CN106563973A - 一种基于刀具振动位移的动态铣削力测量方法 - Google Patents

一种基于刀具振动位移的动态铣削力测量方法 Download PDF

Info

Publication number
CN106563973A
CN106563973A CN201510658618.1A CN201510658618A CN106563973A CN 106563973 A CN106563973 A CN 106563973A CN 201510658618 A CN201510658618 A CN 201510658618A CN 106563973 A CN106563973 A CN 106563973A
Authority
CN
China
Prior art keywords
milling
cutter
dynamic
vibration
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510658618.1A
Other languages
English (en)
Inventor
刘海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin Junwin Mechanical & Electrical Technology Co Ltd
Original Assignee
Guilin Junwin Mechanical & Electrical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin Junwin Mechanical & Electrical Technology Co Ltd filed Critical Guilin Junwin Mechanical & Electrical Technology Co Ltd
Priority to CN201510658618.1A priority Critical patent/CN106563973A/zh
Publication of CN106563973A publication Critical patent/CN106563973A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2717/00Arrangements for indicating or measuring
    • B23Q2717/006Arrangements for indicating or measuring in milling machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于刀具振动位移的动态铣削力测量方法,该方法提高了测量***的带宽,实现了动态铣削力的精确测量,能够对测量***进行动态补偿,提高了测量***的带宽,实现了动态铣削力的精确测量,针对现有的动态铣削力测量方法在加工工件尺寸、质量、测量带宽以及安装方式等方面的局限性,本发明提出一种利用激光测振仪测量铣削加工时旋转铣刀刀杆的径向振动位移,根据铣刀振动位移与铣削力之间的关系,通过振动位移间接确定动态铣削力的方法,对铣刀高速铣削速度下的铣削力测量失真问题,对测量***进行动态补偿,提高了测量***的带宽,实现了动态铣削力的精确测量。

Description

一种基于刀具振动位移的动态铣削力测量方法
技术领域
本发明属于刀具测量领域,特别涉及一种基于刀具振动位移的动态铣削力测量方法。
背景技术
切削加工中动态切削力的测量是监控机床运行状态、排除机床故障最直接、最关键的信息,目前最常用的切削力测量方法是采用压电式或应变式测力计测量,该方法已广泛应用于数控机床切削力的测量。但对于旋转类刀具切削力的测量,该方法还存在着如下问题:受限于测力计与工件固定的有效面积,测力计只能测量较小工件的切削力;测力计对过载敏感、安装不方便;测力计的动态特性会随着工件质量的改变而变化等。
为了解决工件大小和质量对铣削力测量的影响,有研究将力传感器集成在主轴上,这些旋转测力计结构复杂,对主轴***有较大的附加质量,且为悬伸式结构,降低了主轴***的刚度。环形压电晶体式力传感器,并将其集成在主轴上以测量铣削力,这种方法破坏了主轴的安装方式,且主轴的轴承振动等会影响测量的准确性,同时铣削力的传递率较低。此外,针对铣削加工中工件质量等因素对台式测力计铣削力测量的干扰,提出了一种补偿方法,但该方法仍受限于测力计可测的加工工件尺寸。通过夹装在主轴头上的电容位移传感器测量主轴的振动位移来间接测量切削力,该方法存在一些问题:
①尖点到主轴的振动传递率较低;
②主轴振动会影响测量的准确性,不利于误差分离;
③主轴电机对电容式位移传感器产生电磁干扰,引起测量误差;
这些因素都会影响到铣削力测量的准确性。
激光测振是一种很好的非接触振动测量方法,对热误差不敏感,具有很高的测量分辨率。激光测振仪通常用于测量平面物体表面的振动,在测量旋转物体表面的振动时,被测面较大的粗糙度会引起斑点噪声和速度串扰问题,影响振动测量的准确性。
发明内容
针对现有技术的不足,本发明一种基于刀具振动位移的动态铣削力测量方法,该方法提高了测量***的带宽,实现了动态铣削力的精确测量,能够对测量***进行动态补偿,提高了测量***的带宽,实现了动态铣削力的精确测量。
实现本发明目的的技术方案是:
一种基于刀具振动位移的动态铣削力测量方法,包括如下步骤:
1)铣削加工时,激光测振仪沿y方向实时测量铣刀刀杆上激光测量点的振动速度,该振动速度经过积分等数据处理后得到振动位移,此振动位移中包含了旋转刀具的径向不重合误差和圆度误差,经误差分离后可得到仅由切削力引起的振动位移。
2)铣削加工为断续切削,铣刀在加工过程中会受到断续切削力的激励,激励频率为刀齿的通过频率ftp
式中:Ω(rpm)为主轴转速,N为铣刀刀齿数。
3)在主轴转速较低的情况下,激励频率ftp远低于刀具***第一阶固有频率,可认为刀具的刚度特性和静止时基本相同,即铣刀受铣削力作用后为弹性变形,铣刀上的动态铣削力Fm与所测刀杆上的振动位移δ满足式线性关系:
Fm=Ksδ (2)
式中:Ks为铣刀的静刚度,可通过理论计算或静态校准实验确定。
4)在主轴转速较高时,激励频率ftp有可能接近刀具***的固有频率,受刀具本身动态特性的影响,铣刀上的铣削力与所测刀杆上的振动位移之间不再是线性关系,必须对Fm进行动态补偿,以获得高速铣削时精确的铣削力测量结果。
5)由于刀具的加工、装配等过程存在误差,刀具的物理轴线与其旋转轴线不重合。刀具旋转时,刀杆上激光测量点处的径向位移随着刀具旋转而改变,产生径向不重合测量误差,另外,由于刀杆上激光测量点处的外轮廓存在圆度误差。这两种误差信号均为周期信号,在铣削过程中一直存在。
6)刀具空转时(没有切削力),激光测振仪测得的径向位移是径向不重合误差和圆度误差的叠加,为周期信号,记录刀具空转状态下的径向位移信号,在时域加工信号中对该周期信号进行分离。
7)刀具***动态特性高速铣削时,激励频率ftp可能接近刀具***的第一阶甚至更高阶的固有频率,测量***受到刀具***动态特性的影响而导致测量失真,此时必须考虑刀具***的动态特性对测量结果的影响。
8)测量***的工作频带仅为300Hz,当铣刀转速较高时,测量***工作频带将无法覆盖铣削力所有频谱分量而导致实测的动态铣削力失真,然后经过低通滤波器和补偿环节后得到最终的补偿铣削力Fmc,最后,得到刀具振动位移的动态铣削力测量方法。
步骤6)中
A.选取所测位移信号空转段中几个稳定的完整信号周期,
B.对选取的周期信号进行周期延拓至整个测量过程,得到与原信号同步的拓展空转信号,
C.将所测加工过程的振动位移信号减去同步拓展空转信号,确定仅由铣削力引起的刀具径向位移,实现误差分离。
步骤8)中,必须对测量***进行动态补偿。其阶跃响应曲线具有超调大、振荡次数多、达到稳态时间长等特点。零点极点配置补偿方法对各阶***均适用,不必考虑算法的收敛性问题,在***的阶跃响应振荡剧烈时也可得到合适的补偿***,且补偿环节不增加原有测量***的阶数,在补偿环节之前增加一个低通滤波器,可以消除铣削力测量信号中的高频噪声干扰,铣削加工时,铣削力F作用在铣刀上,测量***通过刀杆振动位移的测量确定测量铣削力Fm
本发明的有益效果
提供一种基于刀具振动位移的动态铣削力测量方法,该方法提高了测量***的带宽,实现了动态铣削力的精确测量,能够对测量***进行动态补偿,提高了测量***的带宽,实现了动态铣削力的精确测量,针对现有的动态铣削力测量方法在加工工件尺寸、质量、测量带宽以及安装方式等方面的局限性,本发明提出一种利用激光测振仪测量铣削加工时旋转铣刀刀杆的径向振动位移,根据铣刀振动位移与铣削力之间的关系,通过振动位移间接确定动态铣削力的方法,对铣刀高速铣削速度下的铣削力测量失真问题,对测量***进行动态补偿,提高了测量***的带宽,实现了动态铣削力的精确测量。
具体实施例
下面对本发明做进一步的阐述,但不是对本发明的限定。
一种基于刀具振动位移的动态铣削力测量方法,包括如下步骤:
1)铣削加工时,激光测振仪沿y方向实时测量铣刀刀杆上激光测量点的振动速度,该振动速度经过积分等数据处理后得到振动位移,此振动位移中包含了旋转刀具的径向不重合误差和圆度误差,经误差分离后可得到仅由切削力引起的振动位移。
2)铣削加工为断续切削,铣刀在加工过程中会受到断续切削力的激励,激励频率为刀齿的通过频率ftp
式中:Ω(rpm)为主轴转速,N为铣刀刀齿数。
3)在主轴转速较低的情况下,激励频率ftp远低于刀具***第一阶固有频率,可认为刀具的刚度特性和静止时基本相同,即铣刀受铣削力作用后为弹性变形,铣刀上的动态铣削力Fm与所测刀杆上的振动位移δ满足式线性关系:
Fm=Ksδ (2)
式中:Ks为铣刀的静刚度,可通过理论计算或静态校准实验确定。
4)在主轴转速较高时,激励频率ftp有可能接近刀具***的固有频率,受刀具本身动态特性的影响,铣刀上的铣削力与所测刀杆上的振动位移之间不再是线性关系,必须对Fm进行动态补偿,以获得高速铣削时精确的铣削力测量结果。
5)由于刀具的加工、装配等过程存在误差,刀具的物理轴线与其旋转轴线不重合。刀具旋转时,刀杆上激光测量点处的径向位移随着刀具旋转而改变,产生径向不重合测量误差,另外,由于刀杆上激光测量点处的外轮廓存在圆度误差。这两种误差信号均为周期信号,在铣削过程中一直存在。
6)刀具空转时(没有切削力),激光测振仪测得的径向位移是径向不重合误差和圆度误差的叠加,为周期信号,记录刀具空转状态下的径向位移信号,在时域加工信号中对该周期信号进行分离。
7)刀具***动态特性高速铣削时,激励频率ftp可能接近刀具***的第一阶甚至更高阶的固有频率,测量***受到刀具***动态特性的影响而导致测量失真,此时必须考虑刀具***的动态特性对测量结果的影响。
8)测量***的工作频带仅为300Hz,当铣刀转速较高时,测量***工作频带将无法覆盖铣削力所有频谱分量而导致实测的动态铣削力失真,然后经过低通滤波器和补偿环节后得到最终的补偿铣削力Fmc,最后,得到刀具振动位移的动态铣削力测量方法。
步骤6)中
A.选取所测位移信号空转段中几个稳定的完整信号周期,
B.对选取的周期信号进行周期延拓至整个测量过程,得到与原信号同步的拓展空转信号,
C.将所测加工过程的振动位移信号减去同步拓展空转信号,确定仅由铣削力引起的刀具径向位移,实现误差分离。
步骤8)中,必须对测量***进行动态补偿。其阶跃响应曲线具有超调大、振荡次数多、达到稳态时间长等特点。零点极点配置补偿方法对各阶***均适用,不必考虑算法的收敛性问题,在***的阶跃响应振荡剧烈时也可得到合适的补偿***,且补偿环节不增加原有测量***的阶数,在补偿环节之前增加一个低通滤波器,可以消除铣削力测量信号中的高频噪声干扰,铣削加工时,铣削力F作用在铣刀上,测量***通过刀杆振动位移的测量确定测量铣削力Fm

Claims (3)

1.一种基于刀具振动位移的动态铣削力测量方法,其特征在于,包括如下步骤:
1)铣削加工时,激光测振仪沿y方向实时测量铣刀刀杆上激光测量点的振动速度,该振动速度经过积分等数据处理后得到振动位移,此振动位移中包含了旋转刀具的径向不重合误差和圆度误差,经误差分离后可得到仅由切削力引起的振动位移。
2)铣削加工为断续切削,铣刀在加工过程中会受到断续切削力的激励,激励频率为刀齿的通过频率ftp
f t p = N Ω 60 - - - ( 1 )
式中:Ω(rpm)为主轴转速,N为铣刀刀齿数。
3)在主轴转速较低的情况下,激励频率ftp远低于刀具***第一阶固有频率,可认为刀具的刚度特性和静止时基本相同,即铣刀受铣削力作用后为弹性变形,铣刀上的动态铣削力Fm与所测刀杆上的振动位移δ满足式线性关系:
Fm=Ksδ (2)
式中:Ks为铣刀的静刚度,可通过理论计算或静态校准实验确定。
4)在主轴转速较高时,激励频率ftp有可能接近刀具***的固有频率,受刀具本身动态特性的影响,铣刀上的铣削力与所测刀杆上的振动位移之间不再是线性关系,必须对Fm进行动态补偿,以获得高速铣削时精确的铣削力测量结果。
5)由于刀具的加工、装配等过程存在误差,刀具的物理轴线与其旋转轴线不重合。刀具旋转时,刀杆上激光测量点处的径向位移随着刀具旋转而改变,产生径向不重合测量误差,另外,由于刀杆上激光测量点处的外轮廓存在圆度误差。这两种误差信号均为周期信号,在铣削过程中一直存在。
6)刀具空转时(没有切削力),激光测振仪测得的径向位移是径向不重合误差和圆度误差的叠加,为周期信号,记录刀具空转状态下的径向位移信号,在时域加工信号中对该周期信号进行分离。
7)刀具***动态特性高速铣削时,激励频率ftp可能接近刀具***的第一阶甚至更高阶的固有频率,测量***受到刀具***动态特性的影响而导致测量失真,此时必须考虑刀具***的动态特性对测量结果的影响。
8)测量***的工作频带仅为300Hz,当铣刀转速较高时,测量***工作频带将无法覆盖铣削力所有频谱分量而导致实测的动态铣削力失真,然后经过低通滤波器和补偿环节后得到最终的补偿铣削力Fmc,最后,得到刀具振动位移的动态铣削力测量方法。
2.根据权利要求1所述的基于刀具振动位移的动态铣削力测量方法,其特征在于,步骤6)中
A.选取所测位移信号空转段中几个稳定的完整信号周期,
B.对选取的周期信号进行周期延拓至整个测量过程,得到与原信号同步的拓展空转信号,
C.将所测加工过程的振动位移信号减去同步拓展空转信号,确定仅由铣削力引起的刀具径向位移,实现误差分离。
3.根据权利要求1所述的基于刀具振动位移的动态铣削力测量方法,其特征在于,步骤8)中,必须对测量***进行动态补偿。其阶跃响应曲线具有超调大、振荡次数多、达到稳态时间长等特点。零点极点配置补偿方法对各阶***均适用,不必考虑算法的收敛性问题,在***的阶跃响应振荡剧烈时也可得到合适的补偿***,且补偿环节不增加原有测量***的阶数,在补偿环节之前增加一个低通滤波器,可以消除铣削力测量信号中的高频噪声干扰,铣削加工时,铣削力F作用在铣刀上,测量***通过刀杆振动位移的测量确定测量铣削力Fm
CN201510658618.1A 2015-10-13 2015-10-13 一种基于刀具振动位移的动态铣削力测量方法 Pending CN106563973A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510658618.1A CN106563973A (zh) 2015-10-13 2015-10-13 一种基于刀具振动位移的动态铣削力测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510658618.1A CN106563973A (zh) 2015-10-13 2015-10-13 一种基于刀具振动位移的动态铣削力测量方法

Publications (1)

Publication Number Publication Date
CN106563973A true CN106563973A (zh) 2017-04-19

Family

ID=58508201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510658618.1A Pending CN106563973A (zh) 2015-10-13 2015-10-13 一种基于刀具振动位移的动态铣削力测量方法

Country Status (1)

Country Link
CN (1) CN106563973A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107097101A (zh) * 2017-05-09 2017-08-29 西北工业大学 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法
CN108398099A (zh) * 2017-11-09 2018-08-14 中国航空工业集团公司北京长城计量测试技术研究所 一种单点激光应变标定误差的修正方法
CN108723895A (zh) * 2018-05-25 2018-11-02 湘潭大学 一种用于钻削加工状态实时监测的信号分割方法
CN108733001A (zh) * 2017-04-18 2018-11-02 发那科株式会社 进行摆动切削的机床的控制装置
CN110260454A (zh) * 2019-06-10 2019-09-20 珠海格力电器股份有限公司 一种载荷识别方法、装置、存储介质及压缩机
CN111408981A (zh) * 2020-03-23 2020-07-14 武汉数字化设计与制造创新中心有限公司 一种基于切削力频谱分析的气驱动主轴转速实时辨识方法
CN111993160A (zh) * 2020-06-05 2020-11-27 中国工程物理研究院机械制造工艺研究所 一种基于超精密金刚石车床面形的相近振动频率辨识方法
CN114043312A (zh) * 2021-11-26 2022-02-15 广东海洋大学 一种螺旋铣孔状态异常的在线检测识别方法及***

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108733001A (zh) * 2017-04-18 2018-11-02 发那科株式会社 进行摆动切削的机床的控制装置
CN108733001B (zh) * 2017-04-18 2020-05-01 发那科株式会社 进行摆动切削的机床的控制装置
CN107097101A (zh) * 2017-05-09 2017-08-29 西北工业大学 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法
CN107097101B (zh) * 2017-05-09 2018-02-06 西北工业大学 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法
CN108398099A (zh) * 2017-11-09 2018-08-14 中国航空工业集团公司北京长城计量测试技术研究所 一种单点激光应变标定误差的修正方法
CN108398099B (zh) * 2017-11-09 2020-03-20 中国航空工业集团公司北京长城计量测试技术研究所 一种单点激光应变标定误差的修正方法
CN108723895A (zh) * 2018-05-25 2018-11-02 湘潭大学 一种用于钻削加工状态实时监测的信号分割方法
CN110260454A (zh) * 2019-06-10 2019-09-20 珠海格力电器股份有限公司 一种载荷识别方法、装置、存储介质及压缩机
CN111408981A (zh) * 2020-03-23 2020-07-14 武汉数字化设计与制造创新中心有限公司 一种基于切削力频谱分析的气驱动主轴转速实时辨识方法
CN111993160A (zh) * 2020-06-05 2020-11-27 中国工程物理研究院机械制造工艺研究所 一种基于超精密金刚石车床面形的相近振动频率辨识方法
CN111993160B (zh) * 2020-06-05 2022-02-22 中国工程物理研究院机械制造工艺研究所 一种基于超精密金刚石车床面形的相近振动频率辨识方法
CN114043312A (zh) * 2021-11-26 2022-02-15 广东海洋大学 一种螺旋铣孔状态异常的在线检测识别方法及***

Similar Documents

Publication Publication Date Title
CN106563973A (zh) 一种基于刀具振动位移的动态铣削力测量方法
Luo et al. A wireless instrumented milling cutter system with embedded PVDF sensors
US8374717B2 (en) Vibration suppressing method and vibration suppressing device for machine tool
CN102501141B (zh) 一种基于内置传感器的数控机床主轴现场动平衡方法
Guo et al. An integrated wireless vibration sensing tool holder for milling tool condition monitoring with singularity analysis
CN101639395B (zh) 一种改进的高速主轴全息动平衡方法
CN101885079B (zh) 凸轮驱动设备及加工方法
CN201514306U (zh) 动平衡测试装置
CN102539072B (zh) 一种电厂锅炉侧风机现场动平衡测量装置及动平衡方法
Ma et al. Thin-film PVDF sensor-based monitoring of cutting forces in peripheral end milling
CN105426644A (zh) 模态阻尼识别方法、装置和***
CN104400560A (zh) 一种数控机床切削工况下主轴轴心轨迹在线测量方法
CN103983227A (zh) 一种可分离安装偏心的主轴回转误差测量方法与装置
CN110873633A (zh) 主轴振动检测方法及***
JP2018017589A (ja) エンジン試験装置
CN108507785B (zh) 一种主轴回转状态下的动态特性测试装置及方法
CN100491897C (zh) 对径及平行多位测量轧辊圆度误差和机床主轴运动误差的方法
US9593998B2 (en) Method for determining current eccentricity of rotating rotor and method of diagnostics of eccentricity of rotating rotor
CN103134639A (zh) 超微型转子动平衡测量方法以及实施该方法的设备
KR102224333B1 (ko) Cnc공작기계 스핀들주축의 런아웃 검사장치 및 검사방법
CN101915639B (zh) 用于离心机的三轴向自适应式动平衡执行方法
CN102095575A (zh) 一种基于umac的电主轴自动测试***
CN101944795B (zh) 一种热伸长自检测的电主轴结构
CN201953839U (zh) 一种加装钢栅尺的双向推力圆柱滚子组合轴承
JP2012047707A (ja) 振動検出装置、振動抑制装置、および、振動情報表示装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170419