CN106443161B - 一种支持功率探头热插拔的功率测量装置及方法 - Google Patents

一种支持功率探头热插拔的功率测量装置及方法 Download PDF

Info

Publication number
CN106443161B
CN106443161B CN201610717020.XA CN201610717020A CN106443161B CN 106443161 B CN106443161 B CN 106443161B CN 201610717020 A CN201610717020 A CN 201610717020A CN 106443161 B CN106443161 B CN 106443161B
Authority
CN
China
Prior art keywords
power
probe
power probe
temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610717020.XA
Other languages
English (en)
Other versions
CN106443161A (zh
Inventor
***
李金山
董占勇
徐达旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 41 Institute
Original Assignee
CETC 41 Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Institute filed Critical CETC 41 Institute
Priority to CN201610717020.XA priority Critical patent/CN106443161B/zh
Publication of CN106443161A publication Critical patent/CN106443161A/zh
Application granted granted Critical
Publication of CN106443161B publication Critical patent/CN106443161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/14Compensating for temperature change

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明提出了一种支持功率探头热插拔的功率测量装置,包括:功率探头、功率计主机和电缆,功率探头包括检波头和检波板,检波头中二极管处设置热敏电阻来检测工作温度,检波板中设置温度偏置单元对热敏电阻输出的温度电压信号进行分压处理,经电缆进入功率计主机,温度电压信号进入功率计主机后,一路经ADC采样单元进入FPGA用于温度补偿,一路进入电压比较单元。本发明可兼容原有功率探头和多芯电缆,功率计主机硬件电路改动小,热插拔功能可有效减少更换探头所需时间,提高测试效率。

Description

一种支持功率探头热插拔的功率测量装置及方法
技术领域
本发明涉及测试技术领域,特别涉及一种支持功率探头热插拔的功率测量装置,还涉及一种支持功率探头热插拔的功率测量方法。
背景技术
目前,对微波毫米波信号功率的测量,大多采用功率计主机+多芯电缆+功率探头的形式。功率计主机可配备多个探头,不同探头测量的功率范围、频率范围不同。在测试中经常需要根据被测信号的变化更换功率探头,一般的做法是关闭功率计主机,更换探头,然后打开功率计主机。但是功率计主机开关机需要相当长的时间,尤其是安装Winxp及以上***的峰值功率分析仪开关机和***自测试时间可达几分钟。
目前,现有的功率计不支持热插拔功能。热插功率探头后,功率计主机不能识别探头,仍需在主机重启后才能识别探头。另外,由于探头体积和功耗限制,不能增加额外电路,通用电缆也没有多余信号线用于探头检测。
发明内容
为解决上述现有技术中的不足,本发明提出一种支持功率探头热插拔的功率测量装置及方法。
本发明的技术方案是这样实现的:
一种支持功率探头热插拔的功率测量装置,包括:功率探头、功率计主机和电缆,功率探头包括检波头和检波板,检波头中二极管处设置热敏电阻来检测工作温度,检波板中设置温度偏置单元对热敏电阻输出的温度电压信号进行分压处理,经电缆进入功率计主机;
温度电压信号进入功率计主机后,一路经ADC采样单元进入FPGA用于温度补偿,一路进入电压比较单元;
电压比较单元包括放大器和电压比较器,温度电压信号输入到放大器负输入端,放大器的负输入端还通过电阻接地;当***探头时,放大器输出电压为3V,放大后的温度电压信号进入电压比较器的负输入端,与其正输入端的参考电压相比较,其正输入端参考电压为2V,电压比较器输出低逻辑电平并送到FPGA;当拔下探头时,温度电压信号为0,放大器负输入端通过电阻接地,经放大器后仍然为0V,经电压比较器后输出高逻辑电平并送到FPGA;
FPGA与工控机模块连接,工控机模块连接端口配置为中断模式,工控机模块通过中断方式接收FPGA输出的逻辑电平,判断探头是否连接;当***探头时,FPGA输出逻辑电平由高变低,中断处理程序判断是***探头,工控机模块读取探头数据,包括校验数据、探头型号、探头版本号,并将探头数据发送给上层应用程序刷新屏幕显示,在屏幕显示探头型号,并在测量线程中根据探头数据结合被测信号显示精准波形;当断开探头连接时,FPGA输出逻辑电平由低变高,中断处理程序判断拔出探头,工控机模块注销探头数据,并刷新屏幕显示,不再显示探头型号和被测信号波形。
可选地,所述温度电压信号通过放大器进行线性放大,通过调节放大器正输入端输入电阻和正输入端与输出端之间跨接电阻设置放大器的放大倍数。
本发明还提出了一种支持功率探头热插拔的功率测量方法,包括功率探头、功率计主机和电缆,功率探头包括检波头和检波板,检波头中二极管处设置热敏电阻来检测工作温度,检波板中设置温度偏置单元对热敏电阻输出的温度电压信号进行分压处理,经电缆进入功率计主机,温度电压信号进入功率计主机后,一路经ADC采样单元进入FPGA用于温度补偿,一路进入电压比较单元;
电压比较单元包括放大器和电压比较器,温度电压信号输入到放大器负输入端,放大器的负输入端还通过电阻接地;当***探头时,放大器输出电压为3V,放大后的温度电压信号进入电压比较器的负输入端,与其正输入端的参考电压相比较,其正输入端参考电压为2V,电压比较器输出低逻辑电平并送到FPGA;当拔下探头时,温度电压信号为0,放大器负输入端通过电阻接地,经放大器后仍然为0V,经电压比较器后输出高逻辑电平并送到FPGA;
FPGA与工控机模块连接,工控机模块连接端口配置为中断模式,工控机模块通过中断方式接收FPGA输出的逻辑电平,判断探头是否连接;当***探头时,FPGA输出逻辑电平由高变低,中断处理程序判断是***探头,工控机模块读取探头数据,包括校验数据,探头型号,探头版本号,并将探头数据发送给上层应用程序刷新屏幕显示,在屏幕显示探头型号,并在测量线程中根据探头数据结合被测信号显示精准波形;当断开探头连接时,FPGA输出逻辑电平由低变高,中断处理程序判断拔出探头,工控机模块注销探头数据,并刷新屏幕显示,不再显示探头型号和被测信号波形。
可选地,所述温度电压信号通过放大器进行线性放大,通过调节放大器正输入端输入电阻和正输入端与输出端之间跨接电阻设置放大器的放大倍数。
本发明的有益效果是:
(1)可兼容原有功率探头和多芯电缆,功率计主机硬件电路改动小;
(2)热插拔功能可有效减少更换探头所需时间,提高测试效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种支持功率探头热插拔的功率测量装置的原理框图;
图2为本发明的探头热插拔处理流程图;
图3为本发明的电压比较单元的电路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,现有的功率计不支持热插拔功能。本发明的目的是功率测量装置中功率探头和多芯电缆不做变动,仅在功率计主机增加部分电路,通过读取探头温度电压,判断功率探头是否连接,从而实现功率探头热插拔。
下面结合说明书附图对本发明的功率测量装置进行详细说明。
如图1所示,本发明的功率测量装置包括:功率探头1、功率计主机2和电缆5。
功率探头1包括检波头3和检波板4。为了实现对检波头3中二极管检波特性的温度补偿,二极管附近设置热敏电阻6来检测其工作温度,同时,检波板4中设置温度偏置单元7,对热敏电阻6输出的温度电压进行分压处理。检波头3输出温度电压到检波板4,经过温度偏置单元7后经电缆5进入功率计主机2。温度电压在功率计主机2中经过放大调理单元8进入ADC采样单元9进行模数转换,数字化温度电压进入后级电路用于温度补偿算法。
由于功率探头体积和功耗的限制,无法增加用于热插拔的检测信号,同时电缆内部也无多余信号线进行传输,因此对温度电压进行复用,通过检测插拔探头时温度电压的变化识别探头。如图1所示,温度电压进入功率计主机2后,一路进入ADC采样单元9用于温度补偿算法,一路进入电压比较单元10。探头断开时,功率计主机2输入温度电压为0V,经放大调理单元8和电压比较单元10后输出3.3V,FPGA单元11检测为逻辑高;探头连接时,检波头3中热敏电阻6输出温度电压经温度偏置单元7和放大调理单元8进行调理后输出高电平,经电压比较单元10后输出0V,FPGA单元11检测为逻辑低,该逻辑电平与工控机模块12连接,工控机模块12连接端口配置为中断模式,工控机模块12通过中断方式接收该逻辑电平,判断探头是否连接。
如图2所示,当热插拔探头时,FPGA单元11输出逻辑电平发生变化,工控机模块12进入设备驱动中的中断处理程序,在中断处理程序中判断是***探头还是拔出探头。当***探头时,FPGA单元11输出逻辑电平由高变低,中断处理程序判断是***探头,工控机模块12读取探头数据,包括校验数据,探头型号,探头版本号等信息,并将探头数据发送给上层应用程序刷新屏幕显示,在屏幕显示探头型号,并在测量线程中根据探头数据结合被测信号显示精准波形;当断开探头连接时,FPGA单元11输出逻辑电平由低变高,中断处理程序判断拔出探头,工控机模块12注销探头数据,并刷新屏幕显示,不再显示探头型号和被测信号波形。
由于功率计主机2通过读取探头1中已有温度电压判断探头是否连接,因此不需对探头和电缆改动或升级,可兼容所有探头。功率计主机2不需要改变整机结构,仅需增加电压比较单元10即可实现热插拔功能。
如图3所示,功率探头1输出温度电压信号SENSOR_TEMP到放大器N1负输入端,放大器N1的负输入端还通过电阻R26接地。温度电压信号SENSOR_TEMP通过放大器N1进行线性放大,通过调节放大器N1正输入端输入电阻和正输入端与输出端之间跨接电阻设置放大器N1的放大倍数。当***探头时,放大器N1输出电压为3V,放大后的温度电压信号进入电压比较器N2的负输入端,与其正输入端的参考电压相比较,其正输入端参考电压为2V,电压比较器N2输出低逻辑电平并送到FPGA,用于探头热插拔。当拔下探头时,温度电压信号SENSOR_TEMP为0,放大器N1负输入端通过电阻R26接地,经放大器N1后仍然为0V,经电压比较器后输出高逻辑电平并送到FPGA。
本发明的优点是可兼容原有功率探头和多芯电缆,功率计主机硬件电路改动小,热插拔功能可有效减少更换探头所需时间,提高测试效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种支持功率探头热插拔的功率测量装置,包括:功率探头、功率计主机和电缆,功率探头包括检波头和检波板,检波头中二极管处设置热敏电阻来检测工作温度,检波板中设置温度偏置单元对热敏电阻输出的温度电压信号进行分压处理,经电缆进入功率计主机,其特征在于,
温度电压信号进入功率计主机后,一路经ADC采样单元进入FPGA用于温度补偿,一路进入电压比较单元;
电压比较单元包括放大器和电压比较器,温度电压信号输入到放大器负输入端,放大器的负输入端还通过电阻接地;当***功率探头时,放大器输出电压为3V,放大后的温度电压信号进入电压比较器的负输入端,与其正输入端的参考电压相比较,其正输入端参考电压为2V,电压比较器输出低逻辑电平并送到FPGA;当拔下功率探头时,温度电压信号为0,放大器负输入端通过电阻接地,经放大器后仍然为0V,经电压比较器后输出高逻辑电平并送到FPGA;
FPGA与工控机模块连接,工控机模块连接端口配置为中断模式,工控机模块通过中断方式接收FPGA输出的逻辑电平,判断功率探头是否连接;当***功率探头时,FPGA输出逻辑电平由高变低,中断处理程序判断是***功率探头,工控机模块读取功率探头数据,包括校验数据、功率探头型号和功率探头版本号,并将功率探头数据发送给上层应用程序刷新屏幕显示,在屏幕显示功率探头型号,并在测量线程中根据功率探头数据结合被测信号显示精准波形;当断开功率探头连接时,FPGA输出逻辑电平由低变高,中断处理程序判断拔出功率探头,工控机模块注销功率探头数据,并刷新屏幕显示,不再显示功率探头型号和被测信号波形。
2.如权利要求1所述的一种支持功率探头热插拔的功率测量装置,其特征在于,所述温度电压信号通过放大器进行线性放大,通过调节放大器正输入端输入电阻和正输入端与输出端之间跨接电阻设置放大器的放大倍数。
3.一种支持功率探头热插拔的功率测量方法,其特征在于,包括功率探头、功率计主机和电缆,功率探头包括检波头和检波板,检波头中二极管处设置热敏电阻来检测工作温度,检波板中设置温度偏置单元对热敏电阻输出的温度电压信号进行分压处理,经电缆进入功率计主机,温度电压信号进入功率计主机后,一路经ADC采样单元进入FPGA用于温度补偿,一路进入电压比较单元;
电压比较单元包括放大器和电压比较器,温度电压信号输入到放大器负输入端,放大器的负输入端还通过电阻接地;当***功率探头时,放大器输出电压为3V,放大后的温度电压信号进入电压比较器的负输入端,与其正输入端的参考电压相比较,其正输入端的参考电压为2V,电压比较器输出低逻辑电平并送到FPGA;当拔下功率探头时,温度电压信号为0,放大器负输入端通过电阻接地,经放大器后仍然为0V,经电压比较器后输出高逻辑电平并送到FPGA;
FPGA与工控机模块连接,工控机模块连接端口配置为中断模式,工控机模块通过中断方式接收FPGA输出的逻辑电平,判断功率探头是否连接;当***功率探头时,FPGA输出逻辑电平由高变低,中断处理程序判断是***功率探头,工控机模块读取功率探头数据,包括校验数据、功率探头型号和功率探头版本号,并将功率探头数据发送给上层应用程序刷新屏幕显示,在屏幕显示功率探头型号,并在测量线程中根据功率探头数据结合被测信号显示精准波形;当断开功率探头连接时,FPGA输出逻辑电平由低变高,中断处理程序判断拔出功率探头,工控机模块注销功率探头数据,并刷新屏幕显示,不再显示功率探头型号和被测信号波形。
4.如权利要求3所述的一种支持功率探头热插拔的功率测量方法,其特征在于,所述温度电压信号通过放大器进行线性放大,通过调节放大器正输入端输入电阻和正输入端与输出端之间跨接电阻设置放大器的放大倍数。
CN201610717020.XA 2016-08-18 2016-08-18 一种支持功率探头热插拔的功率测量装置及方法 Active CN106443161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610717020.XA CN106443161B (zh) 2016-08-18 2016-08-18 一种支持功率探头热插拔的功率测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610717020.XA CN106443161B (zh) 2016-08-18 2016-08-18 一种支持功率探头热插拔的功率测量装置及方法

Publications (2)

Publication Number Publication Date
CN106443161A CN106443161A (zh) 2017-02-22
CN106443161B true CN106443161B (zh) 2019-01-18

Family

ID=58181741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610717020.XA Active CN106443161B (zh) 2016-08-18 2016-08-18 一种支持功率探头热插拔的功率测量装置及方法

Country Status (1)

Country Link
CN (1) CN106443161B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967555B (zh) * 2019-11-26 2021-09-03 中电科思仪科技股份有限公司 一种提高峰值功率测量触发精度的方法
CN112684234B (zh) * 2021-03-19 2021-06-22 深圳市鼎阳科技股份有限公司 示波器的探头识别方法和示波器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249373A (en) * 1968-07-19 1971-10-13 American Standard Inc Improvements in or relating to apparatus for measuring parameter variations of a fluid flowing through a conduit
CN104316759A (zh) * 2014-10-10 2015-01-28 中国电子科技集团公司第四十一研究所 一种连续波功率探头
CN204129226U (zh) * 2014-09-19 2015-01-28 成都国星通信有限公司 一种天线自动识别电路
CN104714912A (zh) * 2015-03-04 2015-06-17 惠州Tcl移动通信有限公司 一种多卡检测装置、多卡检测***及其方法
US20150171915A1 (en) * 2012-09-05 2015-06-18 Seong-Youp Suh Plug-and-play time-variant antenna module for wireless communication devices
CN204886977U (zh) * 2015-07-18 2015-12-16 深圳市摩泰光电有限公司 一种带近场通信功能的可热插拔光电收发模块
CN105279055A (zh) * 2015-10-20 2016-01-27 昆山龙腾光电有限公司 一种热插拔检测调节电路
CN105487086A (zh) * 2014-09-19 2016-04-13 成都国星通信有限公司 一种天线自动识别切换装置与方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249373A (en) * 1968-07-19 1971-10-13 American Standard Inc Improvements in or relating to apparatus for measuring parameter variations of a fluid flowing through a conduit
US20150171915A1 (en) * 2012-09-05 2015-06-18 Seong-Youp Suh Plug-and-play time-variant antenna module for wireless communication devices
CN204129226U (zh) * 2014-09-19 2015-01-28 成都国星通信有限公司 一种天线自动识别电路
CN105487086A (zh) * 2014-09-19 2016-04-13 成都国星通信有限公司 一种天线自动识别切换装置与方法
CN104316759A (zh) * 2014-10-10 2015-01-28 中国电子科技集团公司第四十一研究所 一种连续波功率探头
CN104714912A (zh) * 2015-03-04 2015-06-17 惠州Tcl移动通信有限公司 一种多卡检测装置、多卡检测***及其方法
CN204886977U (zh) * 2015-07-18 2015-12-16 深圳市摩泰光电有限公司 一种带近场通信功能的可热插拔光电收发模块
CN105279055A (zh) * 2015-10-20 2016-01-27 昆山龙腾光电有限公司 一种热插拔检测调节电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
热插拔控制器的应用;魏智;《国外电子元器件》;20001130(第11期);第44-46页

Also Published As

Publication number Publication date
CN106443161A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN203719811U (zh) 微压传感器微弱电压信号检测装置
KR101290294B1 (ko) 비접촉 위상측정센서를 이용한 전력기기의 부분방전 진단 시스템
CN106443161B (zh) 一种支持功率探头热插拔的功率测量装置及方法
US8972204B2 (en) Gas discriminating semiconductor sensors
CN106679841A (zh) 一种温度检测装置及温度检测方法
CN207650384U (zh) 分压电路参数的检测电路及电能计量芯片
CN108089143A (zh) 分压电路参数的检测电路、方法及电能计量芯片
CN203164406U (zh) 基于gtem室的超高频传感器灵敏度测试装置
CN207662462U (zh) 一种温度检测信号与剩余电流检测信号自适应电路
CN103018780B (zh) 一种探针式高频响液态金属泄漏检测装置
CN103575972A (zh) 输电线路绝缘子内部阻性电流测量***
CN210199207U (zh) 超低频介质损耗测试***
CN103149545A (zh) Vfto传感器的测试方法、装置、设备及***
CN201237520Y (zh) 一种液面探测器
US8762098B2 (en) Thermal testing system and method
CN205981496U (zh) 用于热电阻自动检定***的电阻测量装置
CN107543574B (zh) 机载传感器高温老炼试验自动检测仪及操作方法
CN104678339A (zh) 一种用于探针式微波电压测量***的校准装置、***及方法
CN202350927U (zh) 一种智能通用数显装置
CN103592597B (zh) 一种电压线性隔离电路与电压比较电路的故障互检方法
CN204649879U (zh) 电容器间歇性检测装置
CN208384068U (zh) 一种具有温度测量功能的局放信号模拟装置
CN207081776U (zh) 一种设有核相电路的开关状态指示仪
CN202533536U (zh) 一种电容放电试验检测仪
WO2021082532A1 (zh) 一种智能电表的测试***及测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant