CN106442278A - 单粒子束散射光强分布的测量装置及测量方法 - Google Patents

单粒子束散射光强分布的测量装置及测量方法 Download PDF

Info

Publication number
CN106442278A
CN106442278A CN201610840673.7A CN201610840673A CN106442278A CN 106442278 A CN106442278 A CN 106442278A CN 201610840673 A CN201610840673 A CN 201610840673A CN 106442278 A CN106442278 A CN 106442278A
Authority
CN
China
Prior art keywords
micro
light source
fluidic chip
sample liquid
sheath fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610840673.7A
Other languages
English (en)
Other versions
CN106442278B (zh
Inventor
丁驰竹
戴杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201610840673.7A priority Critical patent/CN106442278B/zh
Publication of CN106442278A publication Critical patent/CN106442278A/zh
Application granted granted Critical
Publication of CN106442278B publication Critical patent/CN106442278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N15/1436Optical arrangements the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1022Measurement of deformation of individual particles by non-optical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种单粒子束散射光强分布的测量装置,它包括光源、分光光路、光接收和探测组件以及微流控芯片组件,所述光源包括主测量光源、辅助测量光源和***调整光源;所述分光光路包括分光镜和PIN管;所述光接收和探测组件包括90°离轴抛物面反射镜、望远镜镜组、光阑、滤光片、ICCD探测器、信号探测及发生电路、复合滤光片、PMT探测器、示波器和计算机;所述微流控芯片组件包括微流控芯片、光屏、三轴调节具和微流泵。另外,本发明还公开了一种单粒子束散射光强分布的测量方法。

Description

单粒子束散射光强分布的测量装置及测量方法
技术领域
本发明涉及光学与测量领域,具体地涉及一种单粒子束散射光强分布的测量装置及测量方法。
背景技术
液体中微粒计数和粒径测量在临床诊断、工业和环境检测中有重要作用。其中,流式细胞术是生物临床快速诊断和细胞分析领域常用的多参数测量方法。待测样品悬液在鞘液的约束下通过喷嘴,形成单细胞液流,并被入射激光照射。光电倍增管接收样品微粒的散射光或荧光信号,由计算机对检测数据进行分析处理。与粒子群整体测量相比,流式细胞术能获得更加精确的结果。然而,流式细胞术需要的样本量较大、仪器复杂、使用和维护不便。
由于使用微流控芯片进行微粒计数和粒径测量的方法相比传统的计数和测量方法具有很低的样本消耗量、可以大大缩短测量时间、简化操作且易于做成便携设备应用于现场测试等优点,已有研究人员提出基于微流控芯片技术的流式细胞术测量装置及方法。在测量过程中,通过流体将样品微粒限制在微流通道中心流动,使样品形成单粒子流,从而避免了通道阻塞、样品被通道壁粘黏或吸收、样品重叠等问题。
然而,现有的基于微流控芯片的流式细胞术测量装置大多只是通过鞘液在二维平面上对样品流进行限制,因而不能使样品流成为圆柱形流体,且样品微粒容易偏离样品流的中心轴线,影响了测量精确度。另外,由于采用了光电倍增管作为光接收器件,从而限制了散射光的测量角度,不能实现散射光强分布的测量。
发明内容
本发明针对现有技术的缺陷,提供了一种基于微流控芯片的单粒子束散射测量装置及其测量方法,其可实时测量流经微通道的单粒子束中单个微粒的散射光强分布,且测量速度快、精度高。
为实现上述目的,本发明提供了一种单粒子束散射光强分布的测量装置,它包括光源、分光光路、光接收和探测组件以及微流控芯片组件,所述光源包括主测量光源、辅助测量光源和***调整光源;所述分光光路包括分光镜和PIN管;所述光接收和探测组件包括90°离轴抛物面反射镜、望远镜镜组、光阑、滤光片、ICCD探测器、信号探测及发生电路、复合滤光片、PMT探测器、示波器和计算机;所述微流控芯片组件包括微流控芯片、光屏、三轴调节具和微流泵;其中,所述主测量光源、所述分光镜、所述90°离轴抛物面反射镜和所述三轴调节具依次设置在同一第一直线上,所述分光镜将所述主测量光源发射的激光分为主光路和参考光路,所述主光路与所述第一直线重合,所述参考光路与所述主光路垂直,所述PIN管位于所述参考光路上,所述***调整光源、所述望远镜镜组、所述光阑、所述滤光片和所述ICCD探测器依次设置在同一第二直线上,所述***调整光源与所述90°离轴抛物面反射镜的抛物面相对,所述光屏设置在所述三轴调节具上且位于所述90°离轴抛物面反射镜的焦点处,所述微流控芯片设置在所述三轴调节具中,所述微流泵与所述微流控芯片连接,所述辅助测量光源位于所述微流控芯片的左侧,所述复合滤光片和所述PMT探测器依次设于所述微流控芯片的右侧,所述PIN管、所述示波器、所述PMT探测器、所述信号探测及发生电路、所述ICCD探测器和所述计算机依次连接。
