CN106563507A - 纳米负载金属有机框架钯复合催化剂及制备方法与应用 - Google Patents

纳米负载金属有机框架钯复合催化剂及制备方法与应用 Download PDF

Info

Publication number
CN106563507A
CN106563507A CN201610894687.7A CN201610894687A CN106563507A CN 106563507 A CN106563507 A CN 106563507A CN 201610894687 A CN201610894687 A CN 201610894687A CN 106563507 A CN106563507 A CN 106563507A
Authority
CN
China
Prior art keywords
mof
schiff
catalyst
composite catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610894687.7A
Other languages
English (en)
Other versions
CN106563507B (zh
Inventor
孙亚光
陈小玲
由立新
王淑菊
熊刚
丁茯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Chemical Technology
Original Assignee
Shenyang University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Chemical Technology filed Critical Shenyang University of Chemical Technology
Priority to CN201610894687.7A priority Critical patent/CN106563507B/zh
Publication of CN106563507A publication Critical patent/CN106563507A/zh
Application granted granted Critical
Publication of CN106563507B publication Critical patent/CN106563507B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • B01J35/33
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/0252Salen ligands or analogues, e.g. derived from ethylenediamine and salicylaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Abstract

纳米负载金属有机框架钯复合催化剂及制备方法与应用,涉及一种化工功能材料技术领域,本发明为一种磁性纳米粒或棒负载的金属有机框架‑钯复合催化剂Fe3O4@La‑MOF‑Schiff‑Pd,包括以下制备步骤:(1)Fe3O4@La‑MOF的制备;(2)Fe3O4@La‑MOF‑Schiff的制备;(3)Fe3O4@La‑MOF‑Schiff‑Pd的合成。本发明以2‑吡啶甲醛修饰,形成两个N配位点;最后通过配位作用与Pd2+络合,得到具有高活性Pd催化位点,用于催化Suzuki偶联反应,并且可通过外加磁铁吸附进行分离的多相催化剂。该制备方法简单、产率高,催化剂在空气和水中稳定,能高效、多相催化Suzuki偶联反应。催化剂可以通过外加磁铁吸附进行分离,循环利用。

Description

纳米负载金属有机框架钯复合催化剂及制备方法与应用
技术领域
本发明涉及一种化工功能材料技术领域,特别是涉及一种纳米负载金属有机框架钯复合催化剂及制备方法与应用。
背景技术
碳-碳键的生成是化学变化中最重要的过程之一,利用这类变化可将简单的反应前体转变为结构复杂的分子,在医药、农药以及精细化工产品等多种化合物的合成中有着重要意义。Suzuki偶联反应、Heck偶联反应以及Sonogashira偶联反应是碳-碳键构建中最常用的三种方法。
钯催化的碳-碳键偶联反应具有底物来源广泛、官能团的相容性好且反应条件温和、收率高等优点,是目前最为广泛使用的催化剂。这其中,Pd(OAC)2、PdCl2等均相催化剂具有高活性和高选择性,副反应少等优点,但是由于催化剂难以分离,污染产物且昂贵的钯不易回收和重复使用而造成极大浪费,因而限制了其应用。为克服这些缺点,使用异相催化剂替代均相催化剂催化碳-碳偶联反应已成为一种需要。如今,含钯配位聚合物正逐渐应用于Suzuki偶联反应、Heck偶联反应和Sonogashira偶联反应,因为它作为催化剂具有对底物选择性较广、反应条件温和、副反应少等优点。含其它金属如镍、铜、钌等的金属配合物也能催化多种偶联反应,但由于它们对底物选择具有局限性,因此催化效果均不如钯配合物好。虽然异相催化剂的出现能解决催化剂的分离这一难题,但是繁琐的过滤过程以及催化剂的乳化、堵塞等问题仍然会阻碍催化剂的有效回收利用。
综上所述,亟需开发一种高效、易分离、可循环利用的新型催化剂。
2011年宾夕法尼亚大学的Yun Luo等在Inorganica Chimica Acta上公开发表2-氨基-1,4-苯二甲酸(H2abdc)与La3+构筑的金属有机框架[La(abdc)(Habdc)•2H2O],其具有制备简单(见说明书附图1)、产率高(>90%)、结构稳定且具有高孔隙度等优点。
发明内容
本发明的目的在于提供一种纳米负载金属有机框架钯复合催化剂及制备方法与应用,本发明选择 [La(abdc)(Habdc)•2H2O]为框架,在[La(abdc)(Habdc)•2H2O]合成中负载Fe3O4磁性纳米材料;然后以2-吡啶甲醛修饰,形成两个N配位点;最后通过配位作用与Pd2 +络合,得到具有高活性Pd催化位点,用于催化Suzuki偶联反应,并且可通过外加磁铁吸附进行分离的多相催化剂。
本发明的目的是通过以下技术方案实现的:
纳米负载金属有机框架钯复合催化剂,所述催化剂以高孔隙度La-MOF----[La(abdc)(Habdc)•2H2O]为框架负载Fe3O4磁性纳米材料得到Fe3O4@La-MOF,再以2-吡啶甲醛修饰,形成含有两个N配位点Fe3O4@La-MOF-Schiff,最后与Pd2+配位,得到具有高活性Pd催化位点,同时可以通过外加磁铁吸附进行分离的多相催化剂,并用于催化Suzuki偶联反应,其分子式为:Fe3O4@La-MOF-Schiff-Pd,其结构式为:
纳米负载金属有机框架钯复合催化剂制备方法,本方法为一种磁性纳米材料负载的金属有机框架--钯复合催化剂Fe3O4@La-MOF-Schiff-Pd的制备方法,包括以下过程:
(1)Fe3O4@La-MOF的制备
取6 mmol的LaCl3•6H2O和12 mmol的2-氨基-1,4-苯二甲酸钠盐分别溶于水,先将LaCl3•6H2O溶液倒入三口烧瓶,在机械搅拌下加入7 mg/mL的Fe3O4乙醇分散液,搅拌后再加入2-氨基-1,4-苯二甲酸钠盐并不断搅拌,将反应混合物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF;其分子式为:Fe3O4@La-MOF,其结构式为:
(2)Fe3O4@La-MOF-Schiff的制备
取2.7133g的Fe3O4@La-MOF,8 mmol的2-吡啶甲醛和100 mL的无水乙醇于三口烧瓶中;室温搅拌48~72 h,得到的产物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff。其分子式为:Fe3O4@La-MOF-Schiff,其结构式为:
(3)Fe3O4@La-MOF-Schiff-Pd的合成
取1.5709g的Fe3O4@La-MOF-Schiff,0.3546g的PdCl2,100 mL的无水乙醇于三口烧瓶中;在机械搅拌下搅拌48~72h,得到的混合物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff-Pd;其分子式为:Fe3O4@La-MOF-Schiff-Pd,其结构式为:
纳米负载金属有机框架钯复合催化剂应用,即磁性纳米材料负载的金属有机框架--钯复合催化剂 Fe3O4@La-MOF-Schiff-Pd的催化剂应用;磁性纳材料负载的金属有机框架--钯复合催化剂Fe3O4@La-MOF-Schiff-Pd在Suzuki偶联反应具有催化活性,其芳基卤化物1 mmol 氯苯、溴苯或碘苯、1.2 mmol苯硼酸、2mmol碳酸钾和作为催化剂的 8mg的Fe3O4@La-MOF-Schiff-Pd加入到圆底烧瓶中,6mL无水乙醇作反应溶剂,在温度 60~80 ℃下磁力搅拌 1~6 h,将反应后的溶液用乙酸乙酯萃取,并用无水硫酸钠干燥,再将有机溶剂去除得到最终产物,产率用气相色谱中的内标法测得,产率99%,证明化合物 Fe3O4@La-MOF-Schiff-Pd对Suzuki C-C 偶联反应具有高的催化活性。
所述的纳米负载金属有机框架钯复合催化剂应用,所述磁性纳米材料负载的金属有机框架-钯复合催化剂 Fe3O4@La-MOF-Schiff-Pd,有效催化 Suzuki偶联反应后,通过外加磁铁吸附进行分离,循环利用催化 Suzuki偶联反应12次。
本发明的优点与效果是:
1.本发明与通常的多相催化剂相比,本催化剂具有制备简单、经济,结构稳定且容易回收再利用等优点。实现高效、多相催化碳-碳偶联反应;更为重要的是,这种制备磁性纳米材料负载的金属有机框架-钯复合催化剂的方法,工艺简单、成本低、产率高、催化活性高,催化剂可以通过外加磁铁吸附进行分离,易于分离、循环利用多次催化产率没有明显降低,在空气和水中稳定;具备潜在的工业生产应用价值。
2.本发明方法三步制得磁性纳米材料负载的金属有机框架-钯复合催化剂(Fe3O4@La-MOF-Schiff-Pd),催化剂合成简单,产率高,在空气和水中稳定,能高效、多相催化碳-碳偶联反应,并且可以通过外加磁铁吸附进行分离。
附图说明
图1金属有机框架[La(abdc)(Habdc)•2H2O]结构图;
图2本发明实现技术方案;
图3 磁性纳米材料负载的金属有机框架-钯复合催化剂元素分析能谱(EDS)图;
图4 Fe3O4@La-MOF-Schiff-Pd催化碳-碳偶联反应方程式;
图5 (a-b) Fe3O4纳米粒的透射电镜(TEM)图; (c) Fe3O4@La-MOF-Schiff-Pd的扫描电镜(SEM)图; (d) Fe3O4@La-MOF-Schiff-Pd的扫描透射电镜(STEM)图;(e-f)Fe3O4@La-MOF-Schiff-Pd的透射电镜(TEM)图;
图6外加磁铁吸附Fe3O4@La-MOF-Schiff-Pd催化剂示意图。
具体实施方式
下面结合实施例对本发明进行详细说明。
以下通过实例对本发明做进一步阐述,本发明涉及磁性纳米粒或棒负载的金属有机框架-钯复合催化剂(Fe3O4@La-MOF-Schiff-Pd)的制备方法及其在Suzuki偶联反应的催化作用。该制备方法的操作步骤为:以高孔隙度La-MOF 即[La(abdc)(Habdc)•2H2O]为框架负载Fe3O4磁性纳米粒或棒制得Fe3O4@La-MOF,再以2-吡啶甲醛修饰,形成含有两个N配位点Fe3O4@La-MOF-Schiff,最后与Pd2+配位,得到具有高活性Pd2+催化位点,同时可以通过磁铁吸附进行分离的多相催化剂,并用于催化Suzuki偶联反应。
实施例1:Fe3O4@La-MOF-Schiff-Pd的制备
(1)取6 mmol的LaCl3•6H2O和12 mmol的2-氨基-1,4-苯二甲酸钠盐并分别溶于水。先将LaCl3•6H2O倒入三口烧瓶,在机械搅拌下加入7 mg/mL的Fe3O4乙醇分散液,搅拌一段时间后再加入2-氨基-1,4-苯二甲酸钠盐并不断搅拌。将反应产物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF。
(2)取2.7133g的Fe3O4@La-MOF,760μL的2-吡啶甲醛和100 mL的无水乙醇于三口烧瓶中。室温搅拌24h,得到的产物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff。
(3)取2.7133g的Fe3O4@La-MOF,760μL的2-吡啶甲醛和100 mL的无水乙醇于三口烧瓶中。室温搅拌48h,得到的产物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff。
(4)取2.7133g的Fe3O4@La-MOF,760μL的2-吡啶甲醛和100 mL的无水乙醇于三口烧瓶中。室温搅拌72h,得到的产物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff。
(5)取1.5709g的Fe3O4@La-MOF-Schiff,0.3546g的PdCl2,100 mL的无水乙醇于三口烧瓶中。在机械搅拌下搅拌24h,得到的混合物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff-Pd。
(6)取1.5709g的Fe3O4@La-MOF-Schiff,0.3546g的PdCl2,100 mL的无水乙醇于三口烧瓶中。在机械搅拌下搅拌48h,得到的混合物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff-Pd。
(7)取1.5709g的Fe3O4@La-MOF-Schiff,0.3546g的PdCl2,100 mL的无水乙醇于三口烧瓶中。在机械搅拌下搅拌72h,得到的混合物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff-Pd。
所述的磁性纳米材料负载的金属有机框架-钯复合催化剂Fe3O4@La-MOF-Schiff-Pd及其制备方法,其步骤(1)所述的La-MOF前驱物包括LaCl3•6H2O和Ln镧系中的一种或几种混合物;步骤(2)、(3)所述的溶剂包括无水乙醇、甲醇中的一种或几种混合物;步骤(3)所述的Fe3O4@La-MOF-Schiff-Pd的前驱物包括PdCl2
实施例2:Fe3O4@La-MOF-Schiff-Pd对Suzuki C-C 偶联反应的催化活性
(1)将得到的Fe3O4@La-MOF-Schiff-Pd用于芳基卤化物和苯硼酸的 Suzuki C-C 偶联反应中验证其催化活性。具体操作方法是将1 mmol芳基卤化物(氯苯、溴苯或碘苯)、1.2mmol 苯硼酸、2mmol碳酸钾和作为催化剂的8mg的Fe3O4@La-MOF-Schiff-Pd加入到圆底烧瓶中,6mL乙醇作反应溶剂,在温度 60 ℃下磁力搅拌 1~6 h,将反应后的溶液用乙酸乙酯萃取,并用无水硫酸钠干燥,再将有机溶剂去除得到最终产物,产率用气相色谱中的内标法测得,产率99%,证明化合物 Fe3O4@La-MOF-Schiff-Pd对Suzuki C-C 偶联反应具有高的催化活性。
(2)将得到的Fe3O4@La-MOF-Schiff-Pd用于芳基卤化物和苯硼酸的 Suzuki C-C偶联反应中验证其催化活性。具体操作方法是将1 mmol芳基卤化物(氯苯、溴苯或碘苯)、1.2 mmol 苯硼酸、2mmol碳酸钾和作为催化剂的8mg的Fe3O4@La-MOF-Schiff-Pd加入到圆底烧瓶中,6mL乙醇作反应溶剂,在温度 70 ℃下磁力搅拌 1~6 h,将反应后的溶液用乙酸乙酯萃取,并用无水硫酸钠干燥,再将有机溶剂去除得到最终产物,产率用气相色谱中的内标法测得,产率99%,证明化合物 Fe3O4@La-MOF-Schiff-Pd对Suzuki C-C 偶联反应具有高的催化活性。
(3)将得到的Fe3O4@La-MOF-Schiff-Pd用于芳基卤化物和苯硼酸的 Suzuki C-C偶联反应中验证其催化活性。具体操作方法是将1 mmol芳基卤化物(氯苯、溴苯或碘苯)、1.2 mmol 苯硼酸、2mmol碳酸钾和作为催化剂的8mg的Fe3O4@La-MOF-Schiff-Pd加入到圆底烧瓶中,6mL乙醇作反应溶剂,在温度 80 ℃下磁力搅拌 1~6 h,将反应后的溶液用乙酸乙酯萃取,并用无水硫酸钠干燥,再将有机溶剂去除得到最终产物,产率用气相色谱中的内标法测得,产率99%,证明化合物 Fe3O4@La-MOF-Schiff-Pd对Suzuki C-C 偶联反应具有高的催化活性。
实施例3:Fe3O4@La-MOF-Schiff-Pd在Suzuki C-C 偶联反应中循环利用的催化活性
在实施例2的Suzuki C-C 偶联反应结束后,按照图6所示方法即外加磁铁吸附将上述反应中的催化剂Fe3O4@La-MOF-Schiff-Pd分离,再次投入到芳基卤化物和苯硼酸的 SuzukiC-C 偶联反应中验证其循环催化活性。具体操作方法是将1 mmol芳基卤化物(氯苯、溴苯或碘苯)、1.2 mmol 苯硼酸、2mmol碳酸钾,以及依据磁性吸附分离出来的Fe3O4@La-MOF-Schiff-Pd加入到圆底烧瓶中,6mL乙醇作反应溶剂,在温度 60~80 ℃下磁力搅拌 1~6h,将反应后的溶液用乙酸乙酯萃取,并用无水硫酸钠干燥,再将有机溶剂去除得到最终产物,产率用气相色谱中的内标法测得,产率大于90%。重复上述循环实验12次,产率均大于90%,证明化合物 Fe3O4@La-MOF-Schiff-Pd 在Suzuki C-C 偶联反应中可以循环利用,并且仍然具有高的催化活性。

Claims (4)

1.纳米负载金属有机框架钯复合催化剂,其特征在于,所述催化剂以高孔隙度La-MOF----[La(abdc)(Habdc)•2H2O]为框架负载Fe3O4磁性纳米材料得到Fe3O4@La-MOF,再以2-吡啶甲醛修饰,形成含有两个N配位点Fe3O4@La-MOF-Schiff,最后与Pd2+配位,得到具有高活性Pd催化位点,同时可以通过外加磁铁吸附进行分离的多相催化剂,并用于催化Suzuki偶联反应,其分子式为:Fe3O4@La-MOF-Schiff-Pd,其结构式为:
2.纳米负载金属有机框架钯复合催化剂制备方法,其特征在于,本方法为一种磁性纳米材料负载的金属有机框架--钯复合催化剂Fe3O4@La-MOF-Schiff-Pd的制备方法,包括以下过程:
(1)Fe3O4@La-MOF的制备
取6 mmol的LaCl3•6H2O和12 mmol的2-氨基-1,4-苯二甲酸钠盐分别溶于水,先将LaCl3•6H2O溶液倒入三口烧瓶,在机械搅拌下加入7 mg/mL的Fe3O4乙醇分散液,搅拌后再加入2-氨基-1,4-苯二甲酸钠盐并不断搅拌,将反应混合物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF;其分子式为:Fe3O4@La-MOF,其结构式为:
(2)Fe3O4@La-MOF-Schiff的制备
取2.7133g的Fe3O4@La-MOF,8 mmol的2-吡啶甲醛和100 mL的无水乙醇于三口烧瓶中;室温搅拌48~72 h,得到的产物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff;
其分子式为:Fe3O4@La-MOF-Schiff,其结构式为:
(3)Fe3O4@La-MOF-Schiff-Pd的合成
取1.5709g的Fe3O4@La-MOF-Schiff,0.3546g的PdCl2,100 mL的无水乙醇于三口烧瓶中;在机械搅拌下搅拌48~72h,得到的混合物用蒸馏水和无水乙醇洗涤并烘干即得到Fe3O4@La-MOF-Schiff-Pd;其分子式为:Fe3O4@La-MOF-Schiff-Pd,其结构式为:
3.纳米负载金属有机框架钯复合催化剂应用,其特征在于,即磁性纳米材料负载的金属有机框架--钯复合催化剂 Fe3O4@La-MOF-Schiff-Pd的催化剂应用;磁性纳材料负载的金属有机框架--钯复合催化剂Fe3O4@La-MOF-Schiff-Pd在Suzuki偶联反应具有催化活性,其芳基卤化物1 mmol 氯苯、溴苯或碘苯、1.2 mmol苯硼酸、2mmol碳酸钾和作为催化剂的 8mg的Fe3O4@La-MOF-Schiff-Pd加入到圆底烧瓶中,6mL无水乙醇作反应溶剂,在温度 60~80℃下磁力搅拌 1~6 h,将反应后的溶液用乙酸乙酯萃取,并用无水硫酸钠干燥,再将有机溶剂去除得到最终产物,产率用气相色谱中的内标法测得,产率99%,证明化合物 Fe3O4@La-MOF-Schiff-Pd对Suzuki C-C 偶联反应具有高的催化活性。
4.根据权利要求3所述的纳米负载金属有机框架钯复合催化剂应用,其特征在于所述磁性纳米材料负载的金属有机框架-钯复合催化剂 Fe3O4@La-MOF-Schiff-Pd,有效催化Suzuki偶联反应后,通过外加磁铁吸附进行分离,循环利用催化 Suzuki偶联反应12次。
CN201610894687.7A 2016-10-14 2016-10-14 纳米负载金属有机框架钯复合催化剂及制备方法与应用 Expired - Fee Related CN106563507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610894687.7A CN106563507B (zh) 2016-10-14 2016-10-14 纳米负载金属有机框架钯复合催化剂及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610894687.7A CN106563507B (zh) 2016-10-14 2016-10-14 纳米负载金属有机框架钯复合催化剂及制备方法与应用

Publications (2)

Publication Number Publication Date
CN106563507A true CN106563507A (zh) 2017-04-19
CN106563507B CN106563507B (zh) 2019-02-26

Family

ID=58532032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610894687.7A Expired - Fee Related CN106563507B (zh) 2016-10-14 2016-10-14 纳米负载金属有机框架钯复合催化剂及制备方法与应用

Country Status (1)

Country Link
CN (1) CN106563507B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107866204A (zh) * 2017-12-25 2018-04-03 宁波科邦华诚技术转移服务有限公司 一种地聚合物重金属吸附剂的制备方法
CN108636359A (zh) * 2018-05-16 2018-10-12 湘潭大学 一种苯硼酸功能化的磁性金属有机骨架微球及其制备方法和用途
CN109589936A (zh) * 2019-01-04 2019-04-09 华东理工大学 一种高效磁性除磷剂及其制备方法
CN110152739A (zh) * 2019-06-06 2019-08-23 山东师范大学 原位负载钯纳米颗粒的多孔有机复合物、合成方法及应用
CN110560170A (zh) * 2019-08-28 2019-12-13 盐城工学院 一种新型Pd@MOF材料及其制备方法和其在联苯制备中的应用
CN112221540A (zh) * 2020-09-01 2021-01-15 沈阳化工大学 Pd2+负载的金属有机框架复合催化剂及制备方法与应用
CN112250876A (zh) * 2020-09-24 2021-01-22 温州大学 一种二维irpy型mof材料及功能化m@irpa-mof负载型催化剂的制备方法
CN113694968A (zh) * 2021-09-27 2021-11-26 常州大学 钯负载磁性UiO-66三元复合催化材料及其制备方法和应用
CN114308130A (zh) * 2021-12-29 2022-04-12 华南理工大学 一种钯纳米颗粒-mof复合材料及其制备方法和应用
CN114367310A (zh) * 2021-12-22 2022-04-19 安徽省化工研究院 复合纳米催化剂的合成方法
KR20230032511A (ko) * 2021-08-31 2023-03-07 울산과학기술원 금속-유기물 골격체, 이의 제조방법 및 이를 이용한 유기화학 반응 촉매

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289749A (zh) * 2015-11-16 2016-02-03 山东师范大学 无定形Fe2O3@Cd-MOF和磁性Fe3O4@Cd-MOF纳米复合材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289749A (zh) * 2015-11-16 2016-02-03 山东师范大学 无定形Fe2O3@Cd-MOF和磁性Fe3O4@Cd-MOF纳米复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. R. SARDARIAN ET AL.: "Fe3O4@SiO2/Schiff base/Pd complex as an efficient", 《RSC ADVANCES》 *
YUN LUO ET AL.: "A family of lanthanide-containing molecular open frameworks with high porosity:[Ln(abdc)(Habdc), nH2O]∞ with Ln = La-Eu and 8≤n≤11", 《INORGANICA CHIMICA ACTA》 *
张强等: "磁性纳米粒子负载亚胺吡啶钯催化Suzuki反应研究", 《有机化学》 *
张艳梅等: "基于磁性金属有机骨架材料的多功能催化剂Fe3O4@IRMOF-3/Pd的制备及催化性能", 《高等学校化学学报》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107866204A (zh) * 2017-12-25 2018-04-03 宁波科邦华诚技术转移服务有限公司 一种地聚合物重金属吸附剂的制备方法
CN108636359A (zh) * 2018-05-16 2018-10-12 湘潭大学 一种苯硼酸功能化的磁性金属有机骨架微球及其制备方法和用途
CN109589936A (zh) * 2019-01-04 2019-04-09 华东理工大学 一种高效磁性除磷剂及其制备方法
CN110152739B (zh) * 2019-06-06 2022-04-15 山东师范大学 原位负载钯纳米颗粒的多孔有机复合物、合成方法及应用
CN110152739A (zh) * 2019-06-06 2019-08-23 山东师范大学 原位负载钯纳米颗粒的多孔有机复合物、合成方法及应用
CN110560170A (zh) * 2019-08-28 2019-12-13 盐城工学院 一种新型Pd@MOF材料及其制备方法和其在联苯制备中的应用
CN112221540A (zh) * 2020-09-01 2021-01-15 沈阳化工大学 Pd2+负载的金属有机框架复合催化剂及制备方法与应用
CN112221540B (zh) * 2020-09-01 2023-07-18 沈阳化工大学 Pd2+负载的金属有机框架复合催化剂及制备方法与应用
CN112250876A (zh) * 2020-09-24 2021-01-22 温州大学 一种二维irpy型mof材料及功能化m@irpa-mof负载型催化剂的制备方法
KR20230032511A (ko) * 2021-08-31 2023-03-07 울산과학기술원 금속-유기물 골격체, 이의 제조방법 및 이를 이용한 유기화학 반응 촉매
KR102618530B1 (ko) 2021-08-31 2023-12-27 울산과학기술원 금속-유기물 골격체, 이의 제조방법 및 이를 이용한 유기화학 반응 촉매
CN113694968A (zh) * 2021-09-27 2021-11-26 常州大学 钯负载磁性UiO-66三元复合催化材料及其制备方法和应用
CN113694968B (zh) * 2021-09-27 2023-09-26 常州大学 钯负载磁性UiO-66三元复合催化材料及其制备方法和应用
CN114367310A (zh) * 2021-12-22 2022-04-19 安徽省化工研究院 复合纳米催化剂的合成方法
CN114308130B (zh) * 2021-12-29 2023-02-14 华南理工大学 一种钯纳米颗粒-mof复合材料及其制备方法和应用
CN114308130A (zh) * 2021-12-29 2022-04-12 华南理工大学 一种钯纳米颗粒-mof复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106563507B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
CN106563507A (zh) 纳米负载金属有机框架钯复合催化剂及制备方法与应用
Mandal et al. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions
Shang et al. Graphene oxide supported N-heterocyclic carbene-palladium as a novel catalyst for the Suzuki–Miyaura reaction
Yang et al. Pd/PdO nanoparticles supported on carbon nanotubes: A highly effective catalyst for promoting Suzuki reaction in water
Firouzabadi et al. Solvent-free Mizoroki–Heck reaction catalyzed by palladium nano-particles deposited on gelatin as the reductant, ligand and the non-toxic and degradable natural product support
Dong et al. N-Methylimidazole functionalized carboxymethycellulose-supported Pd catalyst and its applications in Suzuki cross-coupling reaction
Firouzabadi et al. Gelatin as a bioorganic reductant, ligand and support for palladium nanoparticles. Application as a catalyst for ligand-and amine-free Sonogashira–Hagihara reaction
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
Feng et al. Reduced graphene oxide-supported Cu nanoparticles for the selective oxidation of benzyl alcohol to aldehyde with molecular oxygen
Ma'mani et al. Palladium catalyst supported on N-aminoguanidine functionalized magnetic graphene oxide as a robust water-tolerant and versatile nanocatalyst
Zhao et al. Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis
CN105944709B (zh) 一种三维石墨烯-纳米二氧化钛复合光催化剂及其制备方法
Rao et al. Influence of pendent alkyl chains on Heck and Sonogashira C–C coupling catalyzed with palladium (II) complexes of selenated Schiff bases having liquid crystalline properties
Xia et al. Metal-organic framework-based nanostructured catalysts: Applications in efficient organic transformations
Long et al. Distinctive ligand effects of functionalized magnetic microparticles immobilizing palladium acetate as heterogeneous coordination catalysts for selective oxidation of styrene to acetophenone
Karimi et al. Synergistic catalysis within core-shell Fe3O4@ SiO2 functionalized with triethylene glycol (TEG)-imidazolium ionic liquid and tetramethylpiperidine N-oxyl (TEMPO) boosting selective aerobic oxidation of alcohols
Pei et al. Highly dispersed Pd clusters anchored on nanoporous cellulose microspheres as a highly efficient catalyst for the Suzuki coupling reaction
CN104248950A (zh) 一种钯/碳纳米管催化剂及制备和应用
Dong et al. Magnetic nanoparticles supported N-heterocyclic palladium complex: Synthesis and catalytic evaluations in Suzuki cross-coupling reaction
Bankar et al. Facile synthesis of nanostructured Ni-Co/ZnO material: An efficient and inexpensive catalyst for Heck reactions under ligand-free conditions
Xue et al. Zirconium-based metal-organic framework as an efficiently heterogeneous photocatalyst for oxidation of benzyl halides to aldehydes
Li et al. Metal–Organic Framework Accelerated One-Step Capture and Reduction of Palladium to Catalytically Active Nanoparticles
Wang et al. Pd NPs encapsulated by COF in nitrogen-doped macroporous chitosan carbon microspheres act as an efficient and recyclable multifunctional catalyst
Kiani et al. Pd nanoparticles catalyst supported on TMU-16-NH2 metal-organic framework for Sonogashira cross-coupling reaction
Zhang et al. Microwave-assisted facile synthesis of palladium nanoparticles in HEPES solution and their size-dependent catalytic activities to Suzuki reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190226

Termination date: 20211014