CN106531837A - 双结单光子雪崩二极管及其制作方法 - Google Patents

双结单光子雪崩二极管及其制作方法 Download PDF

Info

Publication number
CN106531837A
CN106531837A CN201611245601.4A CN201611245601A CN106531837A CN 106531837 A CN106531837 A CN 106531837A CN 201611245601 A CN201611245601 A CN 201611245601A CN 106531837 A CN106531837 A CN 106531837A
Authority
CN
China
Prior art keywords
layer
type semiconductor
layers
well layer
traps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611245601.4A
Other languages
English (en)
Other versions
CN106531837B (zh
Inventor
卫振奇
张钰
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quantitative Sensing Technology (shanghai) Co Ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201611245601.4A priority Critical patent/CN106531837B/zh
Publication of CN106531837A publication Critical patent/CN106531837A/zh
Application granted granted Critical
Publication of CN106531837B publication Critical patent/CN106531837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了双结单光子雪崩二极管及其制作方法。现有双结结构光子探测效率低。本发明方法:对p‑衬底层掺杂形成p阱电荷层;p阱电荷层外端掺杂反型深n阱;反型深n阱内端掺杂p掺杂控制区域;反型深n阱外端掺杂n阱电荷层;n阱电荷层***掺杂p‑型半导体层;n阱电荷层外端掺杂p+型光吸收层;阳极电极置于p+型光吸收层外端;p‑型半导体层***掺杂n阱层和n+型半导体层,n+型半导体层掺入n阱层内;n+型半导体层外端设置阴极电极;反型深n阱外端掺杂p阱层和p+型半导体层,p+型半导体层掺入p阱层内;p+型半导体层外端设置GND电极。本发明具有实现短波/长波探测可调谐功能,且有更高的光子探测效率。

Description

双结单光子雪崩二极管及其制作方法
技术领域
本发明属于单光子探测技术领域,涉及一种双结单光子雪崩二极管及其制作方法。
背景技术
单光子探测技术是一种极微光探测传感技术,在当代生活中有着各种各样的应用潜力,比如:在生物发光、量子通信、大气污染检测、放射探测、天文研究、高灵敏度传感器等方面。单光子探测器现在主要有光电倍增管(PTM)、微通道板、超导纳米线、雪崩光电二极管(APD)、超导体单光子探测器和超导体转换边缘传感器。在采用单光子雪崩光电二极管的单光子探测***中,光子探测效率(Photon Detection Efficiency,PDE)是衡量雪崩光电二极管单光子探测能力的关键性因素。因此,设计具有高的光子探测效率且对特定波长具有高灵敏度的器件结构具有重要的意义和使用价值。
传统的单光子雪崩光电二极管的雪崩倍增区都是由一个平面结组成的,只能针对单一波长有好的探测灵敏度。而目前仅有的为数不多的双结结构具有比较低的光子探测效率。所以,研究一种具有高PDE和对不同波长有较高灵敏度的器件结构显得尤为重要。
发明内容
本发明的目的在于针对现有单光子雪崩光电二极管结构存在的上述不足,提出一种新型的双结单光子雪崩光电二极管结构及其制作方法,使器件在蓝绿光波段和近红外波段都具有较高的光子探测效率。本发明采用双结型结构,通过控制加在其上的偏置电压的大小实现其在不同波段的探测,另一方面,针对两个PN结采用不同的方法增强其在各自波段的光子吸收效率。
本发明双结单光子雪崩二极管,包括呈圆柱形的p-衬底层、p阱电荷层、反型深n阱、n阱电荷层和p+型光吸收层,以及呈圆环形的p掺杂控制区域、n阱层、n+型半导体层、p-型半导体层、p阱层、p+型半导体层、GND电极、阴极电极、阳极电极和二氧化硅层;所述的p-衬底层、p阱电荷层、p掺杂控制区域、反型深n阱、n阱层、n+型半导体层、n阱电荷层、p-型半导体层、p+型光吸收层、p阱层、p+型半导体层、GND电极、阴极电极、阳极电极和二氧化硅层均同轴设置。所述的反型深n阱位于p阱电荷层外端,且与p阱电荷层之间设有间隙;p掺杂控制区域的内径大于反型深n阱外径,且两端分别套于反型深n阱和p阱电荷层外;所述n阱层、n阱电荷层和p-型半导体层的内端均与反型深n阱接触,且p-型半导体层置于n阱层内;p+型光吸收层和n阱电荷层均置于p-型半导体层内;p+型光吸收层的内端面与n阱电荷层接触,外端面与p-型半导体层和n阱层的外端面均平齐,且p+型光吸收层的外径大于n阱电荷层的外径;所述的n+型半导体层置于n阱层外端面的凹槽内,且n阱层和n+型半导体层的外端面平齐;p阱层置于n阱层外,p+型半导体层置于p阱层的凹槽内,且p+型半导体层和p阱层的外端面均与n阱层平齐;所述的p+型光吸收层的外端面设置阳极电极,n+型半导体层的外端面设置阴极电极,p+型半导体层的外端面设置GND电极;所述的二氧化硅层覆盖n阱层、n+型半导体层、p-型半导体层、p+型光吸收层、p阱层和p+型半导体层的外端。
本发明双结单光子雪崩二极管的制作方法,具体如下:
步骤一、采用硼离子对硅衬底进行均匀掺杂,形成p-衬底层;在p-衬底层采用硼离子掺杂形成与p-衬底层同轴设置的p阱电荷层。
步骤二、在p阱电荷层外端采用磷离子进行反型深n阱的掺杂。
步骤三、在反型深n阱的内端采用硼离子掺杂形成p掺杂控制区域。p阱电荷层、p掺杂控制区域和反型深n阱内端形成一个非平面结。
步骤四、在反型深n阱外端用磷离子掺杂形成与反型深n阱同轴设置的n阱电荷层。
步骤五、在n阱电荷层***采用硼离子进行p-型半导体层的掺杂。
步骤六、在n阱电荷层的外端采用硼离子进行p+型光吸收层的掺杂,且p+型光吸收层***处于p-型半导体层中。阳极电极设置在p+型光吸收层的外端。p+型光吸收层与n阱电荷层形成一个平面结。
步骤七、在p-型半导体层的***采用磷离子进行n阱层和n+型半导体层的掺杂,n+型半导体层由n阱层外端面掺入n阱层内;n+型半导体层外端设置阴极电极;在反型深n阱外端、p-衬底层上采用硼离子进行p阱层和p+型半导体层的掺杂,p+型半导体层由p阱层外端面掺入p阱层内;p+型半导体层外端设置GND电极。
步骤八、二氧化硅层覆盖n阱层、n+型半导体层、p-型半导体层、p+型光吸收层、p阱层和p+型半导体层。
本发明的益处在于:
本发明具有实现短波/长波探测可调谐的功能,且较现有的单光子雪崩二极管结构有更高的光子探测效率。在过偏电压为3V的条件下,蓝绿光波段PDE达到46%,近红外光波段PDE达到35%。浅结部分采用p+型光吸收层和n阱电荷层的组合可以有效地提高其对短波光的吸收率;深结部分的p阱电荷层、p掺杂控制区域和反型深n阱的组合可以增大雪崩倍增区,提高雪崩击穿概率,进而提高光子探测效率。通过控制加在三个电极上的电压关系,可以使器件工作在只有浅结击穿、只有深结击穿和浅结深结都击穿三个模式下,也即器件可以分别对不同波长的光进行探测。
附图说明
图1为本发明的结构示意图。
具体实施方式
下面结合附图对本发明做进一步的说明。
参照图1,双结单光子雪崩二极管,包括呈圆柱形的p-衬底层1、p阱电荷层2、反型深n阱4、n阱电荷层7和p+型光吸收层9,以及呈圆环形的p掺杂控制区域3、n阱层5、n+型半导体层6、p-型半导体层8、p阱层10、p+型半导体层11、GND电极12、阴极电极13、阳极电极14和二氧化硅层15;p-衬底层1、p阱电荷层2、p掺杂控制区域3、反型深n阱4、n阱层5、n+型半导体层6、n阱电荷层7、p-型半导体层8、p+型光吸收层9、p阱层10、p+型半导体层11、GND电极12、阴极电极13、阳极电极14和二氧化硅层15均同轴设置。反型深n阱4位于p阱电荷层2外端,且与p阱电荷层2之间设有间隙;p掺杂控制区域3的内径大于反型深n阱4外径,且两端分别套于反型深n阱4和p阱电荷层2外;n阱层5、n阱电荷层7和p-型半导体层8的内端均与反型深n阱4接触,且p-型半导体层8置于n阱层5内;p+型光吸收层9和n阱电荷层7均置于p-型半导体层8内;p+型光吸收层9的内端面与n阱电荷层7接触,外端面与p-型半导体层8和n阱层5的外端面均平齐,且p+型光吸收层9的外径大于n阱电荷层7的外径;n+型半导体层6置于n阱层5外端面的凹槽内,且n阱层5和n+型半导体层6的外端面平齐;p阱层10置于n阱层5外,p+型半导体层11置于p阱层10的凹槽内,且p+型半导体层11和p阱层10的外端面均与n阱层5平齐;p+型光吸收层9的外端面设置阳极电极14,n+型半导体层6的外端面设置阴极电极13,p+型半导体层11的外端面设置GND电极12;二氧化硅层15覆盖n阱层5、n+型半导体层6、p-型半导体层8、p+型光吸收层9、p阱层10和p+型半导体层11的外端。
p阱层10、p+型半导体层11和n阱层5、n+型半导体层6用于形成GND电极12和阴极电极13的欧姆接触。深结与浅结共用阴极电极13,GND电极12接地。经测量,本发明中浅结的反向击穿电压为11.5V,深结的反向击穿电压为23.1V。当阴极电极13和阳极电极14的反向偏压大于11.5V,阴极电极13与GND电极12的反向偏压小于23.1V时,器件工作在浅结击穿模式,对短波段的光有较好的吸收;当阴极电极13和阳极电极14的反向偏压小于11.5V,阴极电极13与GND电极12的反向偏压大于23.1V时,器件工作在深结击穿模式,对长波段的光有较好的吸收;当阴极电极13和阳极电极14的反向偏压大于11.5V,阴极电极13与GND电极12的反向偏压也大于23.1V时,两个结都击穿,器件的光子探测效率为两者之和。
该双结单光子雪崩二极管的制作方法,具体如下:
步骤一、采用硼离子对硅衬底进行均匀掺杂,形成p-衬底层1;在p-衬底层1采用硼离子掺杂形成与p-衬底层1同轴设置的p阱电荷层2;
步骤二、在p阱电荷层2外端采用磷离子进行反型深n阱4的掺杂,浓度从外端至内端逐渐增高;这样做可以加大内端的电场强度,使深结更容易发生雪崩击穿。
步骤三、在反型深n阱4的内端采用硼离子掺杂形成p掺杂控制区域3。p阱电荷层2、p掺杂控制区域3和反型深n阱4内端形成一个非平面结,它们之间的耗尽层即深结部分的雪崩倍增区;较以往的平面结而言,其拥有更大的雪崩倍增区,可以提高雪崩击穿的概率,进而提高长波段光的吸收效率。
步骤四、在反型深n阱4外端用磷离子掺杂形成与反型深n阱4同轴设置的n阱电荷层7。
步骤五、在n阱电荷层7***采用硼离子进行p-型半导体层8的掺杂,起到保护环的作用,可以防止浅结的边缘击穿,并且当加在阳极电极14和阴极电极13上的反向电压不足以引起浅结击穿的情况下还可以形成相对于深结的竞争结,收集短波长光电子,使深结的探测范围向长波方向移动。
步骤六、在n阱电荷层7的外端采用硼离子进行p+型光吸收层9的掺杂,且p+型光吸收层9***处于p-型半导体层8中。阳极电极14设置在p+型光吸收层9的外端。p+型光吸收层9与n阱电荷层7形成一个平面结,它们之间的耗尽层即浅结部分的雪崩倍增区。采用p+/n-well结构可以对短波光有较好的吸收效率。
步骤七、在p-型半导体层8的***采用磷离子进行n阱层5和n+型半导体层6的掺杂,n+型半导体层6由n阱层5外端面掺入n阱层5内;n+型半导体层6外端设置阴极电极13;在反型深n阱4外端、p-衬底层1上采用硼离子进行p阱层10和p+型半导体层11的掺杂,p+型半导体层11由p阱层10外端面掺入p阱层10内;p+型半导体层11外端设置GND电极12。
步骤八、二氧化硅层15覆盖n阱层5、n+型半导体层6、p-型半导体层8、p+型光吸收层9、p阱层10和p+型半导体层11。
浅结部分采用p+型光吸收层和n阱电荷层的组合,对蓝绿光有高的探测效率。n阱电荷层确立了该结的雪崩倍增区。围绕在p+型光吸收层***的p-型半导体层用来形成保护环,防止产生边缘击穿,同时形成相对于深结的竞争结,收集短波长光电子,使深结的探测范围向长波方向移动。
深结部分由反型深n阱与p阱电荷层构成雪崩倍增区,反型深n阱边缘采用“***阱控制”的方法,用p掺杂控制区域环绕反型深n阱的***,控制其***电场在合理范围之内。传统的平面结通过降低边缘电场强度,以降低光子探测效率的代价来防止边缘击穿。本发明在防止边缘先击穿的前提下,使其边缘和中心同时发生击穿,由此形成一个不限于中心区域的高电场区域,很好地增大了雪崩倍增区域,提高了雪崩击穿概率,并进一步提高了光子探测效率。

Claims (2)

1.双结单光子雪崩二极管,包括呈圆柱形的p-衬底层、p阱电荷层、反型深n阱、n阱电荷层和p+型光吸收层,以及呈圆环形的p掺杂控制区域、n阱层、n+型半导体层、p-型半导体层、p阱层、p+型半导体层、GND电极、阴极电极、阳极电极和二氧化硅层;其特征在于:所述的p-衬底层、p阱电荷层、p掺杂控制区域、反型深n阱、n阱层、n+型半导体层、n阱电荷层、p-型半导体层、p+型光吸收层、p阱层、p+型半导体层、GND电极、阴极电极、阳极电极和二氧化硅层均同轴设置;所述的反型深n阱位于p阱电荷层外端,且与p阱电荷层之间设有间隙;p掺杂控制区域的内径大于反型深n阱外径,且两端分别套于反型深n阱和p阱电荷层外;所述n阱层、n阱电荷层和p-型半导体层的内端均与反型深n阱接触,且p-型半导体层置于n阱层内;p+型光吸收层和n阱电荷层均置于p-型半导体层内;p+型光吸收层的内端面与n阱电荷层接触,外端面与p-型半导体层和n阱层的外端面均平齐,且p+型光吸收层的外径大于n阱电荷层的外径;所述的n+型半导体层置于n阱层外端面的凹槽内,且n阱层和n+型半导体层的外端面平齐;p阱层置于n阱层外,p+型半导体层置于p阱层的凹槽内,且p+型半导体层和p阱层的外端面均与n阱层平齐;所述的p+型光吸收层的外端面设置阳极电极,n+型半导体层的外端面设置阴极电极,p+型半导体层的外端面设置GND电极;所述的二氧化硅层覆盖n阱层、n+型半导体层、p-型半导体层、p+型光吸收层、p阱层和p+型半导体层的外端。
2.双结单光子雪崩二极管的制作方法,其特征在于:该方法具体如下:
步骤一、采用硼离子对硅衬底进行均匀掺杂,形成p-衬底层;在p-衬底层采用硼离子掺杂形成与p-衬底层同轴设置的p阱电荷层;
步骤二、在p阱电荷层外端采用磷离子进行反型深n阱的掺杂;
步骤三、在反型深n阱的内端采用硼离子掺杂形成p掺杂控制区域;p阱电荷层、p掺杂控制区域和反型深n阱内端形成一个非平面结;
步骤四、在反型深n阱外端用磷离子掺杂形成与反型深n阱同轴设置的n阱电荷层;
步骤五、在n阱电荷层***采用硼离子进行p-型半导体层的掺杂;
步骤六、在n阱电荷层的外端采用硼离子进行p+型光吸收层的掺杂,且p+型光吸收层***处于p-型半导体层中;阳极电极设置在p+型光吸收层的外端;p+型光吸收层与n阱电荷层形成一个平面结;
步骤七、在p-型半导体层的***采用磷离子进行n阱层和n+型半导体层的掺杂,n+型半导体层由n阱层外端面掺入n阱层内;n+型半导体层外端设置阴极电极;在反型深n阱外端、p-衬底层上采用硼离子进行p阱层和p+型半导体层的掺杂,p+型半导体层由p阱层外端面掺入p阱层内;p+型半导体层外端设置GND电极;
步骤八、二氧化硅层覆盖n阱层、n+型半导体层、p-型半导体层、p+型光吸收层、p阱层和p+型半导体层。
CN201611245601.4A 2016-12-29 2016-12-29 双结单光子雪崩二极管及其制作方法 Active CN106531837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611245601.4A CN106531837B (zh) 2016-12-29 2016-12-29 双结单光子雪崩二极管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611245601.4A CN106531837B (zh) 2016-12-29 2016-12-29 双结单光子雪崩二极管及其制作方法

Publications (2)

Publication Number Publication Date
CN106531837A true CN106531837A (zh) 2017-03-22
CN106531837B CN106531837B (zh) 2017-10-17

Family

ID=58338483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611245601.4A Active CN106531837B (zh) 2016-12-29 2016-12-29 双结单光子雪崩二极管及其制作方法

Country Status (1)

Country Link
CN (1) CN106531837B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039425A (zh) * 2017-03-29 2017-08-11 湖北京邦科技有限公司 一种新型半导体光电倍增器件
CN108511467A (zh) * 2018-03-06 2018-09-07 南京邮电大学 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法
CN109300992A (zh) * 2018-08-16 2019-02-01 杭州电子科技大学 一种高探测效率的单光子雪崩二极管及其制作方法
CN110993710A (zh) * 2019-12-30 2020-04-10 上海集成电路研发中心有限公司 一种单光子雪崩二极管及其制备方法
CN111684610A (zh) * 2017-06-26 2020-09-18 索尼半导体解决方案公司 单光子雪崩二极管和用于操作单光子雪崩二极管的方法
US20210066450A1 (en) * 2019-04-12 2021-03-04 Globalfoundries Inc. Diode structures
CN114141903A (zh) * 2021-11-26 2022-03-04 中国科学院长春光学精密机械与物理研究所 双pn结式硅基光电二极管及其制备方法
CN114242826A (zh) * 2021-12-02 2022-03-25 武汉新芯集成电路制造有限公司 单光子雪崩二极管及其形成方法
CN114284383A (zh) * 2021-02-26 2022-04-05 神盾股份有限公司 单光子雪崩二极管
CN114497265A (zh) * 2022-02-11 2022-05-13 中国科学院半导体研究所 一种雪崩光电探测器
CN115084307A (zh) * 2022-08-18 2022-09-20 北京邮电大学 一种抗辐照加固单光子探测器及其制备方法
CN115084306A (zh) * 2021-03-11 2022-09-20 西安电子科技大学 一种集成化硅基宽光谱单光子雪崩二极管及制作方法
CN115347072A (zh) * 2022-10-17 2022-11-15 季华实验室 双结型单光子雪崩二极管、光电探测器阵列

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662579A1 (en) * 2004-11-25 2006-05-31 STMicroelectronics (Research & Development) Limited Photodiode detector
US20100271108A1 (en) * 2009-04-23 2010-10-28 Stmicroelectronics S.R.L. Geiger-mode photodiode with integrated and jfet-effect-adjustable quenching resistor, photodiode array, and corresponding manufacturing method
CN101931021A (zh) * 2010-08-28 2010-12-29 湘潭大学 单光子雪崩二极管及基于此的三维coms图像传感器
CN105185796A (zh) * 2015-09-30 2015-12-23 南京邮电大学 一种高探测效率的单光子雪崩二极管探测器阵列单元
CN103137773B (zh) * 2013-03-12 2016-01-20 电子科技大学 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN106057958A (zh) * 2016-08-08 2016-10-26 杭州电子科技大学 单光子雪崩光电二极管及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662579A1 (en) * 2004-11-25 2006-05-31 STMicroelectronics (Research & Development) Limited Photodiode detector
US20100271108A1 (en) * 2009-04-23 2010-10-28 Stmicroelectronics S.R.L. Geiger-mode photodiode with integrated and jfet-effect-adjustable quenching resistor, photodiode array, and corresponding manufacturing method
CN101931021A (zh) * 2010-08-28 2010-12-29 湘潭大学 单光子雪崩二极管及基于此的三维coms图像传感器
CN103137773B (zh) * 2013-03-12 2016-01-20 电子科技大学 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN105185796A (zh) * 2015-09-30 2015-12-23 南京邮电大学 一种高探测效率的单光子雪崩二极管探测器阵列单元
CN106057958A (zh) * 2016-08-08 2016-10-26 杭州电子科技大学 单光子雪崩光电二极管及其制作方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALESSANDRO SPINELLI,ET AL.: "Avalanche Detector with Ultraclean Response for Time-Resolved Photon Counting", 《IEEE JOURNAL OF QUANTUM ELECTRONICS》 *
HAN-DIN LIU,ET AL.: "Double Mesa Sidewall Silicon Carbide Avalanche Photodiode", 《IEEE JOURNAL OF QUANTUM ELECTRONICS》 *
廖亚香: "SiGe/Si单光子雪崩光电二极管仿真", 《红外与激光工程》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039425A (zh) * 2017-03-29 2017-08-11 湖北京邦科技有限公司 一种新型半导体光电倍增器件
CN111684610A (zh) * 2017-06-26 2020-09-18 索尼半导体解决方案公司 单光子雪崩二极管和用于操作单光子雪崩二极管的方法
CN111684610B (zh) * 2017-06-26 2023-07-21 索尼半导体解决方案公司 单光子雪崩二极管和用于操作单光子雪崩二极管的方法
CN108511467A (zh) * 2018-03-06 2018-09-07 南京邮电大学 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法
CN108511467B (zh) * 2018-03-06 2020-06-19 南京邮电大学 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法
CN109300992A (zh) * 2018-08-16 2019-02-01 杭州电子科技大学 一种高探测效率的单光子雪崩二极管及其制作方法
CN109300992B (zh) * 2018-08-16 2020-01-21 杭州电子科技大学 一种高探测效率的单光子雪崩二极管及其制作方法
US20210066450A1 (en) * 2019-04-12 2021-03-04 Globalfoundries Inc. Diode structures
US11508810B2 (en) * 2019-04-12 2022-11-22 Globalfoundries Inc. Diode structures
CN110993710A (zh) * 2019-12-30 2020-04-10 上海集成电路研发中心有限公司 一种单光子雪崩二极管及其制备方法
CN114284383A (zh) * 2021-02-26 2022-04-05 神盾股份有限公司 单光子雪崩二极管
WO2022179223A1 (zh) * 2021-02-26 2022-09-01 神盾股份有限公司 单光子雪崩二极管
CN115084306A (zh) * 2021-03-11 2022-09-20 西安电子科技大学 一种集成化硅基宽光谱单光子雪崩二极管及制作方法
CN114141903A (zh) * 2021-11-26 2022-03-04 中国科学院长春光学精密机械与物理研究所 双pn结式硅基光电二极管及其制备方法
CN114141903B (zh) * 2021-11-26 2023-11-21 中国科学院长春光学精密机械与物理研究所 双pn结式硅基光电二极管及其制备方法
CN114242826A (zh) * 2021-12-02 2022-03-25 武汉新芯集成电路制造有限公司 单光子雪崩二极管及其形成方法
CN114242826B (zh) * 2021-12-02 2023-12-22 武汉新芯集成电路制造有限公司 单光子雪崩二极管及其形成方法
CN114497265A (zh) * 2022-02-11 2022-05-13 中国科学院半导体研究所 一种雪崩光电探测器
CN115084307A (zh) * 2022-08-18 2022-09-20 北京邮电大学 一种抗辐照加固单光子探测器及其制备方法
CN115084307B (zh) * 2022-08-18 2022-10-28 北京邮电大学 一种抗辐照加固单光子探测器及其制备方法
CN115347072A (zh) * 2022-10-17 2022-11-15 季华实验室 双结型单光子雪崩二极管、光电探测器阵列
CN115347072B (zh) * 2022-10-17 2022-12-20 季华实验室 双结型单光子雪崩二极管、光电探测器阵列

Also Published As

Publication number Publication date
CN106531837B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
CN106531837B (zh) 双结单光子雪崩二极管及其制作方法
CN106449770B (zh) 防止边缘击穿的环形栅单光子雪崩二极管及其制备方法
CN102176470B (zh) 一种以黑硅材料为光敏层的背照式Si-PIN光电探测器及其制备方法
CN103400872B (zh) 表面电场增强的pin光电探测器的结构及其制备方法
CN108039390A (zh) 非接触式保护环单光子雪崩二极管及制备方法
CN104576805B (zh) 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
US8217436B2 (en) Single photon avalanche diodes
CN104810377B (zh) 一种高集成度的单光子雪崩二极管探测器阵列单元
CN107946389A (zh) 一种针对长波段微弱光的cmos单光子雪崩二极管
CN108511467B (zh) 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法
CN108231947B (zh) 一种单光子雪崩二极管探测器结构及其制造方法
CN106057958B (zh) 单光子雪崩光电二极管的制作方法
CN105810775A (zh) 一种基于cmos图像传感器工艺的np型单光子雪崩二极管
CN110246903B (zh) 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
CN109300992B (zh) 一种高探测效率的单光子雪崩二极管及其制作方法
CN106684200B (zh) 一种三色红外探测器的制备方法
CN103137773A (zh) 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN103904152B (zh) 光电探测器及其制造方法和辐射探测器
CN203218303U (zh) 光电探测器和辐射探测器
CN110265489A (zh) 具有环栅保护环的单光子雪崩光电二极管及其制作方法
CN208904029U (zh) 可调制表面能带的碲镉汞雪崩二极管探测器
CN114823740A (zh) 内嵌可控硅整流结构复合雪崩结光电探测器及其制作方法
CN110289273A (zh) 一种具有多指漏极的光电探测器件及其制作方法
Chen et al. Design, fabrication, and measurement of two silicon-based ultraviolet and blue-extended photodiodes
CN110767767A (zh) 一种双保护环结构的新型spad探测器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190220

Address after: Room 2205, 7th floor, 111 Fengpu Avenue, Fengxian District, Shanghai 201400

Patentee after: Quantitative Sensing Technology (Shanghai) Co., Ltd.

Address before: 310018 2 street, Xiasha Higher Education Park, Hangzhou, Zhejiang

Patentee before: Hangzhou Electronic Science and Technology Univ

TR01 Transfer of patent right