CN106443184B - 一种相位检测装置及相位检测方法 - Google Patents

一种相位检测装置及相位检测方法 Download PDF

Info

Publication number
CN106443184B
CN106443184B CN201611046426.6A CN201611046426A CN106443184B CN 106443184 B CN106443184 B CN 106443184B CN 201611046426 A CN201611046426 A CN 201611046426A CN 106443184 B CN106443184 B CN 106443184B
Authority
CN
China
Prior art keywords
signal
trigger
narrow pulse
pulse width
clk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611046426.6A
Other languages
English (en)
Other versions
CN106443184A (zh
Inventor
陈新强
洪少林
吴忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uni Trend Technology China Co Ltd
Original Assignee
Uni Trend Technology China Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni Trend Technology China Co Ltd filed Critical Uni Trend Technology China Co Ltd
Priority to CN201611046426.6A priority Critical patent/CN106443184B/zh
Publication of CN106443184A publication Critical patent/CN106443184A/zh
Application granted granted Critical
Publication of CN106443184B publication Critical patent/CN106443184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/08Arrangements for measuring phase angle between a voltage and a current or between voltages or currents by counting of standard pulses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

本发明公开了一种相位检测装置,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该信号源A、信号源E、窄脉冲宽度展宽电路C分别与该窄脉冲产生器B连接,该窄脉冲宽度展宽电路C与该脉冲宽度时间计数器D连接,该窄脉冲产生器B、脉冲宽度时间计数器D分别与一复位信号端Rst连接。还公开了一种相位检测方法。本发明结构简单,合理巧妙,把两个信号的相位差通过触发器转化为窄脉冲信号,然后将窄脉冲信号的脉冲宽度放大,再做计数测量,从而计算得出相位差。可以实时对每一个电子器件进行信号相位检测,可以用于实时相位校准、调整高速数字接口的时钟和数据时序,达到最佳的有效采集窗口。

Description

一种相位检测装置及相位检测方法
技术领域
本发明涉及检测仪表,特别涉及一种相位检测装置,及通过该相位检测装置实施的相位检测方法。
背景技术
现有技术中,由于现在很多电子器件的数据和时钟接口速率比较高。对于上数百兆甚至上G的速率,如果要测量时钟到时钟、数据线到时钟的相位关系是比较困难的。
在一般的测试环境下,采用示波器测量相位差。但这种检测方式只是通过示波器对样板进行检测,但是对于量产和需要实时检测的情况就不太现实。
发明内容
本发明的目的在于,针对上述问题,提供一种相位检测装置。
本发明的目的还在于,提供一种通过前述相位检测装置实施的相位检测方法。
本发明为实现上述目的所采用的技术方案为:
一种相位检测装置,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该信号源A、信号源E、窄脉冲宽度展宽电路C分别与该窄脉冲产生器B连接,该窄脉冲宽度展宽电路C与该脉冲宽度时间计数器D连接,该窄脉冲产生器B、脉冲宽度时间计数器D分别与一复位信号端Rst连接。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述窄脉冲宽度展宽电路C包括第一放大器、充电控制器、电容、放电控制器、电阻和第二放大器,该第一放大器、充电控制器、电阻、放电控制器和第二放大器依次连接,该电容的一端连接于该充电控制器与电阻之间,该电容的另一端接地。
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门和非门,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门连接,该与门、触发器B2与该非门连接,该非门与所述窄脉冲宽度展宽电路C连接。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
一种相位检测方法,其包括以下步骤:
(1)该信号源A、信号源E分别产生待测量的时钟信号CLK、信号S1,该信号S1为时钟信号或数据信号;
(2)信号S1作为触发器B0的时钟端锁存,触发器B0的Q端输出信号Q0后,该信号Q0接入触发器B1的S端,并把信号Q0与时钟信号CLK同步后输出;
触发器B1的Q端输出信号Q1,该信号Q1接入触发器B2的S端,用于控制输出的窄脉宽的宽度,设定Ta为我们需要计算的最终结果,窄脉冲产生器B输出给C模块的窄脉冲信号的时间宽度为To=(N-1)Tclk-Ta,N为触发器的个数,Tclk为一个时钟周期;
设定Delta为窄脉冲产生器B输出的窄脉冲经过窄脉冲宽度展宽电路C时间上放大后返回的脉冲,假设窄脉冲宽度展宽电路C的脉冲展宽时间放大倍数为M,返回的脉冲Delta的宽度为Tdelta,则Tdelta=To*M;
Tdelta是窄脉冲产生器B输出信号经过放大数百倍甚至数千倍所得,通过脉冲宽度时间计数器D用高速时钟对此信号的宽度计数,则得出Ta=(N)Tclk-(Tdelta/M);Φ=Ta/Tclk=(N)Tclk-(Tdelta/M)/Tclk
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门和非门,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门连接,该与门、触发器B2与该非门连接,该非门与所述窄脉冲宽度展宽电路C连接。
所述步骤(2)中,触发器B2的Q端输出信号Q2,利用时钟信号CLK同步并延时2个CLK周期,则经过非门输出窄脉冲信号。
所述窄脉冲宽度展宽电路C包括第一放大器、充电控制器、电容、放电控制器、电阻和第二放大器,该第一放大器、充电控制器、电阻、放电控制器和第二放大器依次连接,该电容的一端连接于该充电控制器与电阻之间,该电容的另一端接地。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
本发明的有益效果为:本发明结构简单,合理巧妙,把两个信号的相位差通过触发器转化为窄脉冲信号,然后将窄脉冲信号的脉冲宽度放大,再做计数测量,从而计算得出相位差。可以实时对每一个电子器件进行信号相位检测,可以用于实时相位校准、调整高速数字接口的时钟和数据时序,达到最佳的有效采集窗口。
下面结合附图与实施例,对本发明进一步说明。
附图说明
图1是本发明的结构框图;
图2是本发明中窄脉冲宽度展宽电路C的结构框图;
图3是本发明中窄脉冲产生器B的结构框图;
图4是本发明工作时的时序图。
具体实施方式
实施例:如图1至图4所示,本发明一种相位检测装置,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该信号源A、信号源E、窄脉冲宽度展宽电路C分别与该窄脉冲产生器B连接,该窄脉冲宽度展宽电路C与该脉冲宽度时间计数器D连接,该窄脉冲产生器B、脉冲宽度时间计数器D分别与一复位信号端Rst连接。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述窄脉冲宽度展宽电路C包括第一放大器11、充电控制器12、电容13、放电控制器14、电阻15和第二放大器16,该第一放大器11、充电控制器12、电阻15、放电控制器14和第二放大器16依次连接,该电容13的一端连接于该充电控制器12与电阻15之间,该电容13的另一端接地。
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门21和非门22,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门21连接,该与门21、触发器B2与该非门22连接,该非门22与所述窄脉冲宽度展宽电路C连接。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
一种相位检测方法,其包括以下步骤:
(1)该信号源A、信号源E分别产生待测量的时钟信号CLK、信号S1,该信号S1为时钟信号或数据信号;
(2)信号S1作为触发器B0的时钟端锁存,触发器B0的Q端输出信号Q0后,该信号Q0接入触发器B1的S端,并把信号Q0与时钟信号CLK同步后输出;
触发器B1的Q端输出信号Q1,该信号Q1接入触发器B2的S端,用于控制输出的窄脉宽的宽度,设定Ta为我们需要计算的最终结果,窄脉冲产生器B输出给C模块的窄脉冲信号的时间宽度为To=(N-1)Tclk-Ta,N为触发器的个数,Tclk为一个时钟周期;
设定Delta为窄脉冲产生器B输出的窄脉冲经过窄脉冲宽度展宽电路C时间上放大后返回的脉冲,假设窄脉冲宽度展宽电路C的脉冲展宽时间放大倍数为M,返回的脉冲Delta的宽度为Tdelta,则Tdelta=To*M;
Tdelta是窄脉冲产生器B输出信号经过放大数百倍甚至数千倍所得,通过脉冲宽度时间计数器D用高速时钟对此信号的宽度计数,则得出Ta=(N)Tclk-(Tdelta/M);Φ=Ta/Tclk=(N)Tclk-(Tdelta/M)/Tclk
图4中,Q2是触发器B2输出的信号Q2,也是把信号S1锁存,然后利用信号CLK同步并延时2个CLK周期,Pulse输出就是给C模块的窄脉冲。
信号CLK是周期性的时钟信号,信号S1可以是时钟信号,也可以是数据信号。
复位信号端Rst发出复位信号,对窄脉冲产生器B、脉冲宽度时间计数器D进行复位。
窄脉冲产生器B根据信号S1和信号CLK的相位产生不同宽度的脉冲,该脉冲产生器B中的触发器数量可以根据窄脉冲宽度展宽电路C的要求来确定,由窄脉冲产生器B产生的信号可以是单端或差分信号,窄脉冲产生器B可以使用逻辑器件来实现。
如图3所示,信号S1作为触发器B0的时钟端锁存。触发器B0的Q端输出后,接到下一个触发器B1的S端输入。并以信号CLK把Q0信号和信号LCK同步后输出。触发器B1的Q端输出,可以再接N个触发器,用于控制输出的窄脉宽的最小宽度。
窄脉冲宽度展宽电路C实现脉冲信号的放大,放大倍数可以达数百倍到千倍的数量级,有利于后续脉冲宽度时间计数器D直接对脉冲时间进行准确测量。利用电容13充电电路和放电电流的不同,实现脉冲信号的宽度放大。
通过脉冲宽度时间计数器D来对脉冲宽度放大后返回的脉冲时间计数,计数器D可以使用逻辑器件、处理器芯片来实现。
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门21和非门22,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门21连接,该与门21、触发器B2与该非门22连接,该非门22与所述窄脉冲宽度展宽电路C连接。
所述步骤(2)中,触发器B2的Q端输出信号Q2,利用时钟信号CLK同步并延时2个CLK周期,则经过非门22输出窄脉冲信号。
所述窄脉冲宽度展宽电路C包括第一放大器11、充电控制器12、电容13、放电控制器14、电阻15和第二放大器16,该第一放大器11、充电控制器12、电阻15、放电控制器14和第二放大器16依次连接,该电容13的一端连接于该充电控制器12与电阻15之间,该电容13的另一端接地。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
本发明结构简单,合理巧妙,把两个信号的相位差通过触发器转化为窄脉冲信号,然后将窄脉冲信号的脉冲宽度放大,再做计数测量,从而计算得出相位差。可以实时对每一个电子器件进行信号相位检测,可以用于实时相位校准、调整高速数字接口的时钟和数据时序,达到最佳的有效采集窗口。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。故凡是未脱离本发明技术方案的内容,依据本发明之形状、构造及原理所作的等效变化,均应涵盖于本发明的保护范围内。

Claims (7)

1.一种相位检测装置,其特征在于,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该窄脉冲宽度展宽电路C的输出端与该脉冲宽度时间计数器D连接,该脉冲宽度时间计数器D与一复位信号端Rst连接;
所述信号源A为ADC器件、逻辑器件、处理器芯片或时钟源;所述信号源E为ADC器件、逻辑器件、处理器芯片或时钟源;
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门和非门,该触发器B0的S端接地,该触发器B0的输入端与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器BO、触发器B1、触发器B2的R端均与该复位信号端Rst连接,该触发器B2的输入端与所述信号源E连接,该触发器B1的S端与该非门的输入端连接,该非门的输出端和触发器B2的Q端均与该与门连接,该与门的输出端与所述窄脉冲宽度展宽电路C连接。
2.根据权利要求1所述相位检测装置,其特征在于,所述窄脉冲宽度展宽电路C包括第一放大器、充电控制器、电容、放电控制器、电阻和第二放大器,该第一放大器、充电控制器、电阻、放电控制器和第二放大器依次连接,该电容的一端连接于该充电控制器与电阻之间,该电容的另一端接地。
3.根据权利要求1所述相位检测装置,其特征在于,所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
4.一种通过权利要求1所述相位检测装置实施的相位检测方法,其特征在于,其包括以下步骤:
(1)该信号源A、信号源E分别产生待测量的信号S1、时钟信号CLK,该信号S1为时钟信号或数据信号;
(2)信号S1作为触发器B0的时钟端锁存,触发器B0的Q端输出信号Q0后,该信号Q0接入触发器B1的S端,并把信号Q0与时钟信号CLK同步后输出;
触发器B1的Q端输出信号Q1,该信号Q1接入触发器B2的S端,用于控制输出的窄脉宽的宽度,设定Ta为我们需要计算的最终结果,窄脉冲产生器B输出给窄脉冲宽度展宽电路C的窄脉冲信号的时间宽度为To=(N-1)Tclk-Ta,N为触发器的个数,Tclk为一个时钟周期;
设定Delta为窄脉冲产生器B输出的窄脉冲经过窄脉冲宽度展宽电路C时间上放大后返回的脉冲,假设窄脉冲宽度展宽电路C的脉冲展宽时间放大倍数为M,返回的脉冲Delta的宽度为Tdelta,则Tdelta= To*M;
Tdelta是窄脉冲产生器B输出信号经过放大所得,通过脉冲宽度时间计数器D用高速时钟对此信号的宽度计数,则得出Ta=(N )Tclk-(Tdelta/M);Φ= Ta/ Tclk=(N )Tclk-(Tdelta/M)/Tclk
5.根据权利要求4所述相位检测方法,其特征在于,所述步骤(2)中,触发器B2的Q端输出信号Q2,利用时钟信号CLK同步并延时2个CLK周期,经过非门输出窄脉冲信号。
6.根据权利要求4所述相位检测方法,其特征在于,所述窄脉冲宽度展宽电路C包括第一放大器、充电控制器、电容、放电控制器、电阻和第二放大器,该第一放大器、充电控制器、电阻、放电控制器和第二放大器依次连接,该电容的一端连接于该充电控制器与电阻之间,该电容的另一端接地。
7.根据权利要求4所述相位检测方法,其特征在于,所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
CN201611046426.6A 2016-11-23 2016-11-23 一种相位检测装置及相位检测方法 Active CN106443184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611046426.6A CN106443184B (zh) 2016-11-23 2016-11-23 一种相位检测装置及相位检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611046426.6A CN106443184B (zh) 2016-11-23 2016-11-23 一种相位检测装置及相位检测方法

Publications (2)

Publication Number Publication Date
CN106443184A CN106443184A (zh) 2017-02-22
CN106443184B true CN106443184B (zh) 2023-07-14

Family

ID=58218150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611046426.6A Active CN106443184B (zh) 2016-11-23 2016-11-23 一种相位检测装置及相位检测方法

Country Status (1)

Country Link
CN (1) CN106443184B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008189A (zh) * 2017-12-25 2018-05-08 黑龙江龙电电气有限公司 一种相位检测装置及方法
CN111949598B (zh) * 2020-07-29 2024-02-23 苏州博创集成电路设计有限公司 一种片上***管脚复用自适应同步电路
CN113203934B (zh) * 2021-01-18 2023-05-23 杭州起盈科技有限公司 一种集成电路信号时间信息的测量电路及方法
CN115208476A (zh) * 2021-04-09 2022-10-18 北京中创为南京量子通信技术有限公司 一种量子密钥发射机窄脉冲生成方法及***
CN113466555A (zh) * 2021-06-29 2021-10-01 汉中一零一航空电子设备有限公司 一种周期交变信号相位差检测电路及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258720A (en) * 1984-03-02 1993-11-02 Itt Corporation Digital sample and hold phase detector
JPH08178697A (ja) * 1994-12-27 1996-07-12 Sony Corp 位置検出装置
CN101031805A (zh) * 2004-10-01 2007-09-05 松下电器产业株式会社 相位差测定电路
CN101509943A (zh) * 2008-12-25 2009-08-19 北京握奇数据***有限公司 一种相位检测的方法及装置
CN101655521A (zh) * 2008-08-19 2010-02-24 恩益禧电子股份有限公司 脉冲相位差检测电路以及使用其的a/d转换器
CN102426294A (zh) * 2011-08-05 2012-04-25 北京星网锐捷网络技术有限公司 时钟相位差测量方法及设备
CN106342398B (zh) * 2008-08-07 2012-10-03 中国空空导弹研究院 窄脉冲峰值保持电路
CN104111481A (zh) * 2014-07-30 2014-10-22 桂林电子科技大学 同步时钟相位差测量***和方法
CN104485947A (zh) * 2014-12-30 2015-04-01 中南民族大学 一种用于gps驯服晶振的数字鉴相器
CN206223867U (zh) * 2016-11-23 2017-06-06 优利德科技(中国)有限公司 一种相位检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258720A (en) * 1984-03-02 1993-11-02 Itt Corporation Digital sample and hold phase detector
JPH08178697A (ja) * 1994-12-27 1996-07-12 Sony Corp 位置検出装置
CN101031805A (zh) * 2004-10-01 2007-09-05 松下电器产业株式会社 相位差测定电路
CN106342398B (zh) * 2008-08-07 2012-10-03 中国空空导弹研究院 窄脉冲峰值保持电路
CN101655521A (zh) * 2008-08-19 2010-02-24 恩益禧电子股份有限公司 脉冲相位差检测电路以及使用其的a/d转换器
CN101509943A (zh) * 2008-12-25 2009-08-19 北京握奇数据***有限公司 一种相位检测的方法及装置
CN102426294A (zh) * 2011-08-05 2012-04-25 北京星网锐捷网络技术有限公司 时钟相位差测量方法及设备
CN104111481A (zh) * 2014-07-30 2014-10-22 桂林电子科技大学 同步时钟相位差测量***和方法
CN104485947A (zh) * 2014-12-30 2015-04-01 中南民族大学 一种用于gps驯服晶振的数字鉴相器
CN206223867U (zh) * 2016-11-23 2017-06-06 优利德科技(中国)有限公司 一种相位检测装置

Also Published As

Publication number Publication date
CN106443184A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106443184B (zh) 一种相位检测装置及相位检测方法
CN109387776B (zh) 测量时钟抖动的方法、时钟抖动测量电路和半导体装置
US6956422B2 (en) Generation and measurement of timing delays by digital phase error compensation
US8553503B2 (en) On-die signal timing measurement
CN104460304A (zh) 一种具有自动校正功的高分辨率时间间隔测量装置
CN113092858B (zh) 一种基于时频信息测量的高精度频标比对***及比对方法
CN102928677A (zh) 一种纳米级脉冲信号采集方法
WO1997039360A2 (en) Apparatus and method for measuring time intervals with very high resolution
CN110708047B (zh) 一种基于tdc芯片测量高速比较器精度的结构及方法
CN112968690B (zh) 一种高精度低抖动延时脉冲发生器
JPH11190766A (ja) テスターシステムにおける信号の測定
CN110887992A (zh) 一种时钟频率检测电路
CN103067016A (zh) 一种流水线时数转换器及其方法
CN107422193B (zh) 一种测量单粒子翻转瞬态脉冲长度的电路及方法
CN206223867U (zh) 一种相位检测装置
Huang et al. An on-chip short-time interval measurement technique for testing high-speed communication links
CN112558519A (zh) 一种基于fpga和高精度延时芯片的数字信号延时方法
US7495429B2 (en) Apparatus and method for test, characterization, and calibration of microprocessor-based and digital signal processor-based integrated circuit digital delay lines
CN105187053A (zh) 一种用于tdc的亚稳态消除电路
US20230003781A1 (en) Apparatus, method, system and medium for measuring pulse signal width
JP2002006003A (ja) 位相ロック・ループ用全ディジタル内蔵自己検査回路および検査方法
CN107908097B (zh) 采用混合内插级联结构的时间间隔测量***及测量方法
CN216595393U (zh) 时间延迟测试装置
Batrakov et al. Precision digital signal integrators with accurate synchronization
Teodorescu et al. Improving time measurement precision in embedded systems with a hybrid measuring method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 523808 No. 6 industrial North Road, Songshan Lake high tech Industrial Development Zone, Dongguan, Guangdong

Applicant after: UNI-TREND TECHNOLOGY (CHINA) Co.,Ltd.

Address before: 523808 No. 6 industrial North Road, Songshan Lake high tech Industrial Development Zone, Dongguan, Guangdong

Applicant before: UNI-TREND TECHNOLOGY (CHINA) Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant