CN106553531A - Power-driven system and the vehicle with which - Google Patents

Power-driven system and the vehicle with which Download PDF

Info

Publication number
CN106553531A
CN106553531A CN201510624475.2A CN201510624475A CN106553531A CN 106553531 A CN106553531 A CN 106553531A CN 201510624475 A CN201510624475 A CN 201510624475A CN 106553531 A CN106553531 A CN 106553531A
Authority
CN
China
Prior art keywords
gear
power
wheel
differential mechanism
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510624475.2A
Other languages
Chinese (zh)
Other versions
CN106553531B (en
Inventor
凌和平
翟震
郑峰
徐友彬
罗永孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201510624475.2A priority Critical patent/CN106553531B/en
Publication of CN106553531A publication Critical patent/CN106553531A/en
Application granted granted Critical
Publication of CN106553531B publication Critical patent/CN106553531B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Retarders (AREA)

Abstract

The invention discloses a kind of power-driven system and vehicle.The power-driven system includes:Differential mechanism, differential mechanism include:First and second planet carriers, the first and second planetary gears, the first and second gear rings, first and second planetary gears are separately positioned on the first and second planet carriers, first and second planetary gears are engaged with the first and second gear rings respectively, and second planetary gear also engage with the first row star-wheel, the revolution-radius of the first and second planetary gears are different;Variator and electromotor, variator are connected with electromotor and differential mechanism respectively, and the power of generation can be exported after variator to the power intake of differential mechanism by electromotor;First and second output sections, the first and second output sections are linked with the first and second gear rings respectively;First and second motor generator, the first and second motor generator are linked with the first and second output sections respectively.The differential mechanism of the power-driven system of the present invention realizes differential function using planet differential principle, compact conformation, simple.

Description

Power-driven system and the vehicle with which
Technical field
The present invention relates to a kind of power-driven system for vehicle, the vehicle with the power-driven system.
Background technology
In a kind of differential art known for inventor, differential mechanism includes that the driven gear of main reducing gear is (main Subtract driven gear), planetary gear, centre wheel etc., planetary gear is arranged on driven tooth by square shaft, axle sleeve On the subplate of wheel, and engage with centre wheel, realize which rotates and locomotive function with secondary and plane moving sets are rotated, Centre wheel passes through angular alignment pin and cylindrical pair or spline is connected with left and right two-semiaxle, reaches the mesh of output torque 's.This differential mechanism eliminates the components such as original differential mechanism or so housing, planetary gear shaft, uses square shaft instead Directly planetary gear is arranged on the subplate of driven gear of main reducing gear with axle sleeve, effectively reduces differential The number of parts of device, simplifies structure, alleviates weight.
But, this differential mechanism make use of symmetrical expression bevel gear structure to realize differential between wheel, just for tradition Symmetrical expression bevel differential part innovation, can not really solve this differential design axial dimension Excessive, housing and bevel gear quality be big and the shortcoming of reliability relative deviation.
The content of the invention
It is contemplated that at least solving one of above-mentioned technical problem of the prior art to a certain extent.
For this purpose, the present invention proposes a kind of power-driven system, the differential mechanism of the power-driven system is using row Star differential principle realizes differential function, compact conformation, simple.
The invention allows for a kind of vehicle with the power drive system.
Power-driven system according to embodiments of the present invention, including:Differential mechanism, the differential mechanism include:The One planet carrier, the first row star-wheel and the first gear ring, the first row star-wheel are arranged in the first row carrier, The first row star-wheel is engaged with first gear ring;Second planet carrier, the second planetary gear and the second gear ring, Second planetary gear is arranged on second planet carrier, and second planetary gear is nibbled with second gear ring Close and second planetary gear is also engaged with the first row star-wheel;Wherein, first gear ring and described Two gear rings constitute two clutch ends of the differential mechanism, the first row carrier and second planet carrier Constitute the power intake of the differential mechanism, and the revolution half of the first row star-wheel and second planetary gear Footpath is different;Variator and electromotor, the variator are connected with the electromotor and the differential mechanism respectively, And the power of generation can be exported defeated to the power of the differential mechanism after the variator by the electromotor Enter end;And first output section and the second output section, first output section linked with first gear ring, Link with second gear ring second output section;First motor generator and the second motor generator, institute State the first motor generator to link with first output section, second motor generator is defeated with described second Go out portion's linkage.
The differential mechanism of power-driven system according to embodiments of the present invention realizes differential using planet differential principle Function is compact conformation, simple.
In addition, power-driven system according to embodiments of the present invention can also have following additional technical feature:
Some embodiments of the invention, the variator include power output shaft and multiple input shafts;
One of input shaft in the plurality of input shaft be arranged to optionally with the power output Axle links, and the power output shaft is arranged to also link with the power intake of the differential mechanism.
Some embodiments of the invention, the power output shaft overhead set are provided with empty set driven gear, The empty set driven gear is linked with one of input shaft, and the power-driven system also includes synchronous Device, the lock unit are arranged for the synchronous power output shaft and the empty set driven gear.
Some embodiments of the invention, power output shaft overhead set be provided with empty set driven gear with And fixed driven gear is fixedly installed, the power-driven system also includes lock unit:The lock unit sets It is set to for the synchronous power output shaft and the empty set driven gear;
It is fixedly installed fixed driving gear on each described input shaft, the empty set driven gear and described solid Determine driven gear to engage with corresponding fixed driving gear respectively.
Some embodiments of the invention, are fixedly installed multiple fixed driving tooths on each described input shaft Wheel, power output shaft overhead set are provided with multiple empty set driven gears, the empty set driven gear with it is right The fixed driving gear engagement answered, each described empty set driven gear can pass through the same of corresponding gear lock unit Walk and be bonded to the power output shaft.
Some embodiments of the invention, the variator include power output shaft and multiple input shafts;
Each described input shaft is arranged to link with the power output shaft, and the power output shaft is arranged to also Link with the power intake of the differential mechanism.
Some embodiments of the invention, are fixedly installed multiple fixed driven tooths on the power output shaft Wheel, is fixedly installed fixed driving gear on each described input shaft, the fixed driven gear with it is corresponding The fixed driving gear engagement.
Some embodiments of the invention, the variator include the first input shaft and the second input shaft, institute State the second input shaft to be set on first input shaft, the power-driven system also includes electromotor, institute State and be connected by double clutch between electromotor and first input shaft, second input shaft.
Some embodiments of the invention, the power output shaft and the first row carrier, described second Planet carrier is coaxially fixed.
Some embodiments of the invention, first output section are left half axle gear, second output Portion is right axle shaft gear;And
The first external tooth is provided with first gear ring, the second external tooth on second gear ring, is provided with, it is described First external tooth is engaged with the left half axle gear, and second external tooth is engaged with the right axle shaft gear.
Some embodiments of the invention, the variator include:
Multiple input shafts and multiple power output shafts, each described power output shaft is arranged to can be by from described The power intake of the power output of electromotor to the differential mechanism.
Some embodiments of the invention, the variator also include:
Reverse output gear and reverse idler gear, the reverse output gear are defeated with the power of the differential mechanism Enter end linkage, the reverse idler gear is engaged with the reverse output gear, and the reverse idler gear is empty It is enclosed within the one of power output shaft in the plurality of power output shaft and reverse gear synchronizer can be passed through Synchronization and be bonded to one of power output shaft.
Some embodiments of the invention, it is defeated that one of power output shaft overhead set is provided with power Shaft empty set output gear, the power output shaft empty set output gear share institute with the reverse idler gear Reverse gear synchronizer is stated, power output shaft is fixedly installed on remaining each power output shaft and is fixed output gear Wheel, the power output shaft fix output gear and the power output shaft empty set output gear respectively with it is described The power intake linkage of differential mechanism.
Some embodiments of the invention, power-driven system also include:
Jackshaft, the jackshaft are coaxially fixed with the first row carrier and second planet carrier, described Countershaft-gear is fixedly installed on jackshaft, the countershaft-gear is fixed with the power output shaft respectively The engagement of output gear, the power output shaft empty set output gear and the reverse output gear.
Some embodiments of the invention, power-driven system also include:3rd motor generator, it is described 3rd motor generator is connected with the variator, and the power of generation can be passed through by the 3rd motor generator The variator is exported to the power intake of the differential mechanism.
Some embodiments of the invention, first gear ring towards second gear ring end face with it is described Second gear ring towards first gear ring end in the same plane.
Some embodiments of the invention, each in first gear ring and second gear ring are wrapped Include:
Body panels portion and be arranged on the body panels portion periphery edge annular side wall portion, the annular side Multiple teeth are provided with the internal face of wall portion, are limited between the body panels portion and the annular side wall portion The cavity of cavity, the cavity of first gear ring and second gear ring toward each other to constitute installing space, The first row carrier and the first row star-wheel and second planet carrier and second planetary gear receipts It is contained in the installing space.
Some embodiments of the invention, the first row star-wheel and second planetary gear are in the axial direction Thickness is different.
Some embodiments of the invention, the gear teeth of relatively thin planetary gear are complete with the gear teeth of thicker planetary gear It is complete to engage, and the gear teeth of thicker planetary gear extend beyond the gear teeth of relatively thin planetary gear in the axial direction to side Or the gear teeth of thicker planetary gear extend beyond the gear teeth of relatively thin planetary gear in the axial direction respectively to both sides.
Some embodiments of the invention, the revolution-radius of thicker planetary gear are less than relatively thin planetary gear Revolution-radius.
Some embodiments of the invention, the corresponding gear ring of thicker planetary gear be little gear ring, relatively thin row The corresponding gear ring of star-wheel is bull gear, the external diameter of the external diameter of the bull gear more than the little gear ring.
Some embodiments of the invention, the thickness of the first row star-wheel is more than second planetary gear Thickness, first gear ring be little gear ring, second gear ring be bull gear, the public affairs of the first row star-wheel Turn revolution-radius of the radius less than second planetary gear.
Some embodiments of the invention, the revolution axis of the first row star-wheel and second planetary gear Revolution dead in line.
Some embodiments of the invention, the first row star-wheel and the second planetary gear are roller gear.
Some embodiments of the invention, each described the first row star-wheel are configured with a first row star-wheel Axle, two ends of the first planet wheel shaft respectively with the first row carrier and the second planet carrier phase Even, each described second planetary gear is configured with second planet wheel spindle, two of second planet wheel spindle End is connected with the first row carrier and second planet carrier respectively.
Some embodiments of the invention, the variator include the first input shaft, the second input shaft and Three input shafts, the 3rd input shaft are set on second input shaft, and second input shaft is set in On first input shaft, the electromotor and first input shaft, second input shaft and described It is connected by three clutches between three input shafts.
Some embodiments of the invention, first gear ring and the near front wheel link, second gear ring with Off-front wheel links;
The power-driven system also includes:
4th motor generator and the 5th motor generator, the 4th motor generator are linked with left rear wheel, 5th motor generator is linked with off hind wheel;And
Anti-skidding lock unit, after the anti-skidding lock unit is arranged to the optionally synchronous left rear wheel and the right side Wheel, so that the left rear wheel and the off hind wheel synchronous rotary.
Vehicle according to embodiments of the present invention, including the power-driven system of above-described embodiment.
Description of the drawings
Fig. 1 is the explosive view at a visual angle of differential mechanism according to embodiments of the present invention;
Fig. 2 is the explosive view at another visual angle of differential mechanism according to embodiments of the present invention;
Fig. 3 is the plan view sketch of differential mechanism according to embodiments of the present invention;
Fig. 4 is the axonometric chart after the assembling of differential mechanism according to embodiments of the present invention;
Fig. 5 is the position view of the first gear ring and the second gear ring in one of embodiment;
Fig. 6 is the position view of the first gear ring and the second gear ring in another embodiment;
Fig. 7 is the position view of the first gear ring and the second gear ring in another embodiment;
Fig. 8 is the partial schematic diagram of differential mechanism according to embodiments of the present invention;
Fig. 9 is the axonometric chart of the first row star-wheel and the second planetary gear;
Figure 10 is the theory of engagement sketch of the first row star-wheel and the second planetary gear;
Figure 11 is the axonometric chart of the first gear ring according to embodiments of the present invention or the second gear ring;
Figure 12 is the axonometric chart of the first gear ring in accordance with another embodiment of the present invention or the second gear ring;
Figure 13 is the schematic diagram of power-driven system according to an embodiment of the invention;
Figure 14 is the schematic diagram of power-driven system in accordance with another embodiment of the present invention;
Figure 15 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 16 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 17 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 18 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 19 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 20 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 21 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 22 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 23 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 24 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 25 is the schematic diagram of the power-driven system according to further embodiment of the present invention;
Figure 26 is the schematic diagram of vehicle according to embodiments of the present invention.
Specific embodiment
Embodiments of the invention are described below in detail, the example of the embodiment is shown in the drawings, wherein certainly Begin to same or similar label eventually to represent same or similar element or the unit with same or like function Part.It is exemplary below with reference to the embodiment of Description of Drawings, it is intended to for explaining the present invention, and not It is understood that as limitation of the present invention.
In describing the invention, it is to be understood that term " " center ", " longitudinal direction ", " horizontal ", " length Degree ", " width ", " thickness ", " on ", D score, "front", "rear", "left", "right", " vertical ", The orientation or position of the instruction such as " level ", " top ", " bottom " " interior ", " outward ", " clockwise ", " counterclockwise " The relation of putting is, based on orientation shown in the drawings or position relationship, to be for only for ease of the description present invention and simplification is retouched State, rather than indicate or imply that the device or element of indication must be with specific orientation, with specific orientation Construction and operation, therefore be not considered as limiting the invention.
Additionally, term " first ", " second " are only used for describing purpose, and it is not intended that indicating or implying Relative importance or the implicit quantity for indicating indicated technical characteristic.Thus, define " first ", The feature of " second " can be expressed or implicitly include one or more this feature.The present invention's In description, " multiple " are meant that at least two, such as two, three etc., unless otherwise clearly concrete Restriction.
In the present invention, unless otherwise clearly defined and limited, term " installation ", " being connected ", " connection ", Terms such as " fixations " should be interpreted broadly, for example, it may be fixedly connected, or be detachably connected, Or it is integral;Can be mechanically connected, or electrically connect or can communicate with one another;It can be direct phase Even, it is also possible to be indirectly connected to by intermediary, can be two element internals connection or two elements Interaction relationship.For the ordinary skill in the art, can understand above-mentioned as the case may be Term concrete meaning in the present invention.
In the present invention, unless otherwise clearly defined and limited, fisrt feature second feature it " on " Or D score can include the first and second feature directly contacts, it is also possible to it is special including first and second Levying is not directly contact but by the other characterisation contact between them.And, fisrt feature exists Second feature " on ", " top " and " above " including fisrt feature directly over second feature And oblique upper, or fisrt feature level height is merely representative of higher than second feature.Fisrt feature is second Feature " under ", " lower section " and " below " including fisrt feature immediately below second feature and tiltedly Lower section, or fisrt feature level height is merely representative of less than second feature.
Describe power-driven system 1000 according to embodiments of the present invention below with reference to accompanying drawings in detail, should Power-driven system 1000 is can be applicable in vehicle.
As shown in figure 13, power-driven system 1000 according to some embodiments of the invention mainly includes Differential mechanism 100, variator 104, electromotor 301, the first motor generator 501 and second electronic Motor 502.Wherein variator 104 is connected with electromotor 301 and differential mechanism 100 respectively, and is sent out The power of generation can be input into by motivation 301 by the power exported after variator 104 to differential mechanism 100 End (such as the first row carrier 11 and the second planet carrier 21), that is to say, that variator 104 can Power from electromotor 301 is exported after chronotropic action to the power intake of differential mechanism 100 (such as the first row carrier 11 and the second planet carrier 21).First motor generator 501, the first gear ring 13 are linked with the first output section 601, and the second motor generator 502, the second gear ring 23 are defeated with second Go out portion 602 to link.
In a further embodiment, as shown in Figure 14-Figure 25, power-driven system 1000 also includes the Three motor generator 401, the 3rd motor generator 401 are connected with variator 104, and the 3rd electronic The power that electromotor 401 is produced can be exported after passing through variator 104 to the power of differential mechanism 100 and is input into End (such as the first row carrier 11 and the second planet carrier 21), that is to say, that in the embodiment, becomes Power from electromotor 301 and/or the 3rd motor generator 401 can be passed through speed change by fast device 104 Export after effect to the power intake of differential mechanism 100.For the 3rd motor generator 401 and speed change The connected mode of device 104, is discussed in detail below in conjunction with specific embodiments.
The concrete structure of differential mechanism 100 is described in detail according to diagram embodiment first below, it is right To describe after differential mechanism 100 being discussed in detail and constructs in other constructions of power-driven system 1000.
The concrete structure of differential mechanism 100 is described in detail according to diagram embodiment first below, it is right To describe after differential mechanism 100 being discussed in detail and constructs in other constructions of power-driven system 1000.
Differential mechanism 100 according to embodiments of the present invention is described in detail with reference to Fig. 1-Figure 12, The differential mechanism 100 can be used for differential or shaft space difference speed between wheel, as a example by differential between wheel, the difference Fast device 100 can be such that driving wheels travel in turn inside diameter or when uneven road surface is travelled with difference Angular velocity roll, to ensure two side drive wheel and ground catch cropping PURE ROLLING.
As depicted in figs. 1 and 2, differential mechanism 100 according to some embodiments of the invention can include the first row Carrier 11, the first row star-wheel 12 and the first gear ring 13 and the second planet carrier 21, the second planetary gear 22 With the second gear ring 23.
With reference to the embodiment of Fig. 1 and Fig. 2, the first row carrier 11 and the second planet carrier 21 it is so structured that Circular platy structure, so can reduce the axial dimension of differential mechanism 100 to a certain extent.At some In embodiment, the first row carrier 11 and the second planet carrier 21 can be split-type structural, due to independent widget Molding is relatively easy, therefore the first row carrier 11 and the second planet carrier 21 are individually processed and can be simplified Manufacturing process, raising machining accuracy.
Such as Fig. 3 is simultaneously combined shown in Fig. 1, Fig. 2 and Fig. 9, and the first row star-wheel 12 is arranged on the first row carrier On 11, for example, each the first row star-wheel 12 is configured with a first planet wheel shaft 14 (shown in Fig. 9), Two ends of first planet wheel shaft 14 are rotatably supported in the first row carrier 11 and the second planet carrier respectively On 21, two ends of such as first planet wheel shaft 14 can be rotatably supported in first planet by bearing In the axis hole corresponded to each other on frame 11 and the second planet carrier 21, now the first row star-wheel 12 is securable to right On the first planet wheel shaft 14 answered.Certainly, two ends of first planet wheel shaft 14 and the first row carrier 11 can also be fixedly connected with the second planet carrier 22, for example the two of first planet wheel shaft 14 end It is welded and fixed with the axis hole that corresponds to each other in the first row carrier 11 and the second planet carrier 22 respectively, now first Planetary gear 12 is rotatably sleeved on corresponding first planet wheel shaft 14, and for example the first row star-wheel 12 can It is rotatably mounted around by bearing on first planet wheel shaft 14.Thus, by first planet wheel shaft 14 Can realize connecting the purpose of the first row carrier 11 and the second planet carrier 21, so that the first row carrier 11 and second planet carrier 21 keep synchronized, in the same direction motion (i.e. the first row carrier 11 and the second planet carrier 21 Linkage).And this connected mode is adopted, the first row carrier 11 and the second planet carrier 21 can be well First planet wheel shaft 14 is carried out supporting/fixing, prevents first planet wheel shaft 14 from departing from single planet carrier Connect and cause differential mechanism 100 to fail.
The first row star-wheel 12 is engaged with the first gear ring 13, concretely internal messing form, i.e. the first row star-wheel Simultaneously engage with the tooth on the first gear ring 13 12 inner sides for being located at the first gear ring 13.The first row star-wheel 12 is preferred For multiple, and circumferentially equidistantly distributed on the inside of the first gear ring 13, for example, as a kind of preferred Embodiment, the first row star-wheel 12 can be between three, and two the first row star-wheels 12 of arbitrary neighborhood Interval angles are 120 °.
Similarly, such as Fig. 3 with reference to shown in Fig. 1, Fig. 2 and Fig. 9, the second planetary gear 22 are arranged on the On two planet carriers 21, for example, each second planetary gear 22 is configured with second planet wheel spindle 24, such as Two ends of the second planet wheel spindle 24 can be rotatably supported in the first row carrier 11 and by bearing In the axis hole corresponded to each other on two planet carriers 21, now the second planetary gear 22 is securable to corresponding second row On spider gear shaft 24.Certainly, two ends of the second planet wheel spindle 24 and the first row carrier 11 and the second row Carrier 22 can also be fixedly connected, two ends of such as the second planet wheel spindle 24 respectively with the first row The axis hole corresponded to each other in carrier 11 and the second planet carrier 22 is welded and fixed, and now the second planetary gear 22 can Rotationally it is set on corresponding second planet wheel spindle 24, such as the second planetary gear 22 can by bearing Rotationally it is sleeved on the second planet wheel spindle 24.Thus, connection can be realized by the second planet wheel spindle 24 The purpose of the first row carrier 11 and the second planet carrier 21, so that the first row carrier 11 and the second planet Frame 21 keeps synchronized, in the same direction motion.And adopt this connected mode, the first row carrier 11 and the second row Carrier 21 can carry out supporting/fixing to the second planet wheel spindle 24 well, prevent the second planet wheel spindle 24 It is disconnected with single planet carrier and causes differential mechanism 100 to fail.
Additionally, in other embodiments of the present invention, in order to keep the first row carrier 11 and the second planet Frame 21 can be moved at the same speed, in the same direction, it is also possible to by intermediate member by the first row carrier 11 and the second planet Frame 21 is directly fixedly connected, that is to say, that the first row carrier 11 and the second planet carrier in above example 21 synchronized, in the same direction motion can be realizing by first planet wheel shaft 14 and the second planet wheel spindle 24 , and the embodiment directly can realize the first row carrier 11 and the second planet carrier by arranging intermediate member 21 synchronized, in the same direction motion, such as intermediate member may be located at the first row carrier 11 and the second planet carrier It is welded and fixed between 21 and respectively with the first row carrier 11 and the second planet carrier 21.
Second planetary gear 22 is engaged with the second gear ring 23, concretely internal messing form, i.e. the second planetary gear Simultaneously engage with the tooth on the second gear ring 23 22 inner sides for being located at the second gear ring 23.Second planetary gear 22 is preferred For multiple, and circumferentially equidistantly distributed on the inside of the second gear ring 23, for example, as a kind of preferred Embodiment, the second planetary gear 22 can be between three, and two the second planetary gears 22 of arbitrary neighborhood Interval angles are 120 °.
, wherein it is desired to explanation, Fig. 3 is the plan view of the differential mechanism 100 according to the embodiment of the present invention Sketch, which schematically illustrates meshing relation between the first row star-wheel 12 and the second planetary gear 22 with And the meshing relation of the first row star-wheel 12 and the first gear ring 13, the second planetary gear 22 and the second gear ring 23, As Fig. 3 is plane graph, and also show above-mentioned three kinds of meshing relations, therefore the relative position of each part The relation of putting is only illustrative, and is not offered as or implies the practical spatial arrangement position of each part.
It is in multiple embodiments in the first row star-wheel 12 and the second planetary gear 22, it is preferable that Duo Ge One planetary gear 12 and multiple second planetary gears 22 are respectively correspondingly engaged.For example, as shown in Figure 1, Figure 2 and figure Shown in 8, the first row star-wheel 12 and the second planetary gear 22 are three, then first the first row star-wheel 12 Can engage with corresponding first the second planetary gear 22, second the first row star-wheel 12 can be with corresponding second Individual second planetary gear 22 is engaged, and the 3rd the first row star-wheel 12 can be with corresponding 3rd the second planetary gear , so there is multigroup the first row star-wheel 12 being engaged with each other and the second planetary gear 22, in differential mechanism in 22 engagements During 100 transmission power, the first row star-wheel 12 and second planetary gear 22 of the power in multigroup engagement that corresponds to each other Between transmission more will stablize, it is reliable.
Additionally, another multiple embodiments are in the first row star-wheel 12 and the second planetary gear 22, it is multiple 22 circumferentially alternating arrangement of the first row star-wheel 12 and multiple second planetary gears, and the first row of arbitrary neighborhood Star-wheel 12 and the second planetary gear 22 are engaged.That is, in this embodiment, multiple the first row star-wheels 12 and multiple second planetary gears 22 it is circumferentially alternating arrangement and form annular, each the first row star-wheel 12 two the second planetary gears 22 being all adjacent are engaged, similarly, each second planetary gear 22 Two the first row star-wheels 12 being adjacent are engaged.
Wherein, with reference to the embodiment of Fig. 3, the revolution axes O of the first row star-wheel 12 and the second planetary gear 22 Revolution axes O overlap.
Especially, as shown in Fig. 1-Fig. 3, Fig. 8-Figure 10, the first row star-wheel 12 and the second planetary gear 22 Engagement coordinates.In other words, for the first row star-wheel 12, which is not only engaged with the first gear ring 13, together When also engage with the second planetary gear 22, for the second planetary gear 22, its not only with the second gear ring 23 Engagement, while also engaging with the first row star-wheel 12.
As shown in figure 3, the first gear ring 13 and the second gear ring 23 may be constructed two power of differential mechanism 100 Outfan, the first row carrier 11 and the second planet carrier 21 then correspond to the power intake for constituting differential mechanism 100 (for example, now the first row carrier 11 and the second planet carrier 21 can be rigidly connected), it is so outer The power of portion's power source output can be input into from the first row carrier 11 and the second planet carrier 21, through differential mechanism Can export from the first gear ring 13 and the second gear ring 23 respectively after 100 differential action.Now, as optional Embodiment, the first row carrier 11 and the second planet carrier 21 can connect the power such as electromotor, motor Source, the first gear ring 13 and the second gear ring 23 can be connected with corresponding semiaxis by gear transmission structure, semiaxis It is connected with corresponding wheel again, but not limited to this.
Differential between wheel is applied to the differential mechanism 100 below, the first gear ring 13 and the composition of the second gear ring 23 are poor The clutch end of fast device 100, the first row carrier 11 and the second planet carrier 21 constitute the dynamic of differential mechanism 100 The operation principle of differential mechanism 100 is briefly described as a example by power input, wherein now the first gear ring 13 can pass through External tooth is connected with left half axle, and left half axle can be connected with left side wheel, and the second gear ring 23 can be by external tooth and the right side Semiaxis is connected, and right axle shaft can be connected with right side wheels, the power of power source such as electromotor and/or motor output Can be exported after the decelerating effect of main reducing gear to the first row carrier 11 and the second planet carrier 21.If now Vehicle is travelled on smooth road surface and without turning, and rotating speed is identical in theory with right side wheels for left side wheel, this When differential mechanism 100 do not play differential action, 21 synchronized, rotating in same direction of the first row carrier 11 and the second planet carrier, First gear ring 13 and the second gear ring 23 synchronized, rotating in same direction, the first row star-wheel 12 and the second planetary gear 22 Only revolution, not rotation.If now vehicle traveling is travelled on irregular road surface or turn inside diameter, left side car Rotating speed is different in theory with right side wheels for wheel, and the rotating speed of the first gear ring 13 and the second gear ring 23 is also different, i.e., There is speed discrepancy, now also rotation while revolution of the first row star-wheel 12 and the second planetary gear 22, first One caused from the change of team in the first gear ring 13 and the second gear ring 23 of planetary gear 12 and the second planetary gear 22 Speedup, another deceleration, the gear ring of speedup are the speed discrepancy of left and right wheelses with the speed discrepancy of the gear ring of deceleration, So as to realize differential action.
Thus, differential mechanism 100 according to embodiments of the present invention utilizes planet differential principle, in structure and connection Space availability ratio is higher in form, and axial dimension is less, and more advantageous in production and fit on.This The version of sample can not only avoid the dimensional defects that angular wheel is axially and radially gone up, and additionally may be used To better profit from the space that master subtracts driven gear inner hollow, preferably space availability ratio is realized, greatly The arrangement of 100 assembly of differential mechanism and the restriction to weight size are facilitated, while also possessing higher Reliability and more preferably transmission efficiency, be conducive to improving the reliability of power chain and it is excessively curved when power Output fluency, this has more practicality for symmetrical expression bevel differential.
Especially, the first row star-wheel 12 is different from the revolution-radius of the second planetary gear 22, i.e., referring to Fig. 3 institutes Show, the revolution-radius of the first row star-wheel 12 refer to radius of the first row star-wheel 12 around revolution axes O revolution R1, the revolution-radius of the second planetary gear 22 refer to radius of second planetary gear 22 around revolution axes O revolution R2, shown in Figure 3, R1 ≠ R2, such as R2 > R1.That is, the first row star-wheel 12 and the second planetary gear 22 Revolution track diametrically stagger.In the example of the present invention, the revolution half of the first row star-wheel 12 Footpath is relatively small, and the revolution-radius of the second planetary gear 22 are relatively large.
Due to the first row star-wheel 12 it is different with the revolution-radius of the second planetary gear 22, therefore in some embodiments In, the internal diameter size of the internal diameter size of the first gear ring 13 and the second gear ring 23 is also different, revolution-radius The internal diameter size of little planetary gear (such as the first row star-wheel 12) corresponding gear ring is less, i.e. respective radius Relatively small little gear ring (such as the first gear ring 13), the larger planetary gear of revolution-radius (such as the second planet The radial dimension for taking turns 22) corresponding gear ring is larger, i.e. the larger bull gear of respective radius is (such as the second gear ring 23), this causes bull gear 23 and little gear ring 13 diametrically to stagger, it is to avoid the motion such as gear ring and planetary gear Interference is moved between part, so as to effectively reduce the axial gap of the first gear ring 12 and the second gear ring 22, Referring for example to Fig. 3, Fig. 5-Fig. 6, the axial gap is D, by reducing axial gap D, so that The axial dimension for obtaining differential mechanism 100 is less, more compact structure.
Below the construction of the first gear ring 13 and the second gear ring 23 is retouched in conjunction with specific embodiments in detail State.
In some embodiments of the invention, the first gear ring 13 and the second gear ring 23 are symmetrical structure, change speech It, the first gear ring 13 and the second gear ring 23 are symmetrical arranged, and can so increase the versatility of gear ring, reduce Cost.
With reference to Fig. 5 and with reference to shown in Fig. 1 and Fig. 2, end face of first gear ring 13 towards the second gear ring 23 B1 (with reference to Fig. 2) is in together towards the end face B2 (with reference to Fig. 1) of the first gear ring 13 with the second gear ring 23 In one plane B3 (with reference to Fig. 5), in other words, in the embodiment, as shown in figure 5, end face B1, end Face B2 is in plane B3 simultaneously, i.e., overlap with B3, thus the first gear ring 13 and the second gear ring 23 clearance Ds in the axial direction are zero (as shown in Figure 5), can so greatly reduce the axle of differential mechanism 100 To size, the volume that makes differential mechanism 100 is more compact, more compact structure, facilitates whole power drive system Arrangement.
In another embodiment, as shown in fig. 7, radius is relative in the first gear ring 13 and the second gear ring 23 A less gear ring such as little gear ring 13 is at least partially embedded a larger gear ring such as canine tooth of radius size In circle 23, now the first gear ring 13 and the second gear ring 23 clearance D in the axial direction can be understood as bearing, Thus the axial dimension of differential mechanism 100 can equally be reduced, while passing through the first gear ring 13 and the second gear ring 23 can preferably protect the parts in two gear rings.
Optionally, of course, with reference to shown in Fig. 6, the first gear ring 13 and the second gear ring 23 also may be used in the axial direction With the D that staggers and keep at a certain distance away.It is understood that it is single from reduce 100 axial dimension of differential mechanism this For angle, the clearance D of Fig. 5 embodiments is zero and the clearance D of Fig. 7 embodiments is an advantage over Fig. 6 for negative (clearance D of Fig. 6 embodiments is for just) of embodiment.
It should be noted that the clearance D of above-mentioned Fig. 3 (with reference to Fig. 1-Fig. 2, Fig. 5-Fig. 7) refers to The distance between annular side wall portion 162 of the annular side wall portion 162 of one gear ring 13 and the second gear ring 23.Example Such as referring to Fig. 1-Fig. 3, the embodiment of Fig. 5-Fig. 7, the first gear ring 13 and the second gear ring 23 all include master Body flat part 161 and annular side wall portion 162.
And the present invention other embodiments in, such as referring to the embodiment of Figure 11 and Figure 12 in, the first tooth Each in circle 13 and the second gear ring 23 still further comprises annular flange portion 163, annular flange portion 163 Extend from direction of the end of annular side wall portion 162 away from body panels portion 161, in the enforcement of Figure 11 In example, the internal diameter of annular flange portion 163 can be generally equalized with the external diameter of annular side wall portion 162, so annular Flange part 163 is diametrically equivalent to outwardly 162 (i.e. the first gear ring 13 or the second of annular side wall portion The outer peripheral face of gear ring 23).And in the fig. 12 embodiment, 163 external diameter of annular flange portion can be with annular side The external diameter of wall portion 162 is generally equalized, and the internal diameter of annular flange portion 163 can be more than annular side wall portion 162 Internal diameter, that is to say, that the thickness of annular flange portion 163 is more thinner than the thickness of annular side wall portion 162.
However, it is desirable to illustrate, in Fig. 1-Fig. 3, the gear ring structure of Fig. 5-Fig. 7 embodiments, two Clearance D between gear ring refers to the gap between the annular side wall portion 162 of two gear rings.And Figure 11 and Tu Gear ring structure in 12 embodiments, the clearance D between two gear ring refer to the annular flange flange of two gear rings Gap between portion 163.
For the embodiment of the embedded bull gear of little gear ring, such as Fig. 1-Fig. 2 and with reference to shown in Fig. 3, the first tooth Each in circle 13 and the second gear ring 23 includes:Body panels portion 161 and it is arranged on body panels portion The annular side wall portion 162 on 161 periphery edge, body panels portion 161 and annular side wall portion 162 can be one Body formed part.Multiple gear teeth are provided with the internal face of annular side wall portion 162, wherein it is shown in Figure 4, The annular side wall portion 162 of a relatively small gear ring of radius such as the first gear ring 13 (i.e. little gear ring 13) to The annular of a relatively large gear ring such as the second gear ring 23 (i.e. bull gear 23) of radius is embedded in partially In side of sidewall portion 162.
Certainly, for the embodiment of the embedded bull gear of little gear ring, it would however also be possible to employ the tooth in Figure 11-Figure 12 Wheel construction, such as bull gear have annular flange flange using the gear ring structure in Figure 11 or Figure 12, i.e. bull gear Portion 163, and little gear ring can then adopt common gear ring structure (no annular flange portion of Fig. 1-Fig. 3 embodiments 163), now the annular side wall portion 162 of little gear ring can be at least partially embedded the annular flange portion of bull gear It is interior.Or, little gear ring and bull gear can adopt the gear ring structure in Figure 11 and Figure 12, now little tooth The annular flange portion 163 of circle can be at least partially embedded in the annular flange portion of bull gear, but is not limited to This.
Although further, it is to be appreciated that the above-mentioned embodiment for giving the embedded bull gear of several little gear rings, But this is not the one kind to the scope of the present invention limits, those skilled in the art are reading description After the above, the embedding principle of gear ring is fully understood by, above-mentioned little gear ring and/or bull gear can be existed Similar modification is made in structure, this equally falls under the scope of the present invention.
It is shown in Figure 3, limit between body panels portion 161 and annular side wall portion 162 cavity A1, A2 (referring to Fig. 3), specifically, body panels portion 161 and the annular side wall portion 162 of the first gear ring 13 Between limit cavity A1, between the body panels portion 161 of the second gear ring 23 and annular side wall portion 162 limit Cavity A2 is made, the cavity A2 in cavity A1 and the second gear ring 23 in the first gear ring 13 is toward each other To constitute installing space A (referring to Fig. 3), wherein the first row carrier 11 and the first row star-wheel 12 and second Planet carrier 21 and the second planetary gear 22 are accommodated in installing space A, such first gear ring 13 and the second tooth Circle 23 serves as the function of external shell, can protect and be accommodated in planet carrier therein and planetary gear, improves the longevity Life.And coordinate the end face B2 of the end face B1 and the second gear ring 23 of the first gear ring 13 concordant or coordinate chi The embodiment of at least partially embedded larger-size bull gear of very little less little gear ring 13 23, can cause Installing space A is comparatively closed, and outside debris are not easily accessible in installing space A and affect moving component, Ensure that the steady operation of differential mechanism 100.
Below the meshing relation of first planet wheel 12 and the second planetary gear 22 is carried out in conjunction with specific embodiments in detail It is thin to describe.
In an embodiment of the present invention, the first row star-wheel 12 and the second planetary gear 22 thickness in the axial direction is not With (referring to Figure 10), so there is certain help to the diminution of 100 axial dimension of differential mechanism.Further, compared with The thin planetary gear such as gear teeth of the second planetary gear 22 are complete with the gear teeth of thicker planetary gear such as the first row star-wheel 12 It is complete to engage, and the gear teeth of thicker planetary gear extend beyond the wheel of relatively thin planetary gear in the axial direction to side Tooth, or the gear teeth of thicker planetary gear extend beyond the wheel of relatively thin planetary gear in the axial direction respectively to both sides Tooth.In the example of the present invention, the gear teeth of thicker planetary gear only extend beyond relatively thin in the axial direction to side Planetary gear the gear teeth, such as with reference to shown in Fig. 9 and Figure 10, thicker the first row star-wheel 12 prolongs to the left Stretch beyond the second relatively thin planetary gear 22, the right flank and the second relatively thin row of thicker the first row star-wheel 12 What the right flank of star-wheel 22 can be generally flush with substantially, be so conducive to the control to 100 axial dimension of differential mechanism System.
Due to the first row star-wheel 12 it is different with the revolution-radius of the second planetary gear 22, for planetary gear thickness not Same embodiment, the revolution-radius of its thicker planetary gear such as the first row star-wheel 12 are less than relatively thin planetary gear Such as the revolution-radius of the second planetary gear 22.Also, thicker planetary gear such as 12 corresponding tooth of the first row star-wheel Enclose as the less little gear ring of radial dimension such as the first gear ring 13, relatively thin planetary gear such as the second planetary gear 22 pairs The gear ring answered is relatively large bull gear such as the second gear ring 23 of radial dimension, and the external diameter of bull gear 23 is (outward Surface) more than the external diameter (outer surface) of little gear ring 13.For example in the example of the present invention, the first row star-wheel Thickness of 12 thickness more than the second planetary gear 22, so as to thicker the first row star-wheel 12 corresponding first Gear ring 13 is little gear ring, and relatively thin 22 corresponding second gear ring 23 of the second planetary gear is bull gear, and Revolution-radius of the revolution-radius of the first row star-wheel 12 less than the second planetary gear 22.
Furthermore, it is necessary to explanation, the less planetary gear of revolution-radius and a relatively small gear ring of radius Engagement, now, the less planetary gear of revolution-radius is the relatively thick planetary gear of thickness, the one of the planetary gear Part is that the internal tooth of relatively small with a radius gear ring is engaged, its another part be with revolution-radius compared with Big planetary gear is relatively thin planetary gear engagement.
As optional embodiment, the external diameter of the internal diameter of bull gear 23 more than little gear ring 13, here big The internal diameter of gear ring 23 refers to the radial dimension of the outside circle of 23 internal tooth of bull gear, in other words, bull gear The tooth top diameter of a circle of 23 internal tooth is greater than the external diameter of little gear ring 13.So little gear ring 13 can be overall Or in the embedded bull gear 23 of at least a portion, i.e., above-mentioned axial gap D is reduced into negative (i.e. little tooth 23), thus i.e. two kinds planetary gears of two gear rings will not move interference or sliding to 13 embedded bull gear of circle Wipe, which increase the stability of differential mechanism 100, while inner space can also relatively more closed, protect The parts such as planet carrier and planetary gear inside shield.
Below the power intake and clutch end of differential mechanism 100 are carried out in conjunction with specific embodiments in detail Description.
With reference to shown in Fig. 1-Fig. 3, differential mechanism 100 also includes that differential input shaft 31,32 and differential mechanism are defeated Shaft 41,42, differential input shaft 31,32 respectively with 21 phase of the first row carrier 11 and the second planet carrier Even, such as in the example of fig. 3, the right side of the first row carrier 11 is connected with a differential input shaft 31, The left side of the second planet carrier 21 is connected with another 32 differential input shaft.Differential output shaft 41,42 It is connected with the first gear ring 13 and the second gear ring 23 respectively, such as in the example of fig. 3, the first gear ring 13 Right side is connected with a differential output shaft 41, and it is defeated that the left side of the second gear ring 23 is connected with another differential mechanism Shaft 42.Differential input shaft 31,32, the 41,42, first gear ring of differential output shaft 13 and second Gear ring 23 can be coaxially arranged.
Further, as shown in figure 3, differential input shaft includes:First differential input shaft 31 and second Differential input shaft 32, the first differential input shaft 31 are connected with the first row carrier 11, the second differential mechanism Input shaft 32 is connected with the second planet carrier 21, and differential output shaft can include:First differential output shaft 41 and second differential output shaft 42, the first differential output shaft 41 is connected with the first gear ring 13, and second Differential output shaft 42 is connected with the second gear ring 23, and the first differential input shaft 31 and the second differential mechanism are defeated It can be hollow shaft structure to enter axle 32 and the first differential output shaft 41 and the second differential output shaft 42, Wherein as preferred embodiment, it is defeated that the first differential output shaft 41 is coaxially set in the first differential mechanism Enter on axle 31, the second differential output shaft 42 is coaxially set on the second differential input shaft 32, by This 100 structure of differential mechanism is compacter, volume is less.
However, above-mentioned differential input shaft, differential output shaft are only a kind of optional embodiments, in figure In the embodiment of the power-driven system of 13- Figure 25, differential mechanism 100 is externally exported by the external tooth of gear ring Power, and referring to Figure 13-Figure 16, Figure 18-Figure 25, the power output shaft 103 of variator 104 then may be used It is directly coaxial connected with the first row carrier 11 and the second planet carrier 21, and in the embodiment of Figure 17, move Power output shaft 103 can be linked with the first row carrier 11 and the second planet carrier 21 by jackshaft 701, now Jackshaft 701 can be coaxial fixed with the first row carrier 11 and the second planet carrier 21.
Some embodiments of the invention, the first row star-wheel 12 and the second planetary gear 22 are roller gear, Conventional symmetrical formula bevel differential is compared, 100 structure of differential mechanism using roller gear is compacter, had For body, in structure and type of attachment, space availability ratio is higher for which, and axial dimension is less, and in production It is more advantageous with fit on.
The concrete structure of the differential mechanism 100 for implementing to exemplify referring to 1- Fig. 3 is briefly described.Reference Shown in Fig. 1-Fig. 3, multiple the first row star-wheels between the first row carrier 11 and the second planet carrier 21, are provided with Axle 14 and multiple second planet wheel spindles 24, the first row star-wheel 12 is multiple and correspondence is connected to first planet On wheel shaft 14, the second planetary gear 22 is connected on the second planet wheel spindle 24 for multiple and correspondence.The first row The thickness of star-wheel 12 is bigger than the thickness of the second planetary gear 22, the gear teeth of relatively thin the second planetary gear 22 with The gear teeth of thicker the first row star-wheel 12 are at a fully engaged, and the gear teeth of thicker the first row star-wheel 12 can be to the left Extend beyond the second relatively thin planetary gear 22.Thicker 12 corresponding first gear ring 13 of the first row star-wheel is Little gear ring, relatively thin 22 corresponding second gear ring 23 of the second planetary gear is bull gear, the end of little gear ring 13 Face B1 can locate in the same plane with the end face B2 of bull gear 23, so that little gear ring 13 and bull gear 23 axial gap D is zero, installation cavity A in two gear rings is relatively more closed.
To sum up, differential mechanism 100 according to embodiments of the present invention, using the planetary gear of roller gear form, its In structure and type of attachment, space availability ratio is higher, and axial dimension is less, and in production with fit on more With advantage.The compact differential mechanism 100 also realizes two skiddings by making the displacement of side planetary gear and gear ring Avoidance (i.e. the revolution-radius of planetary gear are different) on star-wheel mechanism space and size, such structure design It has been greatly saved spatially to avoid the axial gap of another group of corresponding planetary gear and gear ring so that this is tight Gather type differential mechanism 100 axial dimension it is less and more compact.
Differential mechanism 100 according to embodiments of the present invention has been discussed in detail above, below will be to power drive line Remaining structure of system 1000 is described in detail.
Shown in reference picture 13- Figure 25, variator 104 can include multiple input shafts 101,102 and move Power output shaft 103.In certain embodiments, as shown in Figure 13-Figure 16, Figure 18-Figure 23, speed change The power output shaft 103 of device 104 can be one, but not limited to this.For example, see the enforcement of Figure 17 Example, power output shaft can also be two, i.e. the first power output shaft 103a and the second power output shaft 103b。
As shown in Figure 13-Figure 23, power output shaft 103 is arranged to be input into the power of differential mechanism 100 End linkage, i.e., power output shaft 103 is arranged to link with the first row carrier 11 and the second planet carrier 21.
Referring to Figure 13-Figure 15, the embodiment of Figure 20-Figure 23, its in multiple input shafts 101,102 In an input shaft be arranged to optionally link with power output shaft 103, in other words, such as Figure 13- Shown in Figure 14, Figure 20-Figure 23, one of input shaft such as the first input shaft 101 is (in Figure 15 102) can be linked with power output shaft 103 for the second input shaft, at the same this one of them it is defeated Enter axle such as the first input shaft 101 also to disconnect with power output shaft 103.For remaining input shaft, Then it is all provided with being set to and links with power output shaft 103, be i.e. these input shaft actions then power output shaft 103 Also follow action or 103 action of power output shaft then these input shafts also action therewith.And referring to The embodiment of Figure 11, each input shaft 101,102 be all provided with being set to optionally with power output shaft 103 linkages.
Referring to the embodiment of Figure 14, Figure 20-Figure 23, the 3rd motor generator 401 be arranged to this its In input shaft such as first input shaft 101 link, i.e., linked with the 3rd motor generator 401 Input shaft 101 is the input shaft 101 with the linkage of 103 selectivity of power output shaft.In a further embodiment, 103 overhead of power output shaft set is provided with empty set driven gear 108, empty set driven gear 108 with it is above-mentioned One of input shaft linkage, it is driven with empty set that lock unit 109 is arranged for synchronous dynamic output shaft 103 Gear 108.It is understood that when lock unit 109 is in engagement state, lock unit 109 is synchronous empty Set driven gear 108 and power output shaft 103, so the power from the 3rd motor generator 401 can Export to differential mechanism 100, and in lock unit from power output shaft 103 under the conjugation of lock unit 109 109 when being off, and the 3rd motor generator 401 is equivalent to disconnecting with power output shaft 103.By This, lock unit 109 serves as the power switch of the 3rd motor generator 401, can control the 3rd dynamoelectric and power generation The output of 401 power of machine and disconnection.
Used as a kind of optional embodiment, lock unit 109 is arranged on power output shaft 103 and for connecing Close empty set driven gear 108.Thus, simple structure, it is easy to accomplish.
Referring to shown in Figure 13-Figure 15, Figure 20-Figure 23, for remaining input shaft and power output shaft 103 The kind of drive, can be realized by gear transmission mode.For example, it is fixedly installed on power output shaft 103 There is fixed driven gear 107, fixed driven gear 107 is linked with remaining input shaft, that is, remove above-mentioned figure Input shaft 101 or the input shaft in Figure 15 embodiments in 13- Figure 14, Figure 20-Figure 23 embodiments 102。
For example, see the specific embodiment of Figure 13-Figure 15, is fixedly installed on power output shaft 103 simultaneously There is fixed driven gear 107, and be set with empty set driven gear 108, and accordingly fix on input shaft It is provided with fixed driving gear 105,106, empty set driven gear 108 and fixed 107 points of driven gear Do not engage with corresponding fixed driving gear.Such as, empty set driven gear 108 and fixed driven gear 107 Total sum it is identical with the quantity of fixed driving gear.
Referring to the number of the example of Figure 13-Figure 15, empty set driven gear 108 and fixed driven gear 107 Amount is one, and accordingly, the quantity of fixed driving gear is two, empty set driven gear 108 with One fixed driving gear engagement constitutes a pair of gear pairs, and fixed driven gear 107 is fixed with another Driving gear engagement constitutes another to gear pair, it will be understood that the transmission speed ratio of two pairs of gear pairs is not Together, transmission gear of the variator 104 therefore in the embodiment with two not synchronized ratios, it is so dynamic The structure of power-driven system 1000 is relatively easy, compact, and also disclosure satisfy that normal vehicle operation pair The requirement of transmission speed ratio.
As shown in Figure 13-Figure 23, multiple input shafts include the first input shaft 101 and the second input shaft 102, First input shaft 101 can be solid shafting, and the second input shaft 102 can be hollow axle, and second is input into Axle 102 is set on the first input shaft 101, and such as the second input shaft 102 is coaxially enclosed within the first input On axle 101, the axial length of the first input shaft 101 is more than the axial length of the second input shaft 102, One end such as right-hand member of the first input shaft 101 can be internally extended from the second input shaft 102.
Further, as shown in Figure 13-Figure 23, each input shaft can only be fixedly installed a fixation Driving gear, that is to say, that fixed driving gear includes that the first fixation driving gear 106 and second is solid Determine driving gear 105, the first fixation driving gear 106 is fixedly installed on the first input shaft 101, Second fixation driving gear 105 is fixedly installed on the second input shaft 102.
Shown in Figure 14, Figure 20-Figure 23, empty set driven gear 108 and first fixes driving gear 106 Engagement, fixed driven gear 107 are engaged with the second fixation driving gear 105, while the 3rd electronic Motor 401 is linked with the first input shaft 101, such as the 3rd motor generator 401 by gear structure with First fixation driving gear 106 links, concretely the 3rd motor generator 401 by gear 402, Gear 403 is driven with the first fixation driving gear 106, by the number of teeth of reasonable design said gear The transmission speed ratio needed for the 3rd motor generator 401 can be obtained.
And in the example of fig. 15, empty set driven gear 108 is engaged with the second fixation driving gear 105, Fixed driven gear 107 is engaged with the first fixation driving gear 106, while the 3rd motor generator 401 Link with the second input shaft 102, such as the 3rd motor generator 401 passes through gear structure and second to be fixed Driving gear 105 links, concretely the 3rd motor generator 401 by gear 402, gear 403, Gear 404, gear 405 are driven with the second fixation driving gear 105, its middle gear 404 and gear 405 can be fixed on same axle 406, can be obtained by the number of teeth of reasonable design said gear Transmission speed ratio needed for 3rd motor generator 401.
Further, as shown in Figure 13-Figure 23, power-driven system 1000 can also include electromotor 301, electromotor 301 is arranged to optionally engage with least one of multiple input shafts, specifically Ground, input shaft is two, and is provided with double clutch 204 between electromotor 301 and two input shafts. Double clutch 204 includes:First bonding part 201, the second bonding part 202 and the 3rd bonding part 203, Wherein the first bonding part 201 and the second bonding part 202 can be two of double clutch 204 driven Disk, the 3rd bonding part 203 can be the housing of double clutch 204, at least one of two clutch plates It is selectively engageable housing, that is to say, that in the first bonding part 201 and the second bonding part 202 At least one can be selectively engaged the 3rd bonding part 203.Certainly, two clutch plates can also be with shell Body is all off, i.e. the first bonding part 201 and the second bonding part 202 with the 3rd bonding part 203 It is off.
Referring to Figure 13-Figure 25, electromotor 301 is connected with the 3rd bonding part 203, the first input shaft 101 It is connected with the first bonding part 201, the second input shaft 102 is connected with the second bonding part 202.So, The power that electromotor 301 is produced can be optionally exported to the first input shaft by double clutch 204 101st, the second input shaft 102.
In other embodiment, as shown in Figure 18-Figure 19, each input shaft is all provided with being set to and moves Power output shaft 103 links, and in other words, as shown in Figure 18-Figure 19, any one input shaft is rotated then Power output shaft 103 also follow action or power output shaft 103 rotate then these input shafts also with Action.
As shown in Figure 18-Figure 19, the 3rd motor generator 401 is arranged to link with one of input shaft. Such as in the example of Figure 18, the 3rd motor generator 401 is linked with the first input shaft 101, concretely 3rd motor generator 401 is passed by gear 402, gear 403 and the first fixation driving gear 106 It is dynamic.And in the example of Figure 19, the 3rd motor generator 401 is linked with the second input shaft 102, specifically Can for the 3rd motor generator 401 by gear 402, gear 403, gear 404, gear 405 with Second fixation driving gear 105 is driven, and its middle gear 404 and gear 405 can be fixed on same axle On 406.
In some embodiments, for input shaft 101,102 and the kind of drive of power output shaft 103, Can be driven using traditional shift gear pair.
For example, as shown in Figure 18-Figure 19, multiple fixations are fixedly installed on power output shaft 103 driven Gear 107a, 107b, are fixedly installed fixed driving gear and (for example, first fix on each input shaft 105) driving gear 106 and second fixes driving gear, fixes driven gear and corresponding fixed driving tooth Wheel engagement.
As shown in Figure 18-Figure 19, fixed driven gear 107a engages composition one with fixed driving gear 105 To shift gear pair, it is another to gear that fixed driven gear 107b engages composition with fixed driving gear 106 It is secondary.It is appreciated that the transmission speed ratio of two pairs of gear pairs is different, therefore the variator in the embodiment The 104 transmission gears with two not synchronized ratios, the structure of such power-driven system 1000 are relatively simple It is single, compact, and also disclosure satisfy that requirement of the normal vehicle operation to transmission speed ratio.
Some embodiments (embodiment i.e. shown in Figure 18-Figure 19) and above-mentioned Figure 14 and Figure 15 realities Apply differring primarily in that for example:Lock unit 109 is eliminated, while empty set driven gear 108 is changed to Be directly anchored on power output shaft 103, constitute fixed driven gear, remainder then with Figure 14 and Figure 15 embodiments are basically identical, therefore no longer repeat one by one here.
In the example of Figure 16, i.e., in multiple input shafts, the embodiment of single power output shaft 103, Input shaft is fixedly installed on one of input shaft such as the first input shaft 101 and fixes motor gear 111a, 103 overhead of power output shaft set are provided with power output shaft empty set motor gear 111b, power Output shaft empty set motor gear 111b fixes motor gear 111a with input shaft and engages, and the 3rd electric Dynamic electromotor 401 fixes motor gear 111a linkages, such as the 3rd motor generator 401 with input shaft Motor gear 111a transmissions are fixed by gear 402, gear 403 and input shaft.In the embodiment, Power-driven system 1000 equally includes lock unit 109, and lock unit 109 is arranged for synchronous dynamic Output shaft 103 and power output shaft empty set motor gear 111b, such as lock unit 109 are arranged on power On output shaft 103 and for engaging power output shaft empty set motor gear 111b.
That is, the embodiment of Figure 16 compared with the embodiment of above-mentioned Figure 14-Figure 15, a main difference It is:Figure 16 embodiment motor gears (the 3rd motor generator 401) is by the gear that is separately provided Secondary (i.e. input shaft fixes motor gear 111a and power output shaft empty set motor gear 111b) is realized The output of motor power, and in the embodiment of Figure 14-Figure 15, motor gear is by corresponding gear Gear pair realizes the output of motor power.
Additionally, for Figure 16 embodiments are compared with above-mentioned Figure 14-Figure 15 embodiments, also one main It is different that difference is driven gear.Specifically, in the embodiment of Figure 16, it is fixedly installed on each input shaft There are multiple fixed driving gears, and in the embodiment of Figure 14-Figure 15, only fixation sets on each input shaft It is equipped with a fixed driving gear.Accordingly, in the embodiment of figure 16, due on each input shaft Multiple fixed driving gears are fixedly installed, therefore 103 overhead of power output shaft set is provided with multiple skies Set driven gear, each empty set driven gear are engaged with corresponding fixed driving gear, and each is empty Set driven gear can be bonded to power output shaft 103 by the synchronization of corresponding gear lock unit.
For example, with reference to the example of Figure 16, two gears are fixedly installed on the first input shaft 101 and are fixed actively The fixed driving gear 6a of the fixed gears of driving gear 4a and six of gear 2a, four gears, the second input shaft 102 On be fixedly installed a gear to fix driving gear 1a, the fixed driving gear 3a of three gears, five gears fixed actively The fixed driving gear 7a of the gears of gear 5a and seven, 103 empty set of power output shaft be provided with a gear empty set from Moving gear 1b, two gear empty set driven gear 2b, three gear empty set driven gear 3b, four gear empty sets are driven Gear 4b, five gear empty set driven gear 5b, six gear empty set driven gear 6b and seven gear empty set driven tooths Wheel 7b.
Wherein one gear empty set driven gear 1b driving gear 1as fixed with a gear is engaged so as to constitute a gear Gear pair, two gear empty set driven gear 2b driving gear 2as fixed with two gears are engaged so as to constitute two gears Gear pair, three gear empty set driven gear 3b driving gear 3as fixed with three gears are engaged so as to constitute three gears Gear pair, four gear empty set driven gear 4b driving gear 4as fixed with four gears are engaged so as to constitute four gears Gear pair, five gear empty set driven gear 5b driving gear 5as fixed with five gears are engaged so as to constitute five gears Gear pair, six gear empty set driven gear 6b driving gear 6as fixed with six gears are engaged so as to constitute six gears Gear pair, seven gear empty set driven gear 7b driving gear 7as fixed with seven gears are engaged so as to constitute seven gears Gear pair.
Further, it is shown in Figure 16, be additionally provided with power output shaft 103 one or three gear lock unit 13c, Five or seven gear lock unit 57c, two gear lock unit 2c and four or six gear lock unit 46c, one or three gear lock unit 13c Keep off between empty set driven gear 3b and be selectively engageable positioned at a gear empty set driven gear 1b and three One gear empty set driven gear 1b or three gear empty set driven gear 3b, five or seven gear lock unit 57c are located at five Gear empty set driven gear 5b and seven keeps off between empty set driven gear 7b and is selectively engageable five gears sky The gear empty set driven gear 7b of set driven gear 5b or seven, two gear lock unit 2c are used for engagement two and keep off empty set Driven gear 2b, four or six gear lock unit 46c positioned at four gear empty set driven gear 4b and six gear empty sets from It is between moving gear 6b and driven for being selectively engaged the gear empty sets of six gear empty set driven gear 6b and four Gear 4b.
Thus, the variator 107 is configured with the forward gear of seven not synchronized ratios, preferably can meet The driving requirements of vehicle.
Variator 104 in other embodiments, the speed change in the embodiment are described referring to Figure 17 The main area of the variator 100 in device 104 and above-mentioned Figure 13-Figure 16, Figure 18-Figure 19 embodiments Not Wei power output shaft 103 quantity, in above-described embodiment power output shaft 103 be one, the reality In applying example, power output shaft 103 is multiple such as two, as the quantity of power output shaft 103 increases, Therefore other constructions are also unlike the embodiments above, describe in detail below in conjunction with accompanying drawing.
Shown in Figure 17, the variator 104 in the embodiment includes multiple input shafts 101,102 With multiple power output shafts, such as multiple power output shafts include the first power output shaft 103a and second Power output shaft 103b.Wherein, the 3rd motor generator 401 can be with its in multiple power output shafts In power output shaft such as 103b linkage, each power output shaft is arranged to can be by from electromotor 301 and/or the 3rd motor generator 401 power output to differential mechanism 100 power intake (example Such as the first row carrier 11 and the second planet carrier 21).
Further, as shown in figure 17, variator 104 can also include motor power axle 103c, the 3rd Motor generator 401 is coaxially connected with motor power axle 103c, motor power axle 103c be arranged to One of power output shaft linkage, such as motor power axle 103c and the second power output shaft 103b Linkage.
For motor power axle 103c and the linked manner of the second power output shaft 103b, referring to Figure 17 Shown, the first motor gear 103d is fixedly installed on motor power axle 103c, the second motor gear 103e is fixedly installed on one of power output shaft such as the second power output shaft 103b, and first is electric Machine gear 103d is engaged with the second motor gear 103e.In short, in the embodiment, the second power Output shaft 103b and motor power axle 103d be by gear-driven, i.e., by be engaged with each other One motor gear 103d and the second motor gear 103e realize power transmission.
For the variator 104 in the embodiment, its structure of reversing gear is shown in Figure 17, and reverse gear output gear Wheel 601 is nibbled with the power intake (such as the first row carrier 11 and the second planet carrier 21) of differential mechanism 100 Close, reverse idler gear 604 is engaged with reverse output gear 601, and 604 empty set of reverse idler gear is at which In on power output shaft such as the second power output shaft 103b, reverse idler gear 604 can be by reversing gear The synchronization of lock unit 604c and be bonded to power output shaft 103b.Specifically, reverse output gear 601 can be duplicate gear, and which has the power of gear part 602,603, gear part 602 and differential mechanism 100 Input (such as the first row carrier 11 and the second planet carrier 21) engagement, gear part 603 and centre of reversing gear Gear 604 is engaged, the duplicate gear can empty set on motor power axle 103c, but not limited to this.
For the bang path that reverses gear, substantially it is divided into two kinds, one of which is driven for electromotor 301, for example, send out The power that motivation 301 will be produced by double clutch 204, the first input shaft 101 or the second input shaft 102 Export to the second power output shaft 103b, reverse gear synchronizer 604c engagement reverse idler gears 604, the portion Sub-power is again by exporting from reverse output gear 601 after reverse idler gear 604.It is another kind of electric for the 3rd Dynamic electromotor 401 drives, and the power for producing is passed through the first motor tooth by such as the 3rd motor generator 401 Wheel 103d and the second motor gear 103e is exported to the second power output shaft 102b, reverse gear synchronizer 604c Engagement reverse idler gear 604, the partial power again by after reverse idler gear 604 from the output gear that reverses gear Wheel 601 is exported.Certainly, electromotor 301 and the 3rd motor generator 401 can also export simultaneously reverse gear it is dynamic Power, now two parts reverse gear power couple on the second power output shaft 102b after by reverse idler gear Export from reverse output gear 601 after 604.
It is shown in Figure 17, as the power output shaft of variator 104 in the embodiment is for multiple, and often Individual power output shaft can externally export power, thus each power output shaft be provided with can be defeated by power Go out to the output of the power intake of differential mechanism 100 (such as the first row carrier 11 and the second planet carrier 21) Structure.Specifically, one of power output shaft such as the second power output shaft 103b overhead is arranged Power output shaft empty set output gear 605 is equipped with, remaining each power output shaft such as the first power output shaft Power output shaft is fixedly installed on 103a and fixes output gear 606, power output shaft empty set output gear 605 and power output shaft fix output gear 606 respectively with the power intake of differential mechanism 100 (such as the 21) one planet carrier 11 and the second planet carrier link.
For example, in the specific example of Figure 17, it is fixedly installed on the first power output shaft 103a dynamic defeated Shaft fixes output gear 606, and the second power output shaft 103b overhead set is provided with power output shaft empty set Output gear 605, and variator 104 also includes jackshaft 701, jackshaft 701 and the first row carrier 11 It is coaxial fixed with the second planet carrier 21, so as to jackshaft 701, the first row carrier 11 and the second planet carrier 21 Can rotate in the same direction, at the same speed.Countershaft-gear 702, countershaft-gear are fixedly installed on jackshaft 701 702 are fixed output gear 606, power output shaft empty set output gear 605 respectively and are fallen with power output shaft Gear output gear 601 is engaged.
Wherein, power output shaft empty set output gear 605 is same dynamic due to being in reverse idler gear 604 On power output shaft 103b, therefore as one kind preferred embodiment, power output shaft empty set output gear 605 share reverse gear synchronizer 604c with reverse idler gear 604, such as shown in Figure 17, synchronization of reversing gear Device 604c to the left engageable power output shaft empty set output gear 605, move right engageable centre of reversing gear Gear 604.Thus, it is possible to save a lock unit, frame for movement is not only simplify, and be also simplify Control strategy, reduces cost.
Additionally, for the power-driven system 1000 in Figure 17 embodiments, its electromotor 301 by it is double from Clutch 204 is connected with the first input shaft 101 and the second input shaft 102, and this part is identical with remaining embodiment, Here repeat no more.
In the embodiment, referring to Figure 17, a gear is fixedly installed on the first input shaft 101 and fixes driving tooth It is fixed on the fixed driving gear 5a of the fixed gears of driving gear 3a and five of wheel 1a, three gears, the second input shaft 102 It is provided with two gears and fixes the gears of driving gear 2a and four or six fixed driving gear 46a, the first power output shaft 103a Overhead set is provided with two gear empty set driven gear 2b, four gear empty set driven gear 4b, three gear empty set driven tooths The gear empty set driven gear 1b of wheel 3b and, the second power output shaft 103b overhead set are provided with five gear empty sets The gear empty set driven gear 6b of driven gear 5b and six.
As shown in figure 17, wherein gear empty set driven gear 1b driving gear 1as fixed with a gear is engaged So as to constitute first gear pair, two gear empty set driven gear 2b driving gear 2as fixed with two gears is engaged So as to constitute second gear pair, three gear empty set driven gear 3b driving gear 3as fixed with three gears is engaged So as to constitute three gear gear pairs, four gear empty set driven gear 4b driving gear 46as fixed with four or six gears is nibbled Close so as to constitute four gear gear pairs, five gear empty set driven gear 5b driving gear 5as fixed with five gears is nibbled Close so as to constitute five gear gear pairs, six gear empty set driven gear 6b and the fixed driving gear 46a of four or six gears Engage so as to constitute six gear gear pairs.
Further, as shown in figure 17, two or four gear lock units are provided with the first power output shaft 103a The gear lock unit 13c of 24c and or three, are provided with five or six gear lock unit 56c on the second power output shaft 103b, One or three gear lock unit 13c be arranged on the gears of a gear empty set driven gear 1b and three empty set driven gear 3b it Between and keep off the gear empty set driven gear 3b of empty set driven gear 1b or three for engagement one, two or four gears are synchronous Device 24c is arranged between the gear empty set driven gear 4b of two gear empty set driven gear 2b and four and for connecing Close two and keep off the gear empty set driven gear 4b of empty set driven gear 2b or four, five or six gear lock unit 56c are arranged Empty set is kept off between five gear empty set driven gear 5b and six gear empty set driven gear 6b and for engagement five The gear empty set driven gear 6b of driven gear 5b or six.
Thus, the variator 107 is configured with the forward gear of six not synchronized ratios, preferably can meet The driving requirements of vehicle.
For the variator embodiment of single power output shaft 103, the power output shaft 103 can be direct It is fixedly and coaxially connected with two planet carriers.Referring to Figure 13-Figure 16, Figure 18-Figure 23 and with reference to Fig. 1-Figure 12 Shown, power output shaft 103 is coaxial fixed with the first row carrier 11 and the second planet carrier 21, so that Variator 104 is compacter with the coupling part of differential mechanism 100, i.e., directly output power axle 103 and two Individual planet carrier is coaxially fixed, so as to the body that at least can reduce power-driven system 1000 to a certain extent Product.
In a further embodiment, as shown in Figure 13-Figure 23, power-driven system 1000 also includes first Output section 601 and the second output section 602, the first output section 601 are linked with the first gear ring 13, and second is defeated Go out portion 602 to link with the second gear ring 23.Further, the first output section 601 is left half axle gear, the Two output sections 602 are right axle shaft gear, while the first external tooth 603 on the first gear ring 13, is provided with, second The second external tooth 604 is provided with gear ring 23, the first external tooth 603 is engaged with left half axle gear 601, second External tooth 604 is engaged with right axle shaft gear 602, and thus the power of Jing differential mechanisms 100 can finally pass through left half axle Gear 603 and right axle shaft gear 604 are exported to the wheel of the left and right sides.
Wherein, as shown in Figure 13-Figure 25, the first motor generator 501 is arranged to can be with the first output section 601 linkages, the second motor generator 502 are arranged to link with the second output section 602, and such as first is electronic Gear 503 can be provided with the motor shaft of electromotor 501, gear 503 is engaged with left half axle gear 601, It is provided with gear 504, gear 504 and right axle shaft gear simultaneously on the motor shaft of the second motor generator 502 602 engagements.
As shown in Figure 13-Figure 25, the first motor generator 501 and the second motor generator 502 are with regard to difference The 100 symmetrical distribution of fast device, can so cause the center of gravity of power-driven system 100 in center Or closer to center.
Referring to the embodiment of Figure 24 Figure 25, the power-driven system 1000 and Figure 12-figure in the embodiment One of power-driven system 1000 in 23 embodiments differs primarily in that:The quantity of input shaft.This one In a little embodiments, input shaft includes the first input shaft 101, the second input shaft 102 and the 3rd input shaft 1003, 3rd input shaft 1003 can be hollow axle and be set on the second input shaft 102, the second input shaft 102 Can also be hollow axle and be set on the first input shaft 101, three input shafts can be coaxially arranged. Pass through between electromotor 301 and the first input shaft 101, the second input shaft 102 and the 3rd input shaft 1003 Three clutches 205 are connected, and specifically, three clutches 205 have the first clutch plate 206, second driven Disk 207, the 3rd clutch plate 208 and housing 209, housing 209 optionally with the first clutch plate 206, At least one of second clutch plate 207, the 3rd clutch plate 208 are engaged, the first input shaft 101 and first Clutch plate 206 connects, and the second input shaft 102 is connected with the second clutch plate 207, the 3rd input shaft 1003 It is connected with the 3rd clutch plate 208, electromotor 301 is connected with housing 209.In the embodiment of Figure 24, the One clutch plate 206, the second clutch plate 207, the 3rd clutch plate 208 are axially distributed, the embodiment of Figure 25 In, the first clutch plate 206, the second clutch plate 207, the 3rd clutch plate 208 are radially distributed.
The typical work of power-driven system 1000 according to embodiments of the present invention is briefly described with reference to Figure 14 Condition.
Low speed is pure electronic:Double clutch 204 is all off, and lock unit 109 disconnects, the first motor generator 501 and second motor generator 502 worked externally directly output power in motor mode.Move under the pattern Power bang path is shorter, and transmission energy loss is little, is adapted to urban congestion road conditions.
High speed is pure electronic:Double clutch 204 is all off, and lock unit 109 is in engagement state, and first is electric All work is externally exported for dynamic electromotor 501, the second motor generator 502 and the 3rd motor generator 401 Power.
Low engine speed is kept off:First bonding part 201 is engaged with the 3rd bonding part 203, the second junction surface 202 are divided to disconnect with the 3rd bonding part 203, lock unit 109 is in engagement state, now electromotor 301 The power of generation is by exporting to differential mechanism 100, by poor after the first input shaft 101, power output shaft 103 Fast device 100 is distributed to the driving wheel of both sides by power.
High engine speeds are kept off:Second bonding part 202 is engaged with the 3rd bonding part 203, the first junction surface 201 are divided to disconnect with the 3rd bonding part 203, lock unit 109 is off, now electromotor 301 The power of generation is by exporting to differential mechanism 100, by poor after the second input shaft 102, power output shaft 103 Fast device 100 is distributed to the driving wheel of both sides by power.
Power generation in parking:First bonding part 201 is engaged with the 3rd bonding part 203, the second bonding part 202 are disconnected with the 3rd bonding part 203, and lock unit 109 is off, and now electromotor 301 is produced Raw power is exported to the 3rd motor generator 401 by the first input shaft 101, drives the 3rd dynamoelectric and power generation Machine 401 is generated electricity as motor, realizes power generation in parking function.
Brake energy recovery:Lock unit 109 can be at off-state, now 501 He of the first motor generator Second motor generator 502 reclaims braking energy.Or lock unit 109 is in engagement state, now first Motor generator 501, the second motor generator 502 and the 3rd motor generator 401 all reclaim Brake Energy Amount.
Driving generates electricity:Electromotor 301 can pass through the different engagement states and lock unit of double clutch 204 109 engaging/disengaging state, and selectivity drives the first motor generator 501 and the second motor generator 502 generate electricity or drive the 3rd motor generator 401 to generate electricity, and three motors also can be driven certainly simultaneously to send out Electricity, at the same time, electromotor 301 also externally exports power, drives vehicle traveling.
Increase journey pattern:First bonding part 201 engages the 3rd bonding part 203, the second bonding part 202 Disconnect with the 3rd bonding part 203, the output power of electromotor 301 drives the 3rd motor generator 401 to generate electricity, First motor generator 501 and the second motor generator 502 export power drive vehicle as motor simultaneously Traveling.
Figure 13 embodiments eliminate the 3rd motor generator 401 with differring primarily in that for Figure 14 embodiments, For remaining construction part is then consistent, repeat no more here.
Figure 15 embodiments differ primarily in that with Figure 14 embodiments the 3rd in Figure 15 embodiments is electronic Electromotor 401 is linked with the second input shaft 102, for remaining construction part is then consistent, here no longer Repeat.
One transmission gear for differring primarily in that Figure 16 embodiments of Figure 16 embodiments and Figure 14 embodiments More than Figure 14 embodiments, these gears are engaged by the control of corresponding gear lock unit, and this is general for this area What logical technical staff will be appreciated that, therefore no longer repeat one by one here.
Figure 17 embodiments are defeated with the power of an embodiment for differring primarily in that Figure 17 of Figure 14 embodiments Shaft is for multiple, and is correspondingly arranged on multiple transmission gears, and these gears are controlled by corresponding gear lock unit Engagement, this is all will be appreciated that for those of ordinary skill in the art, therefore is no longer repeated one by one here.
The embodiment of Figure 18-Figure 19 is differred primarily in that with of Figure 14 embodiments and eliminates lock unit 109, while empty set driven gear 108 is directly anchored on power output shaft 103, therefore Figure 18-figure 19 embodiments are similar to the transmission condition of Figure 14 embodiments but there are some difference, such as Figure 18-Figure 19 Embodiment cannot realize power generation in parking operating mode etc., these for the ordinary skill in the art should All will be appreciated that, therefore no longer repeat one by one here.
For the embodiment of Figure 20-Figure 23, compared with Figure 14 embodiments, difference is that to increased rear-guard poor Speed lock.
Reference picture 20- Figure 23 is simultaneously combined shown in Fig. 1-Figure 12, and the first gear ring 13 is linked with the near front wheel 910a, Link with the near front wheel 910a as the first gear ring 13 passes through the first external tooth 603 and left half axle gear 601, second Gear ring 23 and off-front wheel 910b linkages, such as the second gear ring 23 pass through the second external tooth 604 and right axle shaft gear 602 are linked with off-front wheel 910b.4th motor generator 901 is joined with left rear wheel 910c by gear structure Dynamic, such as the 4th motor generator 901 passes through gear W1, W2, W3, W4 and left rear wheel 910c links, tooth Wheel W1 is coaxial with the 4th motor generator 901 to be connected, and gear W1 is engaged with gear W2, gear W2 and tooth Wheel W3 is coaxially connected, and gear W3 is engaged with gear W4, and gear W4 can be fixedly installed on left half axle 904 On, left rear wheel 910c is provided with left half axle 904.Similarly, the 5th motor generator 902 passes through tooth Wheel construction is linked with off hind wheel 910d, and such as the 5th motor generator 902 passes through gear X1, X2, X3, X4 Link with off hind wheel 910d, gear X1 is coaxial with the 5th motor generator 902 to be connected, gear X1 and tooth Wheel X2 engagements, gear X2 are coaxially connected with gear X3, and gear X3 is engaged with gear X4, gear X4 Can be fixedly installed on right axle shaft 905, on right axle shaft 905, be provided with off hind wheel 910d.
In the example of Figure 20, anti-skidding lock unit 903 is arranged for synchromesh gear W4 and gear X4, Such as anti-skidding lock unit 903 is arranged on gear W4 and for engage gear X4.In the example of Figure 21, Anti-skidding lock unit 903 is arranged for synchromesh gear W1 and gear X1, and for example anti-skidding lock unit 903 is arranged On gear W1 and for engage gear X1.In the example of Figure 22, anti-skidding lock unit 903 is arranged to For synchromesh gear W2 and gear X2, for example anti-skidding lock unit 903 is arranged on gear W2 on and is used to connect Close gear X2.
In the example of Figure 23, anti-skidding lock unit 903 is arranged for synchronous left half axle 904 and right axle shaft 905, such as anti-skidding lock unit 903 is arranged on left half axle 904 and for engaging right axle shaft 905, the enforcement In example, the 4th motor generator 901 and the 5th motor generator 902 are wheel motor.
To sum up, anti-skidding lock unit 903 is arranged to optionally synchronization left rear wheel 910c and off hind wheel 910d, In other words, when anti-skidding lock unit 903 is in engagement state, left rear wheel 910c and off hind wheel 910d will be same Step rotation, i.e., at the same speed, rotating Vortex, now left rear wheel 910c and off hind wheel 910d will not differential rotate. And when anti-skidding lock unit 903 is off, the 4th motor generator 901 can be operated alone left rear wheel 910c, the 5th motor generator 902 can be operated alone off hind wheel 910d, and two trailing wheels are separate, mutual Do not interfere, so as to realize the differential rotating function of wheel.
Additionally, for technical scheme and/or technical characteristic described in the various embodiments described above, mutually not rushing In the case of prominent, not conflicting, those skilled in the art can by the technical scheme in above-described embodiment and / or technical characteristic be mutually combined, the technical scheme after combination can be two or more technical sides The superposition of case, the superposition of two or more technical characteristics or two or more technical schemes with The superposition of technical characteristic, thus, it is possible to realize each technical scheme and/or technical characteristic phase each other functionally Interaction and support, and the scheme after combining has more superior technique effect.
For example, those skilled in the art can by the first gear ring 13 towards the second gear ring 23 end face and the second tooth End scheme at grade and first gear ring 13 and second tooth of the circle 23 towards the first gear rings 13 The scheme combination of the construction of circle 23, so that the axial gap of 100 liang of gear rings of differential mechanism is zero, so as to Two gear rings can limit the installing space of relative closure, and the part in installing space is adequately protected, Increase its service life, and reduces cost, while the axial dimension of differential mechanism 100 effectively can also be reduced.
And for example, the thickness of the first row star-wheel 12 can be more than those skilled in the art the thickness of the second planetary gear 22 The scheme of degree and the first gear ring 13 is little gear ring, the second gear ring 23 is bull gear scheme and first planet The revolution-radius of wheel 12 are combined less than the scheme of the revolution-radius of the second planetary gear 22, are consequently formed The structure of 100 scheme of differential mechanism is compacter, and volume is less, is more convenient for being arranged in the enging cabin of vehicle Portion.
For another example, those skilled in the art can by the first gear ring 13 towards the second gear ring 23 end face and the second tooth End scheme at grade and relatively thin planetary gear and thicker row of the circle 23 towards the first gear rings 13 The scheme combination of the meshing relation of star-wheel, thus on the one hand so that the axial gap of 100 liang of gear rings of differential mechanism is Zero, so as to two gear rings can limit the installing space of relative closure, the part in installing space is filled Code insurance is protected, and is increased its service life, and reduces cost, on the other hand can also further be reduced differential mechanism 100 axial dimension, makes differential mechanism 100 have less volume.
However, it is to be understood that above-mentioned illustrating is only illustrative, for technical scheme and/ Or the combination of technical characteristic, those skilled in the art can carry out independent assortment in the case where not conflicting, and And the scheme after combining possesses more superior technique effect, the present invention has only made above-mentioned multiple examples briefly Bright, here is no longer exhaustive one by one.
Further it will be understood that the technical scheme after combinations thereof equally falls into protection scope of the present invention Within.
Generally speaking, differential mechanism 100 according to embodiments of the present invention, can effective save space, and reduce Weight, specifically, for this planet gear type differential mechanism 100 compares traditional bevel gear differential, Weight can reduce about 30%, while axial dimension about reduces 70%, can not only reduce bearing Frictional force, and the moment of torsion distribution of left and right wheelses can be realized, make the load of differential mechanism 100 be distributed more adduction Reason, more preferably, additionally due to adopting roller gear, transmission efficiency is also increased 100 rigidity of differential mechanism, Traditional Bevel Gear Drive efficiency of such as 6 class precisions and 7 class precisions about 0.97~0.98, and 6 grades are smart The column gear transmission efficiency of degree and 7 class precisions about 0.98~0.99, in addition using roller gear, also drops The low operating noise of differential mechanism 100, while reducing caloric value, substantially increases the longevity of differential mechanism 100 Life.In short, differential mechanism 100 according to embodiments of the present invention have lightweight, small size, low cost, Many advantages, such as transmission efficiency, noise are low, heating is little, the life-span is high.
Simultaneously as differential mechanism 100 according to embodiments of the present invention can save sun gear, and save the sun Wheel can have the advantage that:
Analyze from mechanics, cancel sun gear but differential is realized using gear ring, because the number of teeth of gear ring is compared It is more that sun gear can be arranged, while pitch circle is larger (when pitch circle refers to meshed transmission gear at node Tangent a pair of circles), such that it is able to distributed load more in a balanced way and torque is born, this is to differential mechanism 100 The raising in life-span is good.No sun gear, can preferably realize the lubrication of differential mechanism 100 simultaneously And cooling, that is to say, that can be formed inside sun gear, therefore planetary gear cavity due to eliminating, and tooth Circle engages the relation (sun gear belongs to external toothing with planetary gear) for being belonging to internal messing with planetary gear, in gear ring Lubricating oil can be stored, thus cooling and lubricant effect can be greatly improved.Further, since cancel sun gear, Parts are reduced, the quality and cost of differential mechanism 100 is reduced, makes differential mechanism 100 become more small-sized Change, lightweight.
And for the power-driven system 1000 with differential mechanism 100 according to embodiments of the present invention, Which mainly has spatially and in type of drive obvious advantage, by taking space advantage as an example, the power Drive system 1000 is particularly well-suited to new energy vehicle, as the power assembly of new energy vehicle is typically arranged In enging cabin, power assembly not only have variator, electromotor, while also have at least one motor, Due to enging cabin limited space, therefore can using compact differential mechanism 100 according to embodiments of the present invention Advantage is spatially obtained, arrangement is easily facilitated.And for example, as a example by the advantage for going up in a driving manner, due to root Greatly reduce according to the axial dimension of the differential mechanism 100 of the embodiment of the present invention, therefore axial space more preferably arranged, And there are differential mechanism 100 two gear rings can be better achieved and two motors as clutch end Power connector (as mentioned above that motor is connected by the external tooth of gear ring), and this is in traditional circular cone differential mechanism On be difficult to.
Vehicle 10000 according to embodiments of the present invention is briefly described below, as shown in figure 26, the vehicle 10000 Including the power-driven system 1000 in above-described embodiment, the power-driven system 1000 can be used for forerunner, Rear-guard is may naturally be used for, the present invention is not particularly limited to this.It should be appreciated that according to the present invention Other of the vehicle 10000 of embodiment construct such as brakes, driving system, steering etc. Prior art, and be well known to those skilled in the art, therefore no longer repeat one by one here.
In the description of this specification, reference term " one embodiment ", " some embodiments ", " example ", " specific example ", or " some examples " etc. description mean with reference to the embodiment or example describe it is concrete Feature, structure, material or feature are contained at least one embodiment or example of the present invention.In this theory In bright book, identical embodiment or example are necessarily directed to the schematic representation of above-mentioned term.And, The specific features of description, structure, material or feature can be in one or more any embodiment or examples In combine in an appropriate manner.Additionally, those skilled in the art can be by the difference described in this specification Embodiment or example are engaged and are combined.
Although embodiments of the invention have been shown and described above, it is to be understood that above-described embodiment It is exemplary, it is impossible to be interpreted as limitation of the present invention, one of ordinary skill in the art is the present invention's In the range of above-described embodiment can be changed, change, replace and modification.

Claims (28)

1. a kind of power-driven system, it is characterised in that include:
Differential mechanism, the differential mechanism include:
The first row carrier, the first row star-wheel and the first gear ring, the first row star-wheel are arranged on In the first row carrier, the first row star-wheel is engaged with first gear ring;
Second planet carrier, the second planetary gear and the second gear ring, second planetary gear are arranged on On second planet carrier, second planetary gear is engaged and described with second gear ring Second planetary gear is also engaged with the first row star-wheel;
Wherein, first gear ring and second gear ring constitute two of the differential mechanism and move Power outfan, the first row carrier and second planet carrier constitute the power of the differential mechanism Input, and the first row star-wheel is different from the revolution-radius of second planetary gear;
Variator and electromotor, the variator are connected with the electromotor and the differential mechanism respectively, and institute State electromotor the power of generation can be exported after the variator to the power intake of the differential mechanism; And
First output section and the second output section, first output section are linked with first gear ring, and described Link with second gear ring two output sections;
First motor generator and the second motor generator, first motor generator and the described first output Portion links, and second motor generator is linked with second output section.
2. differential mechanism according to claim 1, it is characterised in that first gear ring is towards described The end face of the second gear ring and second gear ring towards first gear ring end in the same plane.
3. differential mechanism according to claim 2, it is characterised in that first gear ring and described Each in two gear rings includes:
Body panels portion and be arranged on the body panels portion periphery edge annular side wall portion, the annular side Multiple teeth are provided with the internal face of wall portion, are limited between the body panels portion and the annular side wall portion The cavity of cavity, the cavity of first gear ring and second gear ring toward each other to constitute installing space, The first row carrier and the first row star-wheel and second planet carrier and second planetary gear receipts It is contained in the installing space.
4. differential mechanism according to claim 1, it is characterised in that the first row star-wheel with it is described Second planetary gear thickness in the axial direction is different.
5. differential mechanism according to claim 4, it is characterised in that the gear teeth of relatively thin planetary gear with The gear teeth of thicker planetary gear are at a fully engaged, and the gear teeth of thicker planetary gear extend super to side in the axial direction The gear teeth for going out the planetary gear of the gear teeth or thicker of relatively thin planetary gear extend super to both sides in the axial direction respectively Go out the gear teeth of relatively thin planetary gear.
6. differential mechanism according to claim 4, it is characterised in that the revolution of thicker planetary gear half Revolution-radius of the footpath less than relatively thin planetary gear.
7. differential mechanism according to claim 4, it is characterised in that the corresponding tooth of thicker planetary gear Enclose as little gear ring, the corresponding gear ring of relatively thin planetary gear is bull gear, and the external diameter of the bull gear is more than described The external diameter of little gear ring.
8. differential mechanism according to claim 4, it is characterised in that the thickness of the first row star-wheel More than the thickness of second planetary gear, first gear ring is little gear ring, and second gear ring is bull gear, Revolution-radius of the revolution-radius of the first row star-wheel less than second planetary gear.
9. differential mechanism according to claim 1, it is characterised in that the revolution of the first row star-wheel The revolution dead in line of axis and second planetary gear.
10. differential mechanism according to claim 1, it is characterised in that the first row star-wheel and second Planetary gear is roller gear.
11. differential mechanisms according to claim 1, it is characterised in that each described the first row star-wheel is matched somebody with somebody Be equipped with a first planet wheel shaft, two ends of the first planet wheel shaft respectively with the first row carrier It is connected with second planet carrier, each described second planetary gear is configured with second planet wheel spindle, described Two ends of the second planet wheel spindle are connected with the first row carrier and second planet carrier respectively.
12. power-driven systems according to claim 1, it is characterised in that the variator includes Power output shaft and multiple input shafts;
One of input shaft in the plurality of input shaft be arranged to optionally with the power output Axle links, and the power output shaft is arranged to also link with the power intake of the differential mechanism.
13. power-driven systems according to claim 12, it is characterised in that the power output Axle overhead set is provided with empty set driven gear, and the empty set driven gear is joined with one of input shaft Dynamic, the power-driven system also includes lock unit, and it is defeated that the lock unit is arranged for the synchronous power Shaft and the empty set driven gear.
14. power-driven systems according to claim 12, it is characterised in that the power output Axle overhead set is provided with empty set driven gear and is fixedly installed fixed driven gear, the power drive line System also includes lock unit:It is driven with the empty set that the lock unit is arranged for the synchronous power output shaft Gear;
It is fixedly installed fixed driving gear on each described input shaft, the empty set driven gear and described solid Determine driven gear to engage with corresponding fixed driving gear respectively.
15. power-driven systems according to claim 12, it is characterised in that each described input Be fixedly installed multiple fixed driving gears on axle, the power output shaft overhead set be provided with multiple empty sets from Moving gear, the empty set driven gear are engaged with corresponding fixed driving gear, each described empty set driven tooth Wheel can be bonded to the power output shaft by the synchronization of corresponding gear lock unit.
16. power-driven systems according to claim 1, it is characterised in that the variator includes Power output shaft and multiple input shafts;
Each described input shaft is arranged to link with the power output shaft, and the power output shaft is arranged to also Link with the power intake of the differential mechanism.
17. power-driven systems according to claim 16, it is characterised in that the power output Multiple fixed driven gears are fixedly installed on axle, on each described input shaft, fixed driving tooth is fixedly installed Wheel, the fixed driven gear and the corresponding fixed driving gear engagement.
18. power-driven systems according to claim 1, it is characterised in that the variator includes First input shaft and the second input shaft, second input shaft are set on first input shaft, described dynamic Power-driven system also includes electromotor, the electromotor and first input shaft, second input shaft it Between by double clutch be connected.
19. power-driven systems according to claim 12, it is characterised in that the power output shaft with The first row carrier, second planet carrier are coaxially fixed.
20. power-driven systems according to claim 1, it is characterised in that first output section For left half axle gear, second output section is right axle shaft gear;And
The first external tooth is provided with first gear ring, the second external tooth on second gear ring, is provided with, it is described First external tooth is engaged with the left half axle gear, and second external tooth is engaged with the right axle shaft gear.
21. power-driven systems according to claim 1, it is characterised in that the variator includes:
Multiple input shafts and multiple power output shafts, each described power output shaft is arranged to can be by from described The power intake of the power output of electromotor to the differential mechanism.
22. power-driven systems according to claim 21, it is characterised in that the variator is also Including:
Reverse output gear and reverse idler gear, the reverse output gear are defeated with the power of the differential mechanism Enter end linkage, the reverse idler gear is engaged with the reverse output gear, and the reverse idler gear is empty It is enclosed within the one of power output shaft in the plurality of power output shaft and reverse gear synchronizer can be passed through Synchronization and be bonded to one of power output shaft.
23. power-driven systems according to claim 22, it is characterised in that it is described one of them Power output shaft overhead set is provided with power output shaft empty set output gear, the power output shaft empty set output Gear shares the reverse gear synchronizer with the reverse idler gear, fixed on remaining each power output shaft It is provided with power output shaft and fixes output gear, it is defeated with the power that the power output shaft fixes output gear Shaft empty set output gear is linked with the power intake of the differential mechanism respectively.
24. power-driven systems according to claim 23, it is characterised in that also include:
Jackshaft, the jackshaft are coaxially fixed with the first row carrier and second planet carrier, described Countershaft-gear is fixedly installed on jackshaft, the countershaft-gear is fixed with the power output shaft respectively The engagement of output gear, the power output shaft empty set output gear and the reverse output gear.
25. power-driven systems according to claim 1, it is characterised in that also include:3rd is electric Dynamic electromotor, the 3rd motor generator are connected with the variator, and the 3rd motor generator can be by The power of generation is exported by the variator to the power intake of the differential mechanism.
26. power-driven systems according to claim 1, it is characterised in that the variator includes First input shaft, the second input shaft and the 3rd input shaft, the 3rd input shaft are set in second input On axle, second input shaft is set on first input shaft, and the electromotor and described first is input into It is connected by three clutches between axle, second input shaft and the 3rd input shaft.
27. power-driven systems according to claim 1, it is characterised in that first gear ring with The near front wheel links, and second gear ring is linked with off-front wheel;
The power-driven system also includes:
4th motor generator and the 5th motor generator, the 4th motor generator are linked with left rear wheel, 5th motor generator is linked with off hind wheel;And
Anti-skidding lock unit, after the anti-skidding lock unit is arranged to the optionally synchronous left rear wheel and the right side Wheel, so that the left rear wheel and the off hind wheel synchronous rotary.
28. a kind of vehicles, it is characterised in that include dynamic according to any one of claim 1-27 Power-driven system.
CN201510624475.2A 2015-09-25 2015-09-25 Power driving system and vehicle with same Active CN106553531B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510624475.2A CN106553531B (en) 2015-09-25 2015-09-25 Power driving system and vehicle with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510624475.2A CN106553531B (en) 2015-09-25 2015-09-25 Power driving system and vehicle with same

Publications (2)

Publication Number Publication Date
CN106553531A true CN106553531A (en) 2017-04-05
CN106553531B CN106553531B (en) 2020-08-07

Family

ID=58416330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510624475.2A Active CN106553531B (en) 2015-09-25 2015-09-25 Power driving system and vehicle with same

Country Status (1)

Country Link
CN (1) CN106553531B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555859A (en) * 2015-09-25 2017-04-05 比亚迪股份有限公司 Power-driven system and the vehicle with which

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048441A (en) * 2001-08-02 2003-02-18 Honda Motor Co Ltd Four-wheel drive device for vehicle
CN200984967Y (en) * 2006-12-20 2007-12-05 比亚迪股份有限公司 Mixed power vehicle driving system
CN101722841A (en) * 2008-10-28 2010-06-09 比亚迪股份有限公司 Power assembly for vehicles
CN102848908A (en) * 2012-09-19 2013-01-02 长城汽车股份有限公司 Power driving device of electric vehicle and electric vehicle
CN103144528A (en) * 2013-02-20 2013-06-12 上海中科深江电动车辆有限公司 Dual-clutch transmission applied to hybrid electric vehicle and application method thereof
DE102012216404A1 (en) * 2012-09-14 2014-03-20 Schaeffler Technologies AG & Co. KG Spur gear differential for use as distributor gear for distributing drive power between front and rear axles of vehicle, has axles whose angular distances are defined on pitch circle so that integral multiple of angle value represents value
CN106555859A (en) * 2015-09-25 2017-04-05 比亚迪股份有限公司 Power-driven system and the vehicle with which

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048441A (en) * 2001-08-02 2003-02-18 Honda Motor Co Ltd Four-wheel drive device for vehicle
CN200984967Y (en) * 2006-12-20 2007-12-05 比亚迪股份有限公司 Mixed power vehicle driving system
CN101722841A (en) * 2008-10-28 2010-06-09 比亚迪股份有限公司 Power assembly for vehicles
DE102012216404A1 (en) * 2012-09-14 2014-03-20 Schaeffler Technologies AG & Co. KG Spur gear differential for use as distributor gear for distributing drive power between front and rear axles of vehicle, has axles whose angular distances are defined on pitch circle so that integral multiple of angle value represents value
CN102848908A (en) * 2012-09-19 2013-01-02 长城汽车股份有限公司 Power driving device of electric vehicle and electric vehicle
CN103144528A (en) * 2013-02-20 2013-06-12 上海中科深江电动车辆有限公司 Dual-clutch transmission applied to hybrid electric vehicle and application method thereof
CN106555859A (en) * 2015-09-25 2017-04-05 比亚迪股份有限公司 Power-driven system and the vehicle with which

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555859A (en) * 2015-09-25 2017-04-05 比亚迪股份有限公司 Power-driven system and the vehicle with which

Also Published As

Publication number Publication date
CN106553531B (en) 2020-08-07

Similar Documents

Publication Publication Date Title
CN106553526A (en) Power-driven system and the vehicle with which
CN106555844A (en) Power-driven system and the vehicle with which
CN106555851A (en) Differential mechanism, power drive system and vehicle
CN106553537B (en) Power-driven system and vehicle with it
CN106553535A (en) Power-driven system and the vehicle with which
CN106555858B (en) Power-driven system and vehicle with it
CN106553536A (en) Power-driven system and the vehicle with which
CN106553530B (en) Power-driven system and vehicle with it
CN106553532B (en) Power-driven system and vehicle with it
CN106555854B (en) Power-driven system and vehicle with it
CN106555845A (en) Differential mechanism, power drive system and vehicle
CN106553538A (en) Power-driven system and the vehicle with which
CN106555859A (en) Power-driven system and the vehicle with which
CN106555857A (en) Power-driven system and the vehicle with which
CN106555846A (en) Power-driven system and the vehicle with which
CN106553528B (en) Power driving system and vehicle with same
CN106553531A (en) Power-driven system and the vehicle with which
CN106555856B (en) Power-driven system and vehicle with it
CN106555853A (en) Power-driven system and the vehicle with which
CN106555849A (en) Power-driven system and the vehicle with which
CN106555852A (en) Power-driven system and the vehicle with which
CN106555848A (en) Power-driven system and the vehicle with which
CN106555847A (en) Power-driven system and the vehicle with which
CN106553533B (en) Power-driven system and vehicle with it
CN106555850A (en) Power-driven system and the vehicle with which

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant