积聚苯胺, 随后吸附石墨烯, 制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯复合纳米碳纸,该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能。但是操作工艺复杂,难以控制复合纸的结构,以至于难以提高了其比表面积,限制了比电容的提高;而且由于实际生产过程中生产的碳纳米管都会残留一部分的催化剂杂质, 以及一些无定形碳, 这些杂质的存在限制了碳纳米管的使用,文章中采用酸纯化碳纳米管,混酸处理的同时去除了绝大多数的无定形碳及金属颗粒, 但处理过程繁琐, 污染严重, 同时也引入了一些官能团, 这些官能团的存在对碳纳米管的结构造成一定的破坏, 从而对性能会产生一定的影响,限制了其性能;综上所述,需要对工艺手段进行一定的改进,从而能够制得操作可控,导电性强、比表面积大、比电容大的超级电容器电极材料,满足科技发展的需求。
发明内容
本发明目的就是为了弥补已有技术的缺陷,提供一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料。
本发明是通过以下技术方案实现的:
一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料,由下列重量份的原料制成:多壁碳纳米管10-12、十二烷基硫酸钠1.5-1.6、去离子水适量、无水乙醇适量、氯仿适量、聚氧化乙烯14-15、混旋樟脑磺酸12-13、坡缕石0.2-0.3、1mol/L的盐酸溶液适量、苯胺10-12、过硫酸铵12.6-1.3。
所述一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料,由下列具体方法制备而成:
(1)将多壁碳纳米管放在石墨坩埚炉,置于石墨化炉中,对其进行抽真空,以10-15℃/min升温至2800℃,保温20-20小时,自然冷却,得到石墨化碳纳米管;将上述石墨化碳纳米管放入球磨机中以200-300转/份的速度球磨90-120分钟,加入溶于25-30倍量的去离子水的十二烷基硫酸钠,超声20-30分钟后喷雾干燥,得到改性碳纳米管;
(2)将坡缕石中加入100-110倍量的1mol/L的盐酸溶液中,滴加苯胺,以500-600转/分搅拌30-40分钟,冰浴条件下,缓慢滴加过硫酸铵,控温0-5℃,搅拌反应8-9小时,抽滤,用去离子水洗涤2-3次,将产物在60下真空干燥,得到坡缕石聚苯胺复合材料;
(3)将步骤(2)得到的坡缕石聚苯胺复合材料溶于100倍量的氯仿中,再加入混旋樟脑磺酸,室温下以300-400转/分的速度搅拌12-14小时,然后加入步骤(1)得到的产物,超声分散20-30分钟后加入其余剩余成分,继续以300-400转/分的速度搅拌10-12小时,得到纺丝液;
(4)将纺丝液吸入到注射器中利用静电纺丝技术将纺丝液收集在集流体金属镍上,控制纺丝液流量为0.2-0.3ml/h,电压为15-20kV,纺丝距离为8-14cm,纺丝过程5-6小时,形成具有一定厚度的网络结构的复合纤维电极材料。
本发明的优点是:本发明首先对碳纳米管进行高温石墨化处理的方法来达到纯化的效果,在石墨化的同时,金属催化剂发生蒸发,碳纳米管不会遭到破坏,同时结晶度和导电性提高;然后利用静电纺丝技术将石墨化后的碳纳米管、聚苯胺、聚氧化乙烯等制成了网络结构的复合纤维膜,通过控制纺丝距离、纺丝流量等使得制备的纤维较细,增强了其比表面积,从而使得电解质离子扩散阻力变小,电荷转移通道越通畅,由此表现出更好的电容性能,提高了比电容,而且利用此电极材料制成的超级电容器表现出良好的循环稳定性,同时工艺简单,便于工业控制。
本发明将坡缕石与苯胺进行原位聚合,由于坡缕石具有良好的吸附性能和大的比表面积,在原位聚合中,可以提高聚苯胺的分散性,以提高聚苯胺和电解液的接触面积, 增大聚苯胺的利用率,从而提高比电容;本发明静电纺纤维膜具有优异的孔隙分布,这种结构能为电解质离子的扩散提供良好的通道,具有良好的比电容,用此电极材料制成的超级电容器电化学性能优异。
具体实施方式
一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料,由下列重量份(公斤)的原料制成:多壁碳纳米管10、十二烷基硫酸钠1.5、去离子水适量、无水乙醇适量、氯仿适量、聚氧化乙烯14、混旋樟脑磺酸12、坡缕石0.2、1mol/L的盐酸溶液适量、苯胺10、过硫酸铵12.6。
所述一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料,由下列具体方法制备而成:
(1)将多壁碳纳米管放在石墨坩埚炉,置于石墨化炉中,对其进行抽真空,以10℃/min升温至2800℃,保温20小时,自然冷却,得到石墨化碳纳米管;将上述石墨化碳纳米管放入球磨机中以200转/份的速度球磨90分钟,加入溶于25倍量的去离子水的十二烷基硫酸钠,超声20分钟后喷雾干燥,得到改性碳纳米管;
(2)将坡缕石中加入100倍量的1mol/L的盐酸溶液中,滴加苯胺,以500转/分搅拌30分钟,冰浴条件下,缓慢滴加过硫酸铵,控温0℃,搅拌反应8小时,抽滤,用去离子水洗涤2次,将产物在60下真空干燥,得到坡缕石聚苯胺复合材料;
(3)将步骤(2)得到的坡缕石聚苯胺复合材料溶于100倍量的氯仿中,再加入混旋樟脑磺酸,室温下以300转/分的速度搅拌12小时,然后加入步骤(1)得到的产物,超声分散20分钟后加入其余剩余成分,继续以300转/分的速度搅拌10小时,得到纺丝液;
(4)将纺丝液吸入到注射器中利用静电纺丝技术将纺丝液收集在集流体金属镍上,控制纺丝液流量为0.2ml/h,电压为15kV,纺丝距离为8cm,纺丝过程5小时,形成具有一定厚度的网络结构的复合纤维电极材料。
将聚四氟乙烯隔膜浸入到聚乙烯醇-硫酸凝胶电解质中,保持 20分钟,取出后在室温下自然蒸发干燥,然后把所述实施例制成的收集复合纤维膜的金属镍作为电极材料与聚乙烯醇-硫酸隔膜按三明治结构叠放在一起,并用聚酯薄膜对其进行封装,得到超级电容器。在扫描速度为 5 mV•s–1、电位区间–0.8-0.2 V 时的循环伏安特性曲线得到超级电容器的比电容为97 F/g,在 1 000 次循环充放电测试后比电容仍能保持大于90%。

Claims (2)

1.一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料,其特征在于,由下列重量份的原料制成:多壁碳纳米管10-12、十二烷基硫酸钠1.5-1.6、去离子水适量、无水乙醇适量、氯仿适量、聚氧化乙烯14-15、混旋樟脑磺酸12-13、坡缕石0.2-0.3、1mol/L的盐酸溶液适量、苯胺10-12、过硫酸铵12.6-1.3。
2.根据权利要求书1所述一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料,其特征在于,由下列具体方法制备而成:
(1)将多壁碳纳米管放在石墨坩埚炉,置于石墨化炉中,对其进行抽真空,以10-15℃/min升温至2800℃,保温20-20小时,自然冷却,得到石墨化碳纳米管;将上述石墨化碳纳米管放入球磨机中以200-300转/份的速度球磨90-120分钟,加入溶于25-30倍量的去离子水的十二烷基硫酸钠,超声20-30分钟后喷雾干燥,得到改性碳纳米管;
(2)将坡缕石中加入100-110倍量的1mol/L的盐酸溶液中,滴加苯胺,以500-600转/分搅拌30-40分钟,冰浴条件下,缓慢滴加过硫酸铵,控温0-5℃,搅拌反应8-9小时,抽滤,用去离子水洗涤2-3次,将产物在60下真空干燥,得到坡缕石聚苯胺复合材料;
(3)将步骤(2)得到的坡缕石聚苯胺复合材料溶于100倍量的氯仿中,再加入混旋樟脑磺酸,室温下以300-400转/分的速度搅拌12-14小时,然后加入步骤(1)得到的产物,超声分散20-30分钟后加入其余剩余成分,继续以300-400转/分的速度搅拌10-12小时,得到纺丝液;
(4)将纺丝液吸入到注射器中利用静电纺丝技术将纺丝液收集在集流体金属镍上,控制纺丝液流量为0.2-0.3ml/h,电压为15-20kV,纺丝距离为8-14cm,纺丝过程5-6小时,形成具有一定厚度的网络结构的复合纤维电极材料。
CN201610929776.0A 2016-10-31 2016-10-31 一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料 Pending CN106571236A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610929776.0A CN106571236A (zh) 2016-10-31 2016-10-31 一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610929776.0A CN106571236A (zh) 2016-10-31 2016-10-31 一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料

Publications (1)

Publication Number Publication Date
CN106571236A true CN106571236A (zh) 2017-04-19

Family

ID=60414467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610929776.0A Pending CN106571236A (zh) 2016-10-31 2016-10-31 一种纳米坡缕石改性聚苯胺碳纳米管复合电极材料

Country Status (1)

Country Link
CN (1) CN106571236A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707326A (zh) * 2019-04-10 2020-01-17 中南大学 一种水系电池集流体、正极、柔性电池及其制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130431A (zh) * 2006-08-23 2008-02-27 中国科学院金属研究所 一种纯化多壁碳纳米管/纳米碳纤维的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130431A (zh) * 2006-08-23 2008-02-27 中国科学院金属研究所 一种纯化多壁碳纳米管/纳米碳纤维的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
代涛娟 等: ""纳米结构坡缕石改性聚苯胺超级电容器电极材料的研究"", 《武汉理工大学学报》 *
庞志鹏 等: ""碳纳米管导电纸的制备及改性研究"", 《功能材料》 *
梁军生 等: ""静电纺丝PANI/CNT/PEO超级电容器电极的性能研究"", 《电子元件与材料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707326A (zh) * 2019-04-10 2020-01-17 中南大学 一种水系电池集流体、正极、柔性电池及其制备和应用

Similar Documents

Publication Publication Date Title
Ni et al. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
Heme et al. Recent progress in polyaniline composites for high capacity energy storage: A review
Wu et al. Carbonaceous hydrogels and aerogels for supercapacitors
Niu et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes
Zheng et al. Graphene-based fibers for the energy devices application: A comprehensive review
Liu et al. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors
Hu et al. Orderly and highly dense polyaniline nanorod arrays fenced on carbon nanofibers for all-solid-state flexible electrochemical energy storage
CN104240973A (zh) 一种透明、柔性的超级电容器织物及其制备方法
Du et al. Fabrication of hierarchical carbon layer encapsulated polyaniline core-shell structure nanotubes and application in supercapacitors
Luo et al. Fixing graphene-Mn3O4 nanosheets on carbon cloth by a poles repel-assisted method to prepare flexible binder-free electrodes for supercapacitors
Zhou et al. A facile approach to improve the electrochemical properties of polyaniline-carbon nanotube composite electrodes for highly flexible solid-state supercapacitors
Liu et al. Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors
Ji et al. Cellulose and poly (vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors
CN107275116B (zh) 一种氮掺杂有序多孔高导电石墨烯纤维及其制备方法与应用
Gopalsamy et al. Wet-spun poly (ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors
Malik et al. Electrochemical behavior of composite electrode based on sulphonated polymeric surfactant (SPEEK/PSS) incorporated polypyrrole for supercapacitor
Chen et al. Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode
Cao et al. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials
Yin et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ ZrO2/C nanofiber film as low-cost counter electrode
Malik et al. Study of supercapacitive pursuance of polypyrrole/sulphonated poly (ether ether ketone)/multi walled carbon nanotubes composites for energy storage
Chen et al. Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires
Faraji et al. 2.0-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO 3-graphite sheet
Li et al. Robust conductive polymer grafted carbon cloth via solvothermal polymerization for flexible electrochemical devices
CN106683898A (zh) 超级电容器用复合电极材料及其制备方法和超级电容器
Li et al. Graphene-enabled improved supercapacitor performance of polyaniline nanofiber composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170419