进一步地,所述微流控芯片包括圆环形鞘液输入流道、直线形样品液输入流道和直线形主流道,所述直线形样品液输入流道和所述直线形主流道位于同一第三直线上,所述圆环形鞘液输入流道关于所述第三直线对称,所述圆环形鞘液输入流道的一端设有鞘液输入孔,所述圆环形鞘液输入流道的另一端与所述直线形主流道连通,所述样品液输入流道被所述鞘液输入流道包围且与所述主流道连通,所述样品液输入流道上设有样品液输入孔,所述主流道上设有输出孔。
进一步地,所述样品液输入流道和所述鞘液输入流道的直径均小于所述主流道的直径。
进一步地,所述主流道的中部为所述微流控芯片的观测区,所述微流控芯片的观测面为圆柱面,所述圆柱面位于所述观测区内且所述圆柱面的轴线与所述主流道的轴线重合,所述微流控芯片的底面为平面。
进一步地,所述主测量光源和所述辅助测量光源均为激光器,所述***调整光源为平行光管。
另外,本发明还提供了一种单粒子束散射光强分布的测量方法,该方法包括如下步骤:
(1)配置***调整光源、90°离轴抛物面反射镜、光屏和三轴调节具,所述90°离轴抛物面反射镜和所述三轴调节具位于同一直线上,所述***调整光源与所述90°离轴抛物面反射镜的光轴平行,所述光屏安装在所述三轴调节具上且位于所述90°离轴抛物面反射镜的焦点处;
(2)配置PMT探测器和示波器,所述PMT探测器位于所述三轴调节具的右侧,将所述PMT探测器与所述示波器连接,根据所述示波器的读数调节所述PMT探测器的位置和方向,使所述PMT探测器对准所述90°离轴抛物面反射镜的焦点;
(3)撤去所述光屏,在所述三轴调节具上安装微流控芯片,所述微流控芯片的观测面朝向所述90°离轴抛物面反射镜,所述微流控芯片的观测区与所述90°离轴抛物面反射镜的光轴在同一高度,通过所述三轴调节具调节所述微流控芯片的X轴、Y轴和Z轴的位置,根据所述示波器的读数,使所述PMT探测器的输出信号达到极大值,调节完成后,所述微流控芯片位于所述90°离轴抛物面反射镜的焦点处;
(4)撤去所述***调整光源并配置主测量光源和分光镜,所述分光镜位于所述主测量光源和所述90°离轴抛物面反射镜之间,所述分光镜将所述主测量光源发射的激光分为主光路和参考光路,所述主光路、所述主测量光源、所述90°离轴抛物面反射镜和所述三轴调节具位于同一直线上,所述参考光路与所述主光路垂直;
(5)根据所述示波器的读数调节所述主测量光源的位置和方向,使所述PMT探测器的输出信号达到极大值,完成所述主测量光源与所述90°离轴抛物面反射镜和所述微流控芯片的对准调节;
(6)配置PIN管,所述PIN管位于所述分光镜的所述参考光路上,同时将所述PIN管与所述示波器连接,以实时监测所述主测量光源发射的主激光的光强波动;
(7)配置辅助测量光源,所述辅助测量光源位于所述三轴调节具的左侧,调节所述辅助测量光源的位置和方向,使其发射的辅助激光照射到所述微流控芯片的观测区上,且照射点略高于所述主测量光源的照射点,从而使所述PMT探测器接收到由所述微流控芯片散射的由所述辅助测量光源发射的辅助激光;
(8)在所述PMT探测器和所述三轴调节具之间配置复合滤光片,调节所述复合滤光片的位置及所述辅助测量光源的高度,使所述PMT探测器同时接收到由所述微流孔芯片散射的由所述主测量光源发射的所述主激光和所述辅助测量光源发射的所述辅助激光;
(9)配置微流泵,将所述微流泵与所述微流控芯片连接,鞘液通过所述微流泵经由所述微流控芯片的鞘液输入孔泵入所述微流控芯片,样品液通过所述微流泵经由所述微流控芯片的样品液输入孔泵入所述微流控芯片中,所述鞘液包围所述样品液,并限制所述样品液的流动,从而使所述样品液成为单粒子束;
(10)当所述样品液流过所述微流控芯片的观测区时,根据所述示波器上显示的两个相邻峰值的时间差和所述复合滤光片的通光孔的距离计算出所述样品液的流速;
(11)配置信号探测及发生电路和ICCD探测器,依次将所述PMT探测器、所述信号探测及发生电路和所述ICCD探测器连接,所述ICCD探测器的接收面与所述90°离轴抛物面反射镜的光轴垂直,所述PMT探测器发送光强信号至所述信号探测及发生电路,所述信号探测及发生电路发送探测触发信号至所述ICCD探测器,用以启动所述ICCD探测器,且所述信号探测及发生电路从接收所述光强信号到发送所述探测触发信号之间的时间差由所述样品液的流速决定;
(12)配置望远镜镜组、光阑和滤光片,所述望远镜镜组、所述光阑、所述滤光片和所述ICCD探测器依次位于同一直线上,所述望远镜镜组与所述90°离轴抛物面反射镜的光轴平行且面向所述90°离轴抛物面反射镜,将所述ICCD探测器与计算机连接,所述ICCD探测器获取所述样品液中样品微粒的散射图案,并将所述样品微粒的散射图案发送至所述计算机;
(13)人工给入触发信号以启动所述ICCD探测器,从而获得背景图案并将所述背景图案发送至所述计算机;
(14)所述计算机用所述样品微粒的散射图案的强度减去所述背景图案的强度,得到单粒子束的散射光强分布。
进一步地,所述微流控芯片包括圆环形鞘液输入流道、直线形样品液输入流道和直线形主流道,所述直线形样品液输入流道和所述直线形主流道位于同一直线上,所述圆环形鞘液输入流道关于所述直线对称,所述圆环形鞘液输入流道的一端设有鞘液输入孔,所述圆环形鞘液输入流道的另一端与所述直线形主流道连通,所述样品液输入流道被所述鞘液输入流道包围且与所述主流道连通,所述样品液输入流道上设有样品液输入孔,所述主流道上设有输出孔。
进一步地,所述主流道的中部为所述微流控芯片的观测区,所述微流控芯片的观测面为圆柱面,所述圆柱面位于所述观测区内且所述圆柱面的轴线与所述主流道的轴线重合,所述微流控芯片的底面为平面。
进一步地,所述鞘液由硅油和石蜡油组成,所述鞘液的折射率等于所述微流控芯片的折射率,所述样品液由待测粒子样品溶液加去离子水稀释而成,稀释体积比为1:1000~1:10000,所述鞘液与所述样品液不互溶。
进一步地,所述微流控芯片的制作方法包括以下步骤:
(a)对所述微流控芯片的流道的结构进行仿真,以确定所述流道的尺寸;
(b)以硅单晶片为第一基底,将第一负光胶涂覆在所述第一基底上,对所述第一负光胶和所述第一基底通过两次光刻工艺制作所述微流控芯片的观测层的平面模板;
(c)用亚克力材料制作所述观测层的半圆柱面模板,用所述观测层的平面模板和半圆柱面模板对第一聚二甲基硅氧烷进行倒模,并进行烤制和固化且去除所述观测层的平面模板和半圆柱面模板,得到所述微流控芯片的观测层;
(d)以硅单晶片为第二基底,将第二负光胶涂覆在所述第二基底上,对所述第二负光胶和所述第二基底通过两次光刻工艺制作所述微流控芯片的底层的模板;
(e)用所述底层的模板对第二聚二甲基硅氧烷进行倒模,并进行烤制和固化且去除所述底层的模板,得到所述微流控芯片的底层;
(f)在紫外线的作用下对所述底层和所述观测层进行臭氧处理和封合,得到完整的所述微流控芯片。
本发明的有益效果在于:本发明的微流控芯片通过三维流体聚焦,使样品流成为圆柱形流体,实现了单粒子束环境的构建和精确定位;微流控芯片的观测面呈圆柱形,降低了光在芯片-空气界面折射对测量结果的影响。另外,由于本发明采用了由90°离轴抛物面反射镜、望远镜镜组、光阑和滤光片组成的光接收组件,因而包括了大范围的散射光测量角度;本发明采用了辅助测量光源、复合滤光片、PMT探测器、示波器从而实现了流经微流控芯片的单个微粒的散射光强分布的实时、准确测量。
附图说明
图1为在测量阶段,本发明单粒子束散射光强分布的测量装置的俯视示意图。
图2为在调整阶段,本发明粒子束散射光强分布的测量装置的俯视示意图。
图3为在测量阶段,本发明的复合滤光片、PMT探测器和示波器的连接示意图。
图4为本发明的微流控芯片的一个角度的结构示意图。
图5为本发明的微流控芯片的另一个角度的结构示意图。
图6为本发明的单粒子束散射光强分布的测量方法的流程图。
图7为本发明的微流控芯片的制作方法的流程图。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
参考图1-3,本实施例的单粒子束散射光强分布的测量装置包括:包括光源、分光光路、光接收和探测组件以及微流控芯片组件。
具体地,所述光源包括主测量光源10、辅助测量光源11和***调整光源12。所述分光光路包括分光镜20和PIN管21。所述光接收和探测组件包括90°离轴抛物面反射镜30、望远镜镜组31、光阑32、滤光片33、ICCD探测器34、信号探测及发生电路35、复合滤光片36、PMT探测器37、示波器38和计算机39。所述微流控芯片组件包括微流控芯片40、光屏41、三轴调节具42和微流泵43。
其中,所述主测量光源10、所述分光镜20、所述90°离轴抛物面反射镜30和所述三轴调节具42依次设置在同一第一直线上,所述分光镜20将所述主测量光源10发射的激光分为主光路和参考光路,所述主光路与所述第一直线重合,所述参考光路与所述主光路垂直,所述PIN管21位于所述参考光路上,所述***调整光源12、所述望远镜镜组31、所述光阑32、所述滤光片33和所述ICCD探测器34依次设置在同一第二直线上,所述***调整光源12与所述90°离轴抛物面反射镜30的抛物面相对,所述光屏(未图示)设置在所述三轴调节具42上且位于所述90°离轴抛物面反射镜30的焦点处,所述微流控芯片40设置在所述三轴调节具42中,所述微流泵43与所述微流控芯片40连接,所述辅助测量光源11位于所述微流控芯片40的左侧,所述复合滤光片36和所述PMT探测器37依次设于所述微流控芯片40的右侧,所述PIN管21、所述示波器38、所述PMT探测器37、所述信号探测及发生电路35、所述ICCD探测器34和所述计算机39依次连接。
进一步地,所述主测量光源10和所述辅助测量光源11均为激光器,所述***调整光源12为平行光管。所述主测量光源10和所述辅助测量光源11的波长不同。所述主测量光源10上设有主测量光源调节具10a,所述***调整光源12设有***调整光源调节具12a,所述PIN管21设有PIN管调节具21a,所述复合滤光片36设有复合滤光片调节具36a,所述PMT探测器37设有PMT探测器调节具37a。
详细地,参考图4-5,所述微流控芯片40包括圆环形鞘液输入流道401、直线形样品液输入流道402和直线形主流道403,所述直线形样品液输入流道402和所述直线形主流道403位于同一直线上,所述圆环形鞘液输入流道401关于所述直线对称,所述圆环形鞘液输入流道401的一端设有鞘液输入孔(未图示),所述圆环形鞘液输入流道401的另一端与所述直线形主流道403连通,所述样品液输入流道402被所述鞘液输入流道401包围且与所述主流道403连通,所述样品液输入流道402上设有样品液输入孔(未图示),所述主流道403上设有输出孔(未图示)。在优选的实施例中,所述样品液输入流道402的直径和所述鞘液输入流道401直径均小于所述主流道403的直径。其中,所述鞘液由硅油和石蜡油组成,所述鞘液的折射率等于所述微流控芯片40的折射率,所述样品液由待测粒子样品溶液加去离子水稀释而成,稀释体积比为1:1000~1:10000,所述鞘液与所述样品液不互溶。
进一步地,所述主流道403的中部为所述微流控芯片40的观测区C,所述微流控芯片的观测面为圆柱面,所述圆柱面位于所述观测区C中,所述圆柱面的轴线与所述主流道403的轴线重合,所述微流控芯片40的底面为平面。
参考图6-7,本实施例的单粒子束散射光强分布的测量方法包括:
步骤S1:配置***调整光源12、90°离轴抛物面反射镜30、光屏(未图示)和三轴调节具42,所述90°离轴抛物面反射镜30和所述三轴调节具42位于同一直线上,所述***调整光源12与所述90°离轴抛物面反射镜30的光轴平行,所述光屏安装在所述三轴调节具42上且位于所述90°离轴抛物面反射镜30的焦点处;
步骤S2:配置PMT探测器37和示波器38,所述PMT探测器37位于所述三轴调节具42的右侧,将所述PMT探测器37与所述示波器38连接,根据所述示波器38的读数调节所述PMT探测器37的位置和方向,使所述PMT探测器37对准所述90°离轴抛物面反射镜30的焦点;
步骤S3:撤去所述光屏,在所述三轴调节具42上安装微流控芯片40,所述微流控芯片40的观测面朝向所述90°离轴抛物面反射镜30,所述微流控芯片40的观测区C与所述90°离轴抛物面反射镜30的光轴在同一高度,通过所述三轴调节具42调节所述微流控芯片40的X轴、Y轴和Z轴的位置,根据所述示波器38的读数,使所述PMT探测器37的输出信号达到极大值,调节完成后,所述微流控芯片40位于所述90°离轴抛物面反射镜30的焦点处;
步骤S4:撤去所述***调整光源12并配置主测量光源10和分光镜20,所述分光镜20位于所述主测量光源10和所述90°离轴抛物面反射镜30之间,所述分光镜20将所述主测量光源10发射的激光分为主光路和参考光路,所述主光路、所述主测量光源10、所述90°离轴抛物面反射镜30和所述三轴调节具42位于同一直线上,所述参考光路与所述主光路垂直;
步骤S5:根据所述示波器38的读数调节所述主测量光源10的位置和方向,使所述PMT探测器37的输出信号达到极大值,完成所述主测量光源10与所述90°离轴抛物面反射镜30和所述微流控芯片40的对准调节;
步骤S6:配置PIN管21,所述PIN管21位于所述分光镜20的所述参考光路上,同时将所述PIN管21与所述示波器38连接,以实时监测所述主测量光源10发射的主激光的光强波动;
步骤S7:配置辅助测量光源11,所述辅助测量光源11位于所述三轴调节具42的左侧,调节所述辅助测量光源11的位置和方向,使其发射的辅助激光照射到所述微流控芯片40的观测区C上,且照射点略高于所述主测量光源10的照射点,从而使所述PMT探测器37接收到由所述微流控芯片40散射的由所述辅助测量光源11发射的辅助激光;
步骤S8:在所述PMT探测器37和所述三轴调节具42之间配置复合滤光片36,调节所述复合滤光片36的位置及所述辅助测量光源11的高度,使所述PMT探测器37同时接收到由所述微流孔芯片40散射的由所述主测量光源10发射的所述主激光和所述辅助测量光源11发射的所述辅助激光;
步骤S9:配置微流泵43,将所述微流泵43与所述微流控芯片40连接,鞘液通过所述微流泵43经由所述微流控芯片40的鞘液输入孔泵入所述微流控芯片40,样品液通过所述微流泵43经由所述微流控芯片40的样品液输入孔泵入所述微流控芯片40中,所述鞘液包围所述样品液,并限制所述样品液的流动,从而使所述样品液成为单粒子束;
步骤S10:当所述样品液流过所述微流控芯片40的观测区时,根据所述示波器38上显示的两个相邻峰值的时间差和所述复合滤光片36的通光孔的距离计算出所述样品液的流速;
步骤S11:配置信号探测及发生电路35和ICCD探测器34,依次将所述PMT探测器37、所述信号探测及发生电路35和所述ICCD探测器34连接,所述ICCD探测器34的接收面与所述90°离轴抛物面反射镜30的光轴垂直,所述PMT探测器37发送光强信号至所述信号探测及发生电路35,所述信号探测及发生电路35发送探测触发信号至所述ICCD探测器34,用以启动所述ICCD探测器34,所述信号探测及发生电路35从接收所述光强信号到发送所述探测触发信号之间的时间差由所述样品液的流速决定;
步骤S12:配置望远镜镜组31、光阑32和滤光片33,所述望远镜镜组31、所述光阑32、所述滤光片33和所述ICCD探测器34依次位于同一直线上,所述望远镜镜组31与所述90°离轴抛物面反射镜30的光轴平行且面向所述90°离轴抛物面反射镜30,将所述ICCD探测器34与计算机39连接,所述ICCD探测器34获取所述样品液中样品微粒的散射图案,并将所述样品微粒的散射图案发送至所述计算机39;
步骤S13:人工给入触发信号以启动所述ICCD探测器34,从而获得背景图案并将所述背景图案发送至所述计算机39;
步骤S14:所述计算机39用所述样品微粒的散射图案的强度减去所述背景图案的强度,得到单粒子束的散射光强分布。
具体地,参考图7,所述微流控芯片40的制作方法包括以下步骤:
(a)对所述微流控芯片40的流道的结构进行仿真,以确定所述流道的尺寸;
(b)以硅单晶片为第一基底50,将第一负光胶51涂覆在所述第一基底51上,对所述第一负光胶51和所述第一基底50通过两次光刻工艺制作所述微流控芯片40的观测层53的平面模板;
(c)用亚克力材料制作所述观测层53的半圆柱面模板,用所述观测层53的平面模板和半圆柱面模板对第一聚二甲基硅氧烷52进行倒模,并进行烤制和固化且去除所述观测层53的平面模板和半圆柱面模板,得到所述微流控芯片40的观测层53;
(d)以硅单晶片为第二基底60,将第二负光胶61涂覆在所述第二基底60上,对所述第二负光胶61和所述第二基底60通过两次光刻工艺制作所述微流控芯片40的底层63的模板;
(e)用所述底层63的模板对第二聚二甲基硅氧烷62进行倒模,并进行烤制和固化且去除所述底层63的模板,得到所述微流控芯片40的底层63;
(f)在紫外线的作用下对所述观测层53和所述底层63进行臭氧处理和封合,得到完整的所述微流控芯片40。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (10)

1.一种单粒子束散射光强分布的测量装置,它包括光源、分光光路、光接收和探测组件以及微流控芯片组件,其特征在于:
所述光源包括主测量光源(10)、辅助测量光源(11)和***调整光源(12);
所述分光光路包括分光镜(20)和PIN管(21);
所述光接收和探测组件包括90°离轴抛物面反射镜(30)、望远镜镜组(31)、光阑(32)、滤光片(33)、ICCD探测器(34)、信号探测及发生电路(35)、复合滤光片(36)、PMT探测器(37)、示波器(38)和计算机(39);
所述微流控芯片组件包括微流控芯片(40)、光屏、三轴调节具(42)和微流泵(43);
其中,所述主测量光源(10)、所述分光镜(20)、所述90°离轴抛物面反射镜(30)和所述三轴调节具(42)依次设置在同一第一直线上,所述分光镜(20)将所述主测量光源(10)发射的激光分为主光路和参考光路,所述主光路与所述第一直线重合,所述参考光路与所述主光路垂直,所述PIN管(21)位于所述参考光路上,所述***调整光源(12)、所述望远镜镜组(31)、所述光阑(32)、所述滤光片(33)和所述ICCD探测器(34)依次设置在同一第二直线上,所述***调整光源(12)与所述90°离轴抛物面反射镜(30)的抛物面相对,所述光屏设置在所述三轴调节具(42)上且位于所述90°离轴抛物面反射镜(30)的焦点处,所述微流控芯片(40)设置在所述三轴调节具(42)中,所述微流泵(43)与所述微流控芯片(40)连接,所述辅助测量光源(11)位于所述微流控芯片(40)的左侧,所述复合滤光片(36)和所述PMT探测器(37)依次设于所述微流控芯片(40)的右侧,所述PIN管(21)、所述示波器(38)、所述PMT探测器(37)、所述信号探测及发生电路(35)、所述ICCD探测器(34)和所述计算机(39)依次连接。
2.如权利要求1所述的单粒子束散射光强分布的测量装置,其特征在于,所述微流控芯片(40)包括圆环形鞘液输入流道(401)、直线形样品液输入流道(402)和直线形主流道(403),所述直线形样品液输入流道(402)和所述直线形主流道(403)位于同一第三直线上,所述圆环形鞘液输入流道(401)关于所述第三直线对称,所述圆环形鞘液输入流道(401)的一端设有鞘液输入孔,所述圆环形鞘液输入流道(401)的另一端与所述直线形主流道(403)连通,所述样品液输入流道(402)被所述鞘液输入流道(401)包围且与所述主流道(403)连通,所述样品液输入流道(402)上设有样品液输入孔,所述主流道(403)上设有输出孔。
3.如权利要求2所述的单粒子束散射光强分布的测量装置,其特征在于,所述样品液输入流道(402)和所述鞘液输入流道(401)的直径均小于所述主流道(403)的直径。
4.如权利要求2所述的单粒子束散射光强分布的测量装置,其特征在于,所述主流道(403)的中部为所述微流控芯片(40)的观测区(C),所述微流控芯片(40)的观测面为圆柱面,所述圆柱面位于所述观测区(C)内且所述圆柱面的轴线与所述主流道(403)的轴线重合,所述微流控芯片(40)的底面为平面。
5.如权利要求1所述的单粒子束散射光强分布的测量装置,其特征在于,所述主测量光源(10)和所述辅助测量光源(11)均为激光器,所述***调整光源(12)为平行光管。
6.一种利用权利要求1-5中任一项所述的单粒子束散射光强分布的测量装置进行单粒子束散射光强分布的测量方法,其特征在于,包括以下步骤:
(1)配置***调整光源(12)、90°离轴抛物面反射镜(30)、光屏和三轴调节具(42),所述90°离轴抛物面反射镜(30)和所述三轴调节具(42)位于同一直线上,所述***调整光源(12)与所述90°离轴抛物面反射镜(30)的光轴平行,所述光屏安装在所述三轴调节具(42)上且位于所述90°离轴抛物面反射镜(30)的焦点处;
(2)配置PMT探测器(37)和示波器(38),所述PMT探测器(37)位于所述三轴调节具(42)的右侧,将所述PMT探测器(37)与所述示波器(38)连接,根据所述示波器(38)的读数调节所述PMT探测器(37)的位置和方向,使所述PMT探测器(37)对准所述90°离轴抛物面反射镜(30)的焦点;
(3)撤去所述光屏,在所述三轴调节具(42)上安装微流控芯片(40),所述微流控芯片(40)的观测面朝向所述90°离轴抛物面反射镜(30),所述微流控芯片(40)的观测区与所述90°离轴抛物面反射镜(30)的光轴在同一高度,通过所述三轴调节具(42)调节所述微流控芯片(40)的X轴、Y轴和Z轴的位置,根据所述示波器(38)的读数,使所述PMT探测器(37)的输出信号达到极大值,调节完成后,所述微流控芯片(40)位于所述90°离轴抛物面反射镜(30)的焦点处;
(4)撤去所述***调整光源(12)并配置主测量光源(10)和分光镜(20),所述分光镜(20)位于所述主测量光源(10)和所述90°离轴抛物面反射镜(30)之间,所述分光镜(20)将所述主测量光源(10)发射的激光分为主光路和参考光路,所述主光路、所述主测量光源(10)、所述90°离轴抛物面反射镜(30)和所述三轴调节具(42)位于同一直线上,所述参考光路与所述主光路垂直;
(5)根据所述示波器(38)的读数调节所述主测量光源(10)的位置和方向,使所述PMT探测器(37)的输出信号达到极大值,完成所述主测量光源(10)与所述90°离轴抛物面反射镜(30)和所述微流控芯片(40)的对准调节;
(6)配置PIN管(21),所述PIN管(21)位于所述分光镜(20)的所述参考光路上,同时将所述PIN管(21)与所述示波器(38)连接,以实时监测所述主测量光源(10)发射的主激光的光强波动;
(7)配置辅助测量光源(11),所述辅助测量光源(11)位于所述三轴调节具(42)的左侧,调节所述辅助测量光源(11)的位置和方向,使其发射的辅助激光照射到所述微流控芯片(40)的观测区(C)上,且照射点略高于所述主测量光源(10)的照射点,从而使所述PMT探测器(37)接收到由所述微流控芯片(40)散射的由所述辅助测量光源(11)发射的辅助激光;
(8)在所述PMT探测器(37)和所述三轴调节具(42)之间配置复合滤光片(36),调节所述复合滤光片(36)的位置及所述辅助测量光源(11)的高度,使所述PMT探测器(37)同时接收到由所述微流孔芯片(40)散射的由所述主测量光源(10)发射的所述主激光和所述辅助测量光源(11)发射的所述辅助激光;
(9)配置微流泵(43),将所述微流泵(43)与所述微流控芯片(40)连接,鞘液通过所述微流泵(43)经由所述微流控芯片(40)的鞘液输入孔泵入所述微流控芯片(40),样品液通过所述微流泵(43)经由所述微流控芯片(40)的样品液输入孔泵入所述微流控芯片(40)中,所述鞘液包围所述样品液,并限制所述样品液的流动,从而使所述样品液成为单粒子束;
(10)当所述样品液流过所述微流控芯片(40)的观测区时,根据所述示波器(38)上显示的两个相邻峰值的时间差和所述复合滤光片(36)的通光孔的距离计算出所述样品液的流速;
(11)配置信号探测及发生电路(35)和ICCD探测器(34),依次将所述PMT探测器(37)、所述信号探测及发生电路(35)和所述ICCD探测器(34)连接,所述ICCD探测器(34)的接收面与所述90°离轴抛物面反射镜(30)的光轴垂直,所述PMT探测器(37)发送光强信号至所述信号探测及发生电路(35),所述信号探测及发生电路(35)发送探测触发信号至所述ICCD探测器(34),用以启动所述ICCD探测器(34),且所述信号探测及发生电路(35)从接收所述光强信号到发送所述探测触发信号之间的时间差由所述样品液的流速决定;
(12)配置望远镜镜组(31)、光阑(32)和滤光片(33),所述望远镜镜组(31)、所述光阑(32)、所述滤光片(33)和所述ICCD探测器(34)依次位于同一直线上,所述望远镜镜组(31)与所述90°离轴抛物面反射镜(30)的光轴平行且面向所述90°离轴抛物面反射镜(30),将所述ICCD探测器(34)与计算机(39)连接,所述ICCD探测器(34)获取所述样品液中样品微粒的散射图案,并将所述样品微粒的散射图案发送至所述计算机(39);
(13)人工给入触发信号以启动所述ICCD探测器(34),从而获得背景图案并将所述背景图案发送至所述计算机(39);
(14)所述计算机(39)用所述样品微粒的散射图案的强度减去所述背景图案的强度,得到单粒子束的散射光强分布。
7.如权利要求6所述的单粒子束散射光强分布的测量方法,其特征在于,所述微流控芯片(40)包括圆环形鞘液输入流道(401)、直线形样品液输入流道(402)和直线形主流道(403),所述直线形样品液输入流道(402)和所述直线形主流道(403)位于同一直线上,所述圆环形鞘液输入流道(401)关于所述直线对称,所述圆环形鞘液输入流道(401)的一端设有鞘液输入孔,所述圆环形鞘液输入流道(401)的另一端与所述直线形主流道(403)连通,所述样品液输入流道(402)被所述鞘液输入流道(401)包围且与所述主流道(403)连通,所述样品液输入流道(402)上设有样品液输入孔,所述主流道(403)上设有输出孔。
8.如权利要求7所述的单粒子束散射光强分布的测量方法,其特征在于,所述主流道(403)的中部为所述微流控芯片(40)的观测区(C),所述微流控芯片(40)的观测面为圆柱面,所述圆柱面位于所述观测区(C)内且所述圆柱面的轴线与所述主流道(403)的轴线重合,所述微流控芯片(40)的底面为平面。
9.如权利要求6所述的单粒子束散射光强分布的测量方法,其特征在于,所述鞘液由硅油和石蜡油组成,所述鞘液的折射率等于所述微流控芯片(40)的折射率,所述样品液由待测粒子样品溶液加去离子水稀释而成,稀释体积比为1:1000~1:10000,所述鞘液与所述样品液不互溶。
10.如权利要求6所述的单粒子束散射光强分布的测量方法,其特征在于,所述微流控芯片的制作方法包括以下步骤:
(a)对所述微流控芯片(40)的流道的结构进行仿真,以确定所述流道的尺寸;
(b)以硅单晶片为第一基底(50),将第一负光胶(51)涂覆在所述第一基底(50)上,对所述第一负光胶(51)和所述第一基底(50)通过两次光刻工艺制作所述微流控芯片(40)的观测层(53)的平面模板;
(c)用亚克力材料制作所述观测层(53)的半圆柱面模板,用所述观测层(53)的平面模板和半圆柱面模板对第一聚二甲基硅氧烷(52)进行倒模,并进行烤制和固化且去除所述观测层(53)的平面模板和半圆柱面模板,得到所述微流控芯片(40)的观测层(53);
(d)以硅单晶片为第二基底(60),将第二负光胶(61)涂覆在所述第二基底(60)上,对所述第二负光胶(61)和所述第二基底(60)通过两次光刻工艺制作所述微流控芯片(40)的底层(63)的模板;
(e)用所述底层(63)的模板对第二聚二甲基硅氧烷(62)进行倒模,并进行烤制和固化且去除所述底层(63)的模板,得到所述微流控芯片(40)的底层(63);
(f)在紫外线的作用下对所述观测层(53)和所述底层(63)进行臭氧处理和封合,得到完整的所述微流控芯片(40)。
CN201610840673.7A 2016-09-22 2016-09-22 单粒子束散射光强分布的测量装置及测量方法 Active CN106442278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610840673.7A CN106442278B (zh) 2016-09-22 2016-09-22 单粒子束散射光强分布的测量装置及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610840673.7A CN106442278B (zh) 2016-09-22 2016-09-22 单粒子束散射光强分布的测量装置及测量方法

Publications (2)

Publication Number Publication Date
CN106442278A true CN106442278A (zh) 2017-02-22
CN106442278B CN106442278B (zh) 2023-06-09

Family

ID=58166924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610840673.7A Active CN106442278B (zh) 2016-09-22 2016-09-22 单粒子束散射光强分布的测量装置及测量方法

Country Status (1)

Country Link
CN (1) CN106442278B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956391A (zh) * 2018-06-12 2018-12-07 西安理工大学 探测大气中雾滴和气溶胶粒径谱分布的探测仪及探测方法
CN112014418A (zh) * 2020-08-13 2020-12-01 北京大学 一种电子束激发荧光收集耦合用离轴反射面镜组件及方法
CN113433042A (zh) * 2021-06-25 2021-09-24 国家纳米科学中心 纳米颗粒检测微流控芯片和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872627A (en) * 1996-07-30 1999-02-16 Bayer Corporation Method and apparatus for detecting scattered light in an analytical instrument
US6252658B1 (en) * 1998-10-16 2001-06-26 Horiba, Ltd. Particle size distribution measuring apparatus
US20020041376A1 (en) * 2000-10-11 2002-04-11 Horiba, Ltd. Light scattering particle size distribution measuring apparatus and method of use
CN1987420A (zh) * 2006-12-30 2007-06-27 清华大学 一种对单一颗粒物进行多功能检测的微流控芯片装置
CN101644703A (zh) * 2008-08-08 2010-02-10 索尼株式会社 微流控芯片、微粒分类装置以及流控方法
US20110189714A1 (en) * 2010-02-03 2011-08-04 Ayliffe Harold E Microfluidic cell sorter and method
US20130016335A1 (en) * 2011-07-12 2013-01-17 Lo Yu-Hwa Optical space-time coding technique in microfluidic devices
KR20130079799A (ko) * 2012-01-03 2013-07-11 한국과학기술원 3차원 미세유체집속채널구조를 이용하는 균일한 미세 액적 및 단분산성 입자의 제조 방법
CN105136744A (zh) * 2015-08-07 2015-12-09 华中科技大学 一种基于微流控芯片粒子捕获式的单粒子散射测量装置
CN105136743A (zh) * 2015-08-07 2015-12-09 华中科技大学 一种基于微流控芯片粒子捕获式的单粒子散射测量方法
CN206132579U (zh) * 2016-09-22 2017-04-26 华中农业大学 单粒子束散射光强分布的测量装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872627A (en) * 1996-07-30 1999-02-16 Bayer Corporation Method and apparatus for detecting scattered light in an analytical instrument
US6252658B1 (en) * 1998-10-16 2001-06-26 Horiba, Ltd. Particle size distribution measuring apparatus
US20020041376A1 (en) * 2000-10-11 2002-04-11 Horiba, Ltd. Light scattering particle size distribution measuring apparatus and method of use
CN1987420A (zh) * 2006-12-30 2007-06-27 清华大学 一种对单一颗粒物进行多功能检测的微流控芯片装置
CN101644703A (zh) * 2008-08-08 2010-02-10 索尼株式会社 微流控芯片、微粒分类装置以及流控方法
US20110189714A1 (en) * 2010-02-03 2011-08-04 Ayliffe Harold E Microfluidic cell sorter and method
US20130016335A1 (en) * 2011-07-12 2013-01-17 Lo Yu-Hwa Optical space-time coding technique in microfluidic devices
KR20130079799A (ko) * 2012-01-03 2013-07-11 한국과학기술원 3차원 미세유체집속채널구조를 이용하는 균일한 미세 액적 및 단분산성 입자의 제조 방법
CN105136744A (zh) * 2015-08-07 2015-12-09 华中科技大学 一种基于微流控芯片粒子捕获式的单粒子散射测量装置
CN105136743A (zh) * 2015-08-07 2015-12-09 华中科技大学 一种基于微流控芯片粒子捕获式的单粒子散射测量方法
CN206132579U (zh) * 2016-09-22 2017-04-26 华中农业大学 单粒子束散射光强分布的测量装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NICOLE PAMME ET AL: "Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay" *
丁驰竹等: "基于衍射层析理论的弱散射单颗粒粒径反演方法", 《光散射学报》 *
徐佩锋等: "微流控芯片光散射检测仿真研究" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956391A (zh) * 2018-06-12 2018-12-07 西安理工大学 探测大气中雾滴和气溶胶粒径谱分布的探测仪及探测方法
CN108956391B (zh) * 2018-06-12 2021-02-12 西安理工大学 探测大气中雾滴和气溶胶粒径谱分布的探测仪及探测方法
CN112014418A (zh) * 2020-08-13 2020-12-01 北京大学 一种电子束激发荧光收集耦合用离轴反射面镜组件及方法
CN113433042A (zh) * 2021-06-25 2021-09-24 国家纳米科学中心 纳米颗粒检测微流控芯片和应用

Also Published As

Publication number Publication date
CN106442278B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
US9372143B2 (en) Scanning image flow cytometer
EP0182618B1 (en) Sample cell for light scattering measurements
CN105136744B (zh) 一种基于微流控芯片粒子捕获式的单粒子散射测量装置
CN104807738B (zh) 单气溶胶粒子形状实时检测装置
CN103487359B (zh) 一种激光激发的细胞和颗粒形态和分布测量装置
KR101857950B1 (ko) 고정확 실시간 미세 입자 크기 및 개수 측정 장치
CN203587475U (zh) 一种细胞和颗粒形态光学检测装置
CN102539397B (zh) 荧光光谱校正方法和荧光光谱测量装置
CN103063626A (zh) 一种光路自动校正的细胞激光激发检测装置及其方法
CN106442278A (zh) 单粒子束散射光强分布的测量装置及测量方法
CN102636457B (zh) 一种微量液体折射率的测量***及测量方法
CN104833620A (zh) 一种大气颗粒物浓度的监测装置
CN105403536B (zh) 基于纳米线的液体折射率探测***和探测方法
US20120092667A1 (en) Optical information analyzing device and optical information analyzing method
CN107782643A (zh) 一种高浓度颗粒群的光纤动态光散射检测方法
CN109632721A (zh) 一种lrspr-荧光成像并行检测装置及lrspr芯片制作方法
CN206132579U (zh) 单粒子束散射光强分布的测量装置
CN204594848U (zh) 一种大气颗粒物浓度的监测装置
CN106680186B (zh) 一种流式细胞仪多类型散射光探测***
CN107796741A (zh) 一种高浓度颗粒群的光纤动态光散射检测装置
CN114280327B (zh) 基于光纤光镊的高灵敏加速度测量方法及传感器
CN108855255A (zh) 测量动态光散射的微流控芯片、其制备方法和应用
CN101893509B (zh) 一种测量大数值孔径显微物镜调制传递函数的装置及方法
CN203191316U (zh) 一种光路自动校正的细胞激光激发检测装置
CN110567934A (zh) 一种基于微结构光纤的拉曼测试辅助调节耦合的实时成像***及测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant