CN106526468A - 基于波形特征识别的断路器状态检测方法 - Google Patents

基于波形特征识别的断路器状态检测方法 Download PDF

Info

Publication number
CN106526468A
CN106526468A CN201610908008.7A CN201610908008A CN106526468A CN 106526468 A CN106526468 A CN 106526468A CN 201610908008 A CN201610908008 A CN 201610908008A CN 106526468 A CN106526468 A CN 106526468A
Authority
CN
China
Prior art keywords
current signal
breaker
point
condition
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610908008.7A
Other languages
English (en)
Other versions
CN106526468B (zh
Inventor
李宾宾
柯艳国
田宇
罗沙
朱胜龙
朱太云
杨为
程登峰
叶剑涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201610908008.7A priority Critical patent/CN106526468B/zh
Publication of CN106526468A publication Critical patent/CN106526468A/zh
Application granted granted Critical
Publication of CN106526468B publication Critical patent/CN106526468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明公开了一种基于波形特征识别的断路器状态检测方法,其特征是采集正常工况断路器分合闸电流信号,并分解为若干固有模式函数分量;将前三阶固有模式函数分量相加构成去噪信号,并表示于笛卡尔坐标系中;在电流波形上等间距选取特征点;连接坐标原点与各特征点,组成波形特征向量集合;利用相同步骤对实际断路器电流信号进行计算,得到波形特征向量集合;定义向量集合相似度并比较两特征向量集合,根据向量集合相似度判断断路器状况。本发明可以实现断路器故障的高效、准确诊断,能有效去除电流信号中的噪声干扰,消除波形特征提取不准确对结果判定的影响,提高计算准确度及效率。

Description

基于波形特征识别的断路器状态检测方法
技术领域
本发明涉及电力设备状态检测方法,尤其是涉及一种基于分合闸电流波形的断路器状态检测方法。
背景技术
随着城市规模的扩大和用电量的增长,电网越来越庞大,单位人员所管辖的配电网设备数量急剧增加,因此提高电网运行效率和现场劳动生产率,开展电网设备状态检修,转变电网设备运行管理模式迫在眉睫。
电网开关设备是数量最庞大的电网设备,断路器是最复杂、最重要的开关设备,被广泛用于发电厂、变电站、开关站及用电线路上。断路器的安全稳定运行,不仅可以有效限制短路电流从而降低故障电流产生的电热效应,而且对提高整个电力***的安全稳定性有重要意义。
断路器随着动作次数的增加,其故障概率也显著增加。60%-70%的断路器缺陷或故障是由断路器机构缺陷造成的,包括:机构卡涩、油脂凝固、弹簧老化、慢分慢合、连杆传动轴断裂和机构拒动等。
目前常用的断路器故障检测包括红外检测,以及局部放电检测,这类检测方式可以较好地实现断路器在线监测。但其仅仅针对电接触缺陷和绝缘介质缺陷进行诊断,对断路器机构故障尚不能进行有效检测。
发明内容
本发明是为避免上述现有技术所存在的不足,提供一种基于波形特征识别的断路器状态检测方法,利用采集获得的断路器分合闸电流信号,通过识别并对比正常与故障时的电流波形,从而对断路器状态进行高效、准确检测。
本发明为解决技术问题采用如下技术方案:
本发明基于波形特征识别的断路器状态检测方法的特点是包括如下步骤:
步骤1、采集一段正常工况下断路器的正常分合闸电流信号x(t);
步骤2、将电流信号x(t)分解为m个固有模式函数分量IMF,即:
x(t)=∑ci(t)+ri(t);
其中,ci(t)为电流信号x(t)的一个IMF分量,i=1,…,m;ri(t)为差值信号;
步骤3、将前p阶IMF分量相加,p≤m,构成去噪后的电流信号z(t)为:
步骤4、对于所述电流去噪信号z(t)进行分析,得到正常工况下断路器的分合闸电流信号特征向量集X为:是与正常分合闸电流信号的特征向量所对应的特征点的坐标;
步骤5、针对现场实际工况进行信号采集,获得被测断路器的分合闸电流信号,按照与步骤2~步骤4的相同方式获得实际工况下被测断路器的电流信号特征向量集Y为:是与被测断路器的分合闸电流信号的特征向量所对应的特征点的坐标;
步骤6、计算获得向量集合相似度d为:
其中,k为特征向量的个数,j=1,2…k;
若d值大于或等于0.9,判断被测断路器与正常工况下断路器的分合闸电流信号波形相似,现场实际工况为正常工况,被测断路器为正常;
若d值小于0.9,因被测断路器与正常工况下断路器的分合闸电流信号波形存在较大偏差,判断为被测断路器出现故障。
本发明基于波形特征识别的断路器状态检测方法的特点也在于:所述步骤2中将电流信号x(t)分解为若干个固有模式函数分量IMF是按如下步骤进行:
步骤2.1、对所述电流信号x(t)进行求导,获得时间序列y(t),将所述时间序列y(t)中相邻两点乘积记为:pyr(t),则有:pyr(t)=yr(t)×yr-1(t),r=2,3,…,n-1;
步骤2.2、根据pyr(t)和y(t)的值,按如下方式依次找寻电流信号x(t)的所有局部极大值点eb(t)和所有局部极小值点es(t):
若pyr(t)<0,且yr-1(t)<0,则xr-1(t)为局部极小值点es(t);
若pyr(t)<0,且yr-1(t)>0,则xr-1(t)为局部极大值点eb(t);
若pyr(t)>0,则xr-1(t)为非极值点;
当pyr(t)=0,且yr-1(t)=0,令pyr(t)'为:pyr(t)'=yr(t)×yr-2(t),则有:
若pyr(t)'<0,且yr-2(t)<0,则xr-1(t)为局部极小值点es(t);
若pyr(t)'<0,且yr-2(t)>0,则xr-1(t)为局部极大值点eb(t);
若yr-2(t)=0,则xr-1(t)为非极值点;
步骤2.3、将步骤2.2中所有局部极大值点eb(t)和所有局部极小值点es(t)用三次样条插值函数s(t)连接起来,分别求出上包络线emax(t)和下包络线emin(t),所述三次样条插值函数s(t)是在电流信号x(t)的每一个小区间上不超过三次的多项式,并有:
其中,mq和mq+1为三次样条插值函数s(t)在对应的小区间两端点处的二阶导数值;所述小区间定义为[tq,tq+1];
步骤2.4、计算获得上包络线和下包络线的均值m(t)为:m(t)=(emax(t)+emin(t))/2,将电流信号x(t)减去所述均值m(t),得到更新时间序列y1(t);
步骤2.5、判断所述更新时间序列y1(t)是否同时满足条件A和条件B:
条件A、在整个信号长度上,极值点和过零点的数目相等或者相差一个;
条件B、在任意时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的平均值为零;
若同时满足条件A和条件B,则y1(t)为固有模式函数分量;
若不同时满足条件A和条件B,则将y1(t)作为一个原始分量,重复步骤2.1~2.4,直至更新时间序列y1(t)同时满足条件A和条件B时,将更新时间序列y1(t)记为ci(t),ci(t)即为电流信号x(t)的一个固有模式函数分量;
步骤2.6、将ci(t)从电流信号x(t)中分离出来,得到差值信号ri(t)为:ri(t)=x(t)-ci(t);
以所述差值信号ri(t)作为更新的待处理电流信号;
步骤2.7、重复步骤2.1~2.6,直至满足迭代终止准则,得到全部m个固有模式函数分量,所述迭代终止准则为:所得到的更新时间序列yi(t)为窄带信号;
所述电流信号x(t)即被分解为由式(1)表征的若干个IMF分量和剩余的差值信号之和:
x(t)=∑ci(t)+ri(t)。
本发明基于波形特征识别的断路器状态检测方法的特点也在于:
所述步骤4是按如下过程获得特征向量集X:
步骤4.1、记信号起始点O为坐标原点O(0,0),从起始点O开始,每间隔n0个点选取一个特征点T,所述特征点T的坐标记为n0=round(f/1000),round表示取整数运算,特征点个数w为:w=round(n/n0),j=1,2,...,w,f为采样频率,n采样点个数;
步骤4.2、分别连接坐标原点O与各特征点T,得到各特征向量,以所述各特征向量构成电流信号的特征向量集X,
所述步骤5是按如下过程获得特征向量集Y:
针对现场实际工况进行信号采集,获得被测断路器的分合闸电流信号,按照与步骤4.1~步骤4.2相同的方式获得特征向量集Y,
断路器分合闸控制回路的电流信号中包含了断路器分合闸过程的各种时间参量、机构动作参量、以及线圈电气参量等信息,利用该电流信号可以对断路器进行全方位的检测。同时可以降低检修工具的投资,提高现场检测效率,优化配电网设备状态管理模式和状态检修策略。本发明通过求取断路器分合闸电流波形的特征向量集合,并将实际特征向量集合与正常工况下进行对比,从而得到断路器的运行状态,与现有技术相比,本发明有益效果体现在:
1、本发明方法中对电流信号进行分解,并将分解后保留电流信号主要特征的IMF进行组合,形成新的去噪电流信号,从而能够最大限度避免噪声及其它干扰对分析结果的影响。
2、本发明方法对于电流信号的全波形进行较为密集的特征点提取,从而使得特征向量集合能够更好地描述电流波形的变化情况。
3、本发明方法中定义向量集合相似度,能够充分考虑各个特征向量的差异情况,从而得到更为准确的对比结果。
4、以本发明方法所得到的向量集合相似度,可以为断路器状态检测提供定量判断依据,从而得到更为准确的得到断路器运行状态。
5、本发明方法可以实现断路器故障的高效、准确诊断,通过引入特征向量集合消除波形特征提取不准确对结果判定的影响,提高计算准确度及效率。
附图说明
图1是本发明断路器故障检测的流程图。
具体实施方式
参见图1,本实施例中基于波形特征识别的断路器状态检测方法包括如下步骤:
步骤1、采集一段正常工况下断路器的正常分合闸电流信号x(t)。
步骤2、将电流信号x(t)分解为m个固有模式函数分量Intrinsic Mode Function,简称为IMF分量,即:
x(t)=∑ci(t)+ri(t);
其中,ci(t)为电流信号x(t)的一个IMF分量,i=1,…,m;ri(t)为差值信号。
步骤3、将前p阶IMF分量相加,p≤m,构成去噪后的电流信号z(t)为:
步骤4、对于电流去噪信号z(t)进行分析,得到正常工况下断路器的分合闸电流信号特征向量集X为:是与正常分合闸电流信号的特征向量所对应的特征点的坐标。
步骤5、针对现场实际工况进行信号采集,获得被测断路器的分合闸电流信号,按照与步骤2~步骤4的相同方式获得实际工况下被测断路器的电流信号特征向量集Y为:是与被测断路器的分合闸电流信号的特征向量所对应的特征点的坐标。
步骤6、计算获得向量集合相似度d为:
其中,k为特征向量的个数,j=1,2…k;
若d值大于或等于0.9,判断被测断路器与正常工况下断路器的分合闸电流信号波形相似,现场实际工况为正常工况,被测断路器为正常。
若d值小于0.9,因被测断路器与正常工况下断路器的分合闸电流信号波形存在较大偏差,判断为被测断路器出现故障。
具体实施中,步骤2中将电流信号x(t)分解为若干个固有模式函数分量IMF按如下步骤进行:
步骤2.1、对电流信号x(t)进行求导,获得时间序列y(t),将时间序列y(t)中相邻两点乘积记为:pyr(t),则有:pyr(t)=yr(t)×yr-1(t),r=2,3,…,n-1。
步骤2.2、根据pyr(t)和y(t)的值,按如下方式依次找寻电流信号x(t)的所有局部极大值点eb(t)和所有局部极小值点es(t):
若pyr(t)<0,且yr-1(t)<0,则xr-1(t)为局部极小值点es(t);
若pyr(t)<0,且yr-1(t)>0,则xr-1(t)为局部极大值点eb(t);
若pyr(t)>0,则xr-1(t)为非极值点;
当pyr(t)=0,且yr-1(t)=0,令pyr(t)'为:pyr(t)'=yr(t)×yr-2(t),则有:
若pyr(t)'<0,且yr-2(t)<0,则xr-1(t)为局部极小值点es(t);
若pyr(t)'<0,且yr-2(t)>0,则xr-1(t)为局部极大值点eb(t);
若yr-2(t)=0,则xr-1(t)为非极值点。
步骤2.3、将步骤2.2中所有局部极大值点eb(t)和所有局部极小值点es(t)用三次样条插值函数s(t)连接起来,分别按常规方法求出上包络线emax(t)和下包络线emin(t),三次样条插值函数s(t)是在电流信号x(t)的每一个小区间上不超过三次的多项式,并有:
其中,mq和mq+1为三次样条插值函数s(t)在对应的小区间两端点处的二阶导数值;小区间定义为[tq,tq+1]。
步骤2.4、计算获得上包络线和下包络线的均值m(t)为:m(t)=(emax(t)+emin(t))/2,将电流信号x(t)减去均值m(t),得到更新时间序列y1(t)。
步骤2.5、判断更新时间序列y1(t)是否同时满足条件A和条件B:
条件A、在整个信号长度上,极值点和过零点的数目相等或者相差一个;
条件B、在任意时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的平均值为零;
若同时满足条件A和条件B,则y1(t)为固有模式函数分量;
若不同时满足条件A和条件B,则将y1(t)作为一个原始分量,重复步骤2.1~2.4,直至更新时间序列y1(t)同时满足条件A和条件B时,将更新时间序列y1(t)记为ci(t),ci(t)即为电流信号x(t)的一个固有模式函数分量。
步骤2.6、将ci(t)从电流信号x(t)中分离出来,得到差值信号ri(t)为:ri(t)=x(t)-ci(t);
以差值信号ri(t)作为更新的待处理电流信号。
步骤2.7、重复步骤2.1~2.6,直至满足迭代终止准则,得到全部m个固有模式函数分量,迭代终止准则为:所得到的更新时间序列yi(t)为窄带信号;
电流信号x(t)即被分解为由式(1)表征的若干个IMF分量和剩余的差值信号之和:
x(t)=∑ci(t)+ri(t)。
本实施例中按如下过程获得特征向量集X:
步骤4.1、记信号起始点O为坐标原点O(0,0),从起始点O开始,每间隔n0个点选取一个特征点T,特征点T的坐标记为n0=round(f/1000),round表示取整数运算,特征点个数w为:w=round(n/n0),j=1,2,...,w,f为采样频率,n采样点个数。
步骤4.2、分别连接坐标原点O与各特征点T,得到各特征向量,以各特征向量构成电流信号的特征向量集X,
步骤5是按如下过程获得特征向量集Y:
针对现场实际工况进行信号采集,获得被测断路器的分合闸电流信号,按照与步骤4.1~步骤4.2相同的方式获得特征向量集Y,
本实施例以某型号断路器样机为研究对象,并有:f=10000Hz,n=10000,电流信号x(t)电流补分解为六个IMF分量,p=3,n0=10,m=1000,最终计算获得d=0.35,判断断路器存在故障,通过实际检修验证,该断路器启动部件存在卡涩故障,从而验证了本发明方法的有效性和准确性。

Claims (3)

1.一种基于波形特征识别的断路器状态检测方法,其特征是包括如下步骤:
步骤1、采集一段正常工况下断路器的正常分合闸电流信号x(t);
步骤2、将电流信号x(t)分解为m个固有模式函数分量IMF,即:
x(t)=∑ci(t)+ri(t);
其中,ci(t)为电流信号x(t)的一个IMF分量,i=1,…,m;ri(t)为差值信号;
步骤3、将前p阶IMF分量相加,p≤m,构成去噪后的电流信号z(t)为:
z ( t ) = &Sigma; i = 1 p c i ( t )
步骤4、对于所述电流去噪信号z(t)进行分析,得到正常工况下断路器的分合闸电流信号特征向量集X为: 是与正常分合闸电流信号的特征向量所对应的特征点的坐标;
步骤5、针对现场实际工况进行信号采集,获得被测断路器的分合闸电流信号,按照与步骤2~步骤4的相同方式获得实际工况下被测断路器的电流信号特征向量集Y为:(xj 1,yj 1)是与被测断路器的分合闸电流信号的特征向量所对应的特征点的坐标;
步骤6、计算获得向量集合相似度d为:
d = 1 - &Sigma; j = 1 k ( ( x j 1 - x j 0 ) 2 + ( y j 1 - y j 0 ) 2 | x j 1 - x j 0 | + | y j 1 - y j 0 | ) 2
其中,k为特征向量的个数,j=1,2…k;
若d值大于或等于0.9,判断被测断路器与正常工况下断路器的分合闸电流信号波形相似,现场实际工况为正常工况,被测断路器为正常;
若d值小于0.9,因被测断路器与正常工况下断路器的分合闸电流信号波形存在较大偏差,判断为被测断路器出现故障。
2.根据权利要求1所述的基于波形特征识别的断路器状态检测方法,其特征是:所述步骤2中将电流信号x(t)分解为若干个固有模式函数分量IMF是按如下步骤进行:
步骤2.1、对所述电流信号x(t)进行求导,获得时间序列y(t),将所述时间序列y(t)中相邻两点乘积记为:pyr(t),则有:pyr(t)=yr(t)×yr-1(t),r=2,3,…,n-1;
步骤2.2、根据pyr(t)和y(t)的值,按如下方式依次找寻电流信号x(t)的所有局部极大值点eb(t)和所有局部极小值点es(t):
若pyr(t)<0,且yr-1(t)<0,则xr-1(t)为局部极小值点es(t);
若pyr(t)<0,且yr-1(t)>0,则xr-1(t)为局部极大值点eb(t);
若pyr(t)>0,则xr-1(t)为非极值点;
当pyr(t)=0,且yr-1(t)=0,令pyr(t)'为:pyr(t)'=yr(t)×yr-2(t),则有:
若pyr(t)'<0,且yr-2(t)<0,则xr-1(t)为局部极小值点es(t);
若pyr(t)'<0,且yr-2(t)>0,则xr-1(t)为局部极大值点eb(t);
若yr-2(t)=0,则xr-1(t)为非极值点;
步骤2.3、将步骤2.2中所有局部极大值点eb(t)和所有局部极小值点es(t)用三次样条插值函数s(t)连接起来,分别求出上包络线emax(t)和下包络线emin(t),所述三次样条插值函数s(t)是在电流信号x(t)的每一个小区间上不超过三次的多项式,并有:
s ( t ) = m q ( t q + 1 - t ) 3 6 ( t q + 1 - t q ) + m q + 1 ( t - t q ) 3 6 ( t q + 1 - t q ) + x q + 1 ( t ) - x q ( t ) t q + 1 - t q - t q + 1 - t q 6 ( m q + 1 - m q ) + x q ( t ) - m q ( t q + 1 - t q ) 2 6
其中,mq和mq+1为三次样条插值函数s(t)在对应的小区间两端点处的二阶导数值;所述小区间定义为[tq,tq+1];
步骤2.4、计算获得上包络线和下包络线的均值m(t)为:m(t)=(emax(t)+emin(t))/2,将电流信号x(t)减去所述均值m(t),得到更新时间序列y1(t);
步骤2.5、判断所述更新时间序列y1(t)是否同时满足条件A和条件B:
条件A、在整个信号长度上,极值点和过零点的数目相等或者相差一个;
条件B、在任意时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的平均值为零;
若同时满足条件A和条件B,则y1(t)为固有模式函数分量;
若不同时满足条件A和条件B,则将y1(t)作为一个原始分量,重复步骤2.1~2.4,直至更新时间序列y1(t)同时满足条件A和条件B时,将更新时间序列y1(t)记为ci(t),ci(t)即为电流信号x(t)的一个固有模式函数分量;
步骤2.6、将ci(t)从电流信号x(t)中分离出来,得到差值信号ri(t)为:ri(t)=x(t)-ci(t);
以所述差值信号ri(t)作为更新的待处理电流信号;
步骤2.7、重复步骤2.1~2.6,直至满足迭代终止准则,得到全部m个固有模式函数分量,所述迭代终止准则为:所得到的更新时间序列yi(t)为窄带信号;
所述电流信号x(t)即被分解为由式(1)表征的若干个IMF分量和剩余的差值信号之和:
x(t)=∑ci(t)+ri(t)。
3.根据权利要求2所述的基于波形特征识别的断路器状态检测方法,其特征在于:
所述步骤4是按如下过程获得特征向量集X:
步骤4.1、记信号起始点O为坐标原点O(0,0),从起始点O开始,每间隔n0个点选取一个特征点T,所述特征点T的坐标记为n0=round(f/1000),round表示取整数运算,特征点个数w为:w=round(n/n0),j=1,2,...,w,f为采样频率,n采样点个数;
步骤4.2、分别连接坐标原点O与各特征点T,得到各特征向量,以所述各特征向量构成电流信号的特征向量集X,
所述步骤5是按如下过程获得特征向量集Y:
针对现场实际工况进行信号采集,获得被测断路器的分合闸电流信号,按照与步骤4.1~步骤4.2相同的方式获得特征向量集Y,
CN201610908008.7A 2016-10-18 2016-10-18 基于波形特征识别的断路器状态检测方法 Active CN106526468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610908008.7A CN106526468B (zh) 2016-10-18 2016-10-18 基于波形特征识别的断路器状态检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610908008.7A CN106526468B (zh) 2016-10-18 2016-10-18 基于波形特征识别的断路器状态检测方法

Publications (2)

Publication Number Publication Date
CN106526468A true CN106526468A (zh) 2017-03-22
CN106526468B CN106526468B (zh) 2019-03-15

Family

ID=58332554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610908008.7A Active CN106526468B (zh) 2016-10-18 2016-10-18 基于波形特征识别的断路器状态检测方法

Country Status (1)

Country Link
CN (1) CN106526468B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108021676A (zh) * 2017-12-07 2018-05-11 国家电网公司 一种集成式隔离断路器缺陷库评估的数据重构方法
CN109708855A (zh) * 2017-10-25 2019-05-03 平高集团有限公司 一种高压隔离开关分合状态监测方法和装置
CN110174612A (zh) * 2019-06-10 2019-08-27 珠海东帆科技有限公司 低压断路器故障预警检测方法
CN110647838A (zh) * 2019-09-19 2020-01-03 电子科技大学 一种用于设备工作状态识别的基于几何形状的一维信号特征提取方法
CN112557004A (zh) * 2020-11-23 2021-03-26 广西电网有限责任公司电力科学研究院 一种高压断路器机械故障检测方法
CN113552448A (zh) * 2021-08-05 2021-10-26 华能沾化热电有限公司 一种断路器状态检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110501A1 (en) * 2003-11-25 2005-05-26 Walker Michael L. Electrical circuit test apparatus
CN102998544A (zh) * 2011-09-16 2013-03-27 河南电力试验研究院 变压器短路时绕组工作状态诊断方法
CN103176104A (zh) * 2013-02-04 2013-06-26 上海交通大学 一种变压器绕组运行状态的诊断方法
CN104360263A (zh) * 2014-10-29 2015-02-18 国家电网公司 基于分合闸线圈电流的断路器操作机构故障诊断专家***
CN104808137A (zh) * 2015-05-19 2015-07-29 新疆特变电工自控设备有限公司 一种在线判断断路器故障的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110501A1 (en) * 2003-11-25 2005-05-26 Walker Michael L. Electrical circuit test apparatus
CN102998544A (zh) * 2011-09-16 2013-03-27 河南电力试验研究院 变压器短路时绕组工作状态诊断方法
CN103176104A (zh) * 2013-02-04 2013-06-26 上海交通大学 一种变压器绕组运行状态的诊断方法
CN104360263A (zh) * 2014-10-29 2015-02-18 国家电网公司 基于分合闸线圈电流的断路器操作机构故障诊断专家***
CN104808137A (zh) * 2015-05-19 2015-07-29 新疆特变电工自控设备有限公司 一种在线判断断路器故障的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708855A (zh) * 2017-10-25 2019-05-03 平高集团有限公司 一种高压隔离开关分合状态监测方法和装置
CN108021676A (zh) * 2017-12-07 2018-05-11 国家电网公司 一种集成式隔离断路器缺陷库评估的数据重构方法
CN108021676B (zh) * 2017-12-07 2021-01-08 国家电网公司 一种集成式隔离断路器缺陷库评估的数据重构方法
CN110174612A (zh) * 2019-06-10 2019-08-27 珠海东帆科技有限公司 低压断路器故障预警检测方法
CN110647838A (zh) * 2019-09-19 2020-01-03 电子科技大学 一种用于设备工作状态识别的基于几何形状的一维信号特征提取方法
CN110647838B (zh) * 2019-09-19 2023-03-31 电子科技大学 一种用于设备工作状态识别的基于几何形状的一维信号特征提取方法
CN112557004A (zh) * 2020-11-23 2021-03-26 广西电网有限责任公司电力科学研究院 一种高压断路器机械故障检测方法
CN113552448A (zh) * 2021-08-05 2021-10-26 华能沾化热电有限公司 一种断路器状态检测方法

Also Published As

Publication number Publication date
CN106526468B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN106526468A (zh) 基于波形特征识别的断路器状态检测方法
US11489490B2 (en) Arc fault detection method for photovoltaic system based on adaptive kernel function and instantaneous frequency estimation
CN109884459B (zh) 一种电力变压器绕组变形智能在线诊断定位方法
CN103675605B (zh) 一种基于故障信号暂态相关分析的配电网小电流接地故障选线方法
CN106682303A (zh) 一种基于经验模态分解和决策树rvm的三电平逆变器故障诊断方法
JP5049675B2 (ja) 配電線事故原因推定システムとその方法、およびプログラム
CN103076547B (zh) 基于支持向量机的gis局部放电故障类型模式识别方法
CN103760464B (zh) 基于解析图求解与svm的小电流接地***故障选线方法
CN103576048B (zh) 一种用于电压暂降源定位的可能故障线路集提取方法
Khoshkhoo et al. On-line dynamic voltage instability prediction based on decision tree supported by a wide-area measurement system
CN111679158A (zh) 基于同步量测数据相似度的配电网故障辨识方法
CN104614638A (zh) 小电流***接地选线方法
CN109828181A (zh) 一种基于modwt的变压器绕组轻微故障检测方法
CN107765139A (zh) 一种高准确率的谐振接地***单相接地故障选线方法
CN102135560A (zh) 雷电波侵入变电站的扰动识别方法
CN104778348B (zh) 低压脱扣器的电压暂降动作特性建模方法
CN103683198A (zh) 一种基于差动电流相邻阶次差分构成的平面上相邻点距离的励磁涌流快速识别方法
CN111209535B (zh) 一种电力设备相继故障风险识别方法及***
CN111999591B (zh) 一种配电网一次设备异常状态的识别方法
CN113848471B (zh) 继电保护***的故障智能定位方法及***
CN113313403B (zh) 基于规模化大功率电动汽车充放电的配电网综合评价方法、设备、***及存储介质
Yang et al. Identification and detection of dc arc fault in photovoltaic power generation system
CN103499770B (zh) 基于广域电压的电网故障定位方法
CN106503887A (zh) 一种电网监控***中变压器自适应负载率计算方法
CN105404973A (zh) 输变电设备状态预测方法和***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant