CN106519668A - 一种导电聚酰胺酰亚胺复合材料的制备方法 - Google Patents

一种导电聚酰胺酰亚胺复合材料的制备方法 Download PDF

Info

Publication number
CN106519668A
CN106519668A CN201610908194.4A CN201610908194A CN106519668A CN 106519668 A CN106519668 A CN 106519668A CN 201610908194 A CN201610908194 A CN 201610908194A CN 106519668 A CN106519668 A CN 106519668A
Authority
CN
China
Prior art keywords
preparation
polyamidoimide
electrically conductive
cnt
conductive polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610908194.4A
Other languages
English (en)
Other versions
CN106519668B (zh
Inventor
王标兵
曹梦
路广明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhitoujia Intellectual Property Operation Co ltd
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201610908194.4A priority Critical patent/CN106519668B/zh
Publication of CN106519668A publication Critical patent/CN106519668A/zh
Application granted granted Critical
Publication of CN106519668B publication Critical patent/CN106519668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Abstract

本发明公开了一种导电聚酰胺酰亚胺复合材料的制备方法,属于高分子材料改性和纳米复合材料的制备技术领域。本发明的导电PAI材料分两步合成。首先,PAI与羧酸化碳纳米管反应,制备出碳纳米管含量为20‑80%的导电母料;然后,通过高速乳化机与超声波震荡仪将导电母料与PAI在溶剂中混合,将分散均一的含碳纳米管的溶液成膜或纺丝。本发明提供的导电聚酰胺酰亚胺材料具有拉伸强度高和优异的导电性能,导电率达到100S/m以上,可在电子电器、航空航天、国防军事等行业广泛应用。

Description

一种导电聚酰胺酰亚胺复合材料的制备方法
技术领域:
本发明涉及到一种导电聚酰胺酰亚胺及其制备方法,属于高分子材料共混改性和纳米复合材料的制备技术领域。
背景技术:
众所周知,高分子材料具有金属材料所没有的加工温度低,成型工艺简单,耐腐蚀等优点,但是绝大多数单一组分的高分子材料很难导电。共扼导电聚合物虽然具有相对较好的导电性,但加工性能差,因此很大程度上限制了其广泛的应用。由于碳纳米管具有优良的导电性能和极大的长径比,如果把少量的碳纳米管加入到聚合物基体中,可以在保持聚合物优良的加工特性和低密度等优点的同时,极大得改善复合材料的导电性。因此碳纳米管改性聚合物复合材料在电磁屏蔽、静电喷涂、静电消除等领域具有非常大的应用前景。但是由于碳纳米管间存在强烈的范德华力以及碳纳米管的表面惰性,使得碳纳米管在聚合物中很难分散。因此,通过对碳纳米管进行改性,使其表面功能化和基团化,提高界面结合力以及使其在聚合物中均匀分散都是目前研究的重点。
发明内容
本发明的目的在于解决碳纳米管在聚合物基体中难分散的技术难题,实现能以较低的碳纳米管添加量获得高导电性能的聚合物基复合材料。
导电聚酰胺酰亚胺复合材料的制备方法,按照下述步骤进行:
(1)碳纳米管的酸化处理
将碳纳米管加入到体积比为1:0~1:3的浓硝酸和浓硫酸的强氧化性酸溶液中,加热到115-120℃回流0.5-3h,反应结束后,静置至室温,然后用蒸馏水反复抽滤洗涤至中性,60-100℃下真空烘箱中干燥2~6h;
(2)导电母料的制备
将酸化处理过的碳纳米管与聚酰胺酰亚胺通过膦酰化反应制备导电母料。按照下述步骤进行:将酸化碳纳米管和聚酰胺酰亚胺加入N-甲基吡咯烷酮(NMP),然后加入缩合剂及吸水剂,惰性气氛下,升温至80℃-120℃,反应2-8小时;反应产物通过乙醇或甲醇沉降处理,然后用温水浸洗多次,所得产物80℃条件下真空干燥8小时。
(3)导电聚酰胺酰亚胺复合材料的制备
将导电母料加入到预先配制好的聚酰胺酰亚胺/间甲酚溶液中,通过高速乳化和超声震荡将处理好的碳纳米管母料均匀地分散于聚酰胺酰亚胺溶液中;然后通过溶液浇注成膜或湿法纺丝的方法制备聚酰胺酰亚胺/碳纳米管导电复合材料。
其中步骤(1)中强氧化酸为浓硫酸、浓硝酸中的一种或两种;
其中步骤(1)中碳纳米管为单壁碳纳米管或多壁碳纳米管中的一种或其组合物;
其中步骤(1)中碳纳米管与强氧化性酸的质量体积比为1:10-1:100;
其中步骤(2)中酸化碳纳米管含量为聚酰胺酰亚胺质量的20-80%;
其中步骤(2)中聚酰胺酰亚胺/NMP溶液浓度为1g/50mL-1g/100mL;
其中步骤(2)中所述的缩合剂为吡啶(Py)、亚磷酸三苯酯(TPP);
其中步骤(2)中所述的缩合剂用量为NMP用量的10%-20%,
其中步骤(2)中所述的吸水剂是无水氯化钙(CaCl2)、无水氯化锂(LiCl)、无水氯化锌中的一种或多种;
其中步骤(2)中所述的吸水剂用量为聚酰胺酰亚胺质量的5-10倍。
其中步骤(3)中聚酰胺酰亚胺/间甲酚溶液的浓度为1g/10mL-1g/40mL;
其中步骤(3)中碳纳米管的含量为聚酰胺酰亚胺总质量的0.1-20%;
其中所述的聚酰胺酰亚胺的结构式如下式所示:
其中Ar1为下述结构式的一种:
其中Ar2为下述结构式的一种:
其中x=1,2,3,5,7,8,9,10,11,13
其中n=10-200。
采用上述方法,具有如下的技术优点:
由于碳纳米管本身具有非常高的比表面积,颗粒间存在较强的范德华力,现有大多数技术中,很难实现碳纳米管在聚合物基体材料中的均匀分散。而通过采用本专利所述的方法,可使碳纳米管添加量高达20%时仍能均匀地分散在聚合物基体中,赋予所制备的聚酰胺酰亚胺材料较高的强度和优异的导电性能。
具体实施方式
以下结合实施例,对本发明进行进一步详细说明,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
所选用的聚酰胺酰亚胺树脂(PAI-AU)结构式如下所示:
(1)碳纳米管的酸化处理:将5g多壁碳纳米管加入强氧化性混合酸(浓硫酸50ml和浓硝酸50ml)溶液中,在带有机械搅拌的三口烧瓶中加热到115℃,机械搅拌下回流1.5h。反应结束后冷却至室温,进行抽滤,用去离子水洗涤直至中性,得到酸化碳纳米管。
(2)导电母料的制备:将2g酸化碳纳米管和8g聚酰胺酰亚胺加入100mL的N-甲基吡咯烷酮(NMP),然后加入膦酰化试剂和增溶剂,惰性气氛下,升温至120℃,反应4小时。反应产物通过乙醇或甲醇沉降处理,然后用温水浸洗多次,所得产物80℃条件下真空干燥8h。
(3)导电聚酰胺酰亚胺复合材料的制备
将2.5g导电母料加入到30mL预先配制好的聚酰胺酰亚胺/间甲酚溶液(0.1g/mL)中,高速乳化和超声震荡,将碳纳米管母料均匀地分散于聚酰胺酰亚胺溶液中;然后通过溶液浇注成膜。聚酰胺酰亚胺导电薄膜的电导率为7.0S/m,拉伸强度为94MPa,杨氏模量为2.10GPa。
实施例2
本实施例与实施例1的区别在于导电聚酰胺酰亚胺材料的制备步骤中,将50mg导电母料加入到49.55mL预先配制好的聚酰胺酰亚胺/间甲酚溶液(0.1g/mL)中,其他处理手段均与实施例1一致。聚酰胺酰亚胺导电薄膜的电导率为3.4×10-5S/m,拉伸强度为54.0MPa,杨氏模量为0.98GPa。
实施例3
本实施例中所选用的聚酰胺酰亚胺树脂以及碳纳米管的酸化处理过程与实施例1一致,区别在于步骤(2)和(3)处理过程有所不同,详述如下:
(2)导电母料的制备:1g酸化碳纳米管和0.25g聚酰胺酰亚胺加入100mL的N-甲基吡咯烷酮(NMP)中,然后加入膦酰化试剂和增溶剂,惰性气氛下,升温至120℃,反应4小时。反应产物通过乙醇或甲醇沉降处理,然后用温水浸洗多次,所得产物80℃条件下真空干燥8h。
(3)导电聚酰胺酰亚胺复合材料的制备
将1g导电母料加入到38mL预先配制好的聚酰胺酰亚胺/间甲酚溶液(0.1g/mL)中,高速乳化和超声震荡,将碳纳米管母料均匀地分散于聚酰胺酰亚胺溶液中;然后通过溶液浇注成膜。聚酰胺酰亚胺导电薄膜的电导率为105S/m,拉伸强度为112MPa,杨氏模量为2.49GPa。
实施例4
本实施例与实施例1区别在于所选用的聚酰胺酰亚胺树脂不同,其他处理手段均与实施例1一致。本实施例所用聚酰胺酰亚胺树脂结构式如下所示:
聚酰胺酰亚胺导电薄膜的电导率为7.5S/m,拉伸强度为103MPa,杨氏模量为2.19GPa。
实施例5
本实施例与实施例4的区别在于碳纳米管的酸化处理步骤中,将5g多壁碳纳米管加入500ml浓硝酸溶液中,其他处理手段均与实施例1一致。聚酰胺酰亚胺导电薄膜的电导率为4.8S/m,拉伸强度为91MPa,杨氏模量为1.95GPa。
实施例6
本实施例与实施例4的区别在于碳纳米管的酸化处理步骤中,将5g多壁碳纳米管加入强氧化性混合酸(浓硫酸37.5ml和浓硝酸12.5ml)溶液中,其他处理手段均与实施例1一致。聚酰胺酰亚胺导电薄膜的电导率为7.6S/m,拉伸强度为98MPa,杨氏模量为2.11GPa。
上述各实施例仅用于说明本发明,其中各步骤的参数、实施条件等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变化和改进,均不应排除在本发明的保护范围之外。
表1
实施例 1 2 3 4 5 6
电导率(S/m) 7.0 3.4×10-5 105 7.5 4.8 7.6
拉伸强度(MPa) 94 54 112 103 91 98
杨氏模量(GPa) 2.10 0.98 2.49 2.19 1.95 2.11

Claims (10)

1.导电聚酰胺酰亚胺复合材料的制备方法,其特征在于按照下述步骤进行:
(1)碳纳米管的酸化处理
将碳纳米管加入到体积比为1:0~1:3的浓硝酸和浓硫酸的强氧化性酸溶液中,加热到115-120℃回流0.5-3h,反应结束后,静置至室温,然后用蒸馏水反复抽滤洗涤至中性,60-100℃下真空烘箱中干燥2~6h;
(2)导电母料的制备
将酸化处理过的碳纳米管与聚酰胺酰亚胺通过膦酰化反应制备导电母料;
按照下述步骤进行:将酸化碳纳米管和聚酰胺酰亚胺加入N-甲基吡咯烷酮(NMP),然后加入缩合剂及吸水剂,惰性气氛下,升温至80℃-120℃,反应2-8小时;反应产物通过乙醇或甲醇沉降处理,然后用温水浸洗多次,所得产物80℃条件下真空干燥8小时;
(3)导电聚酰胺酰亚胺复合材料的制备
将导电母料加入到预先配制好的聚酰胺酰亚胺/间甲酚溶液中,通过高速乳化和超声震荡将处理好的碳纳米管母料均匀地分散于聚酰胺酰亚胺溶液中;然后通过溶液浇注成膜或湿法纺丝的方法制备聚酰胺酰亚胺/碳纳米管导电复合材料。
2.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中步骤(1)中强氧化酸为浓硫酸、浓硝酸中的一种或两种。
3.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中步骤(1)中碳纳米管为单壁碳纳米管或多壁碳纳米管中的一种或其组合物。
4.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中步骤(1)中碳纳米管与强氧化性酸的质量体积比为1:10-1:100。
5.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中步骤(2)中酸化碳纳米管含量为聚酰胺酰亚胺质量的20-80%。
6.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中步骤(2)中聚酰胺酰亚胺/NMP溶液浓度为1g/50mL-1g/100mL。
7.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中步骤(2)中所述的缩合剂为吡啶(Py)、亚磷酸三苯酯(TPP)。
8.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中步骤(2)中所述的缩合剂用量为NMP用量的10%-20%;
其中步骤(2)中所述的吸水剂是无水氯化钙(CaCl2)、无水氯化锂(LiCl)、无水氯化锌中的一种或多种;
其中步骤(2)中所述的吸水剂用量为聚酰胺酰亚胺质量的5-10倍。
9.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于
其中步骤(3)中聚酰胺酰亚胺/间甲酚溶液的浓度为1g/10mL-1g/40mL;
其中步骤(3)中碳纳米管的含量为聚酰胺酰亚胺总质量的0.1-20%。
10.根据权利要求1所述的导电聚酰胺酰亚胺复合材料的制备方法,其特征在于其中所述的聚酰胺酰亚胺的结构式如下式所示:
其中Ar1为下述结构式的一种:
其中Ar2为下述结构式的一种:
其中x=1,2,3,5,7,8,9,10,11,13
其中n=10-200。
CN201610908194.4A 2016-10-18 2016-10-18 一种导电聚酰胺酰亚胺复合材料的制备方法 Active CN106519668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610908194.4A CN106519668B (zh) 2016-10-18 2016-10-18 一种导电聚酰胺酰亚胺复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610908194.4A CN106519668B (zh) 2016-10-18 2016-10-18 一种导电聚酰胺酰亚胺复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106519668A true CN106519668A (zh) 2017-03-22
CN106519668B CN106519668B (zh) 2019-01-29

Family

ID=58332350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610908194.4A Active CN106519668B (zh) 2016-10-18 2016-10-18 一种导电聚酰胺酰亚胺复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106519668B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135279A (zh) * 2018-07-11 2019-01-04 常州大学 一种基于聚酰胺酰亚胺高强度高电导率薄膜的制备方法
JP2022528262A (ja) * 2019-04-12 2022-06-09 エムシーディ テクノロジーズ エスエーアールエル 熱可塑性ポリマーを使用した複合材料を製造するための改質剤を取得する方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382319A (zh) * 2011-07-28 2012-03-21 同济大学 一种碳纳米管接枝玻璃纤维多尺度增强体增强聚酰亚胺复合材料的制备方法
CN105669971A (zh) * 2016-04-08 2016-06-15 南京工业大学 一种原位聚合碳纳米管改性尼龙复合材料的制备方法
CN106009629A (zh) * 2015-09-22 2016-10-12 洛阳新巨能高热技术有限公司 一种碳纳米管/聚酰胺基复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382319A (zh) * 2011-07-28 2012-03-21 同济大学 一种碳纳米管接枝玻璃纤维多尺度增强体增强聚酰亚胺复合材料的制备方法
CN106009629A (zh) * 2015-09-22 2016-10-12 洛阳新巨能高热技术有限公司 一种碳纳米管/聚酰胺基复合材料及其制备方法
CN105669971A (zh) * 2016-04-08 2016-06-15 南京工业大学 一种原位聚合碳纳米管改性尼龙复合材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135279A (zh) * 2018-07-11 2019-01-04 常州大学 一种基于聚酰胺酰亚胺高强度高电导率薄膜的制备方法
JP2022528262A (ja) * 2019-04-12 2022-06-09 エムシーディ テクノロジーズ エスエーアールエル 熱可塑性ポリマーを使用した複合材料を製造するための改質剤を取得する方法
EP3954726A4 (en) * 2019-04-12 2023-04-26 MCD Technologies S.a.r.l PROCESS FOR THE PREPARATION OF A MODIFIER FOR THE PRODUCTION OF A COMPOSITE MATERIAL BASED ON A THERMOPLASTIC POLYMER
JP7320072B2 (ja) 2019-04-12 2023-08-02 エムシーディ テクノロジーズ エスエーアールエル 熱可塑性ポリマーを使用した複合材料を製造するための改質剤を取得する方法

Also Published As

Publication number Publication date
CN106519668B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN105949760B (zh) 一种纺丝级高导热石墨烯/尼龙复合材料原位聚合制备方法
CN102534869B (zh) 由大尺寸氧化石墨烯片制备高强度导电石墨烯纤维的方法
CN101798462B (zh) 石墨烯/导电高分子复合膜及其制备方法
Khan et al. Synthesizing polystyrene/carbon nanotube composites by emulsion polymerization with non-covalent and covalent functionalization
CN108192092B (zh) 一种氧化石墨烯、电气石粉、聚酰胺6复合材料及其制备方法
Tunckol et al. Polymerized ionic liquid functionalized multi-walled carbon nanotubes/polyetherimide composites
CN109232982A (zh) 一种易分散的改性石墨烯的制备方法
CN103408895A (zh) 一种石墨烯环氧树脂复合材料的制备方法
Zhao et al. Mechanical strength improvement of polypropylene threads modified by PVA/CNT composite coatings
Phonthamachai et al. Solvent-Free One-Pot Synthesis of high performance silica/epoxy nanocomposites
Ibrahim et al. Dielectric study of polystyrene/polycaprolactone composites prepared by miniemulsion polymerization
CN106519668B (zh) 一种导电聚酰胺酰亚胺复合材料的制备方法
CN103059345B (zh) 一种基于碳微球的复合阻燃剂及其制备方法
Park et al. Effects of the surface treatment on the properties of polyaniline coated carbon nanotubes/epoxy composites
CN106633373B (zh) 用于sls的碳纳米管/聚丙烯复合粉末材料及制备方法
CN104593901B (zh) 一种聚酰胺接枝碳纳米管复合纤维的制备方法
Afolabi et al. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application
CN108341929A (zh) 一种石墨烯环氧树脂复合材料及其制备方法
Kausar A study on high-performance poly (azo-pyridine-benzophenone-imide) nanocomposites via self-reinforcement of electrospun nanofibers
KR101281626B1 (ko) 고분자/탄소나노튜브 복합체 제조 방법, 이를 이용한 고분자/탄소나노튜브 복합체 박막 제조 방법, 고분자/탄소나노튜브 복합체 및 고분자/탄소나노튜브 복합체 박막
CN109575405B (zh) 一种改性超高分子量聚乙烯及其制备方法、聚乙烯复合材料及其制备方法
CN107383518B (zh) 聚乙烯-石墨烯复合物的制备方法
KR20140081997A (ko) 개질화된 탄소나노튜브를 포함하는 기계적 물성과 전기 전도성이 우수한 고분자 나노복합재 및 이의 제조방법
Abdolmaleki et al. Development of carboxylated multi-walled carbon nanotubes reinforced potentially biodegradable poly (amide–imide) based on N-trimellitylimido-S-valine matrixes: Preparation, processing, and thermal properties
Cruz-Delgado et al. Nanocomposites based on plasma-polymerized carbon nanotubes and Nylon-6

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170322

Assignee: Shandong Zhengzun Technology Service Co.,Ltd.

Assignor: CHANGZHOU University

Contract record no.: X2023980053025

Denomination of invention: Preparation method of conductive polyamide imide composite material

Granted publication date: 20190129

License type: Common License

Record date: 20231220

EE01 Entry into force of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20240219

Address after: Room 303-21579, No. 304, South Community A, Binhe Street, Pinggu District, Beijing, 101200

Patentee after: BEIJING ZHITOUJIA INTELLECTUAL PROPERTY OPERATION CO.,LTD.

Country or region after: China

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Patentee before: CHANGZHOU University

Country or region before: China

TR01 Transfer of patent right