CN106441758B - 一种用于盾构隧道振动试验台的多尺度模型设计方法 - Google Patents

一种用于盾构隧道振动试验台的多尺度模型设计方法 Download PDF

Info

Publication number
CN106441758B
CN106441758B CN201610785337.7A CN201610785337A CN106441758B CN 106441758 B CN106441758 B CN 106441758B CN 201610785337 A CN201610785337 A CN 201610785337A CN 106441758 B CN106441758 B CN 106441758B
Authority
CN
China
Prior art keywords
shield tunnel
model
multiple dimensioned
lining cutting
grooving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610785337.7A
Other languages
English (en)
Other versions
CN106441758A (zh
Inventor
季倩倩
方卫
刘小方
吴华柒
田海洋
陈向科
左峰
冯雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Changjiang Tunnel Bridge Construction Development Co ltd
Original Assignee
Shanghai Changjiang Tunnel Bridge Construction Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Changjiang Tunnel Bridge Construction Development Co ltd filed Critical Shanghai Changjiang Tunnel Bridge Construction Development Co ltd
Priority to CN201610785337.7A priority Critical patent/CN106441758B/zh
Publication of CN106441758A publication Critical patent/CN106441758A/zh
Application granted granted Critical
Publication of CN106441758B publication Critical patent/CN106441758B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

本发明涉及一种用于盾构隧道振动试验台的多尺度模型设计方法,用于建立盾构隧道的多尺度模型,所述方法包括下列步骤:建立精细化管环部分;建立均值等效管段部分;将精细化管环部分和均值等效管段部分按比例交替拼接,得到盾构隧道的多尺度模型。与现有技术相比,本发明具有简化模型制作工艺、节约模型制作成本、简化模型拼装过程以及准确反映盾构隧道的宏观响应和细部动力响应等优点。

Description

一种用于盾构隧道振动试验台的多尺度模型设计方法
技术领域
本发明涉及地下工程试验研究领域,尤其是涉及一种用于盾构隧道振动试验台的多尺度模型设计方法。
背景技术
鉴于盾构隧道的安全性以及技术成熟程度,盾构施工方法在近年来被广泛应用于地铁隧道、跨江跨海隧道的工程当中。研究表明在强震作用下地下结构可能出现不可修复的损害,抗震设计对于盾构隧道结构设计尤显重要。通过盾构隧道振动试验台,量化且精确的振动台试验研究可以对隧道的抗震设计提供数据支持,而试验中结构模型设计对试验数据的准确性起了关键性作用。
然而,盾构隧道的结构形式十分复杂,管片数量巨大。一般来说,每个管环都由1个封顶块,2个临接块以及若干标准块。块与块之间均用螺栓以及手孔连接,并设置连接键提高抗剪能力,管环与管环之间通过通缝或错缝形式拼接。而在研究长隧道响应的振动台试验中,隧道模型很难做到将所有上述管片以及附属结构进行全面精细化的模拟。另外,表征盾构隧道动力响应的重要参数包括隧道沉降位移,管体加速度响应,管片应力应变响应以及接缝张开量,与宏观隧道km级的尺度比较,管片变形以及接缝张开量一般在mm量级,二者尺度相差大。如何同时模拟隧道宏观尺度的整体响应,又能从微观上获取隧道结构细部的动力响应,是盾构隧道模型设计的难点。
发明内容
本发明的目的是针对上述问题提供一种用于盾构隧道振动试验台的多尺度模型设计方法。
本发明的目的可以通过以下技术方案来实现:
一种用于盾构隧道振动试验台的多尺度模型设计方法,用于建立盾构隧道的多尺度模型,所述方法包括下列步骤:
1)建立精细化管环部分;
2)建立均值等效管段部分;
3)将精细化管环部分和均值等效管段部分按比例交替拼接,得到盾构隧道的多尺度模型。
所述步骤1)具体为:
11)等比例缩小盾构隧道原型的管环,构成衬砌环模型;
12)在步骤11)得到的衬砌环模型上设置切槽,保障衬砌环模型的等效横向刚度ηr与盾构隧道原型一致,得到切槽衬砌环模型;
13)在步骤12)得到的切槽衬砌环模型上设置连接键和键孔,得到可拼接切槽衬砌环模型;
14)将步骤13)得到的可拼接切槽衬砌环模型进行拼装,得到精细化管环部分,所述精细化管环部分的纵向等效刚度ηsl与盾构隧道原型的纵向等效刚度η一致。
所述衬砌环模型的等效横向刚度ηr具体为:
其中,km为切槽衬砌环模型的刚度,ku为与切槽衬砌环模型同尺寸的均匀圆环的整体刚度,Δdu为与切槽衬砌环模型同尺寸的均匀圆环的直径最大变化量,Δdm为切槽衬砌环模型的直径最大变化量。
所述连接键在切槽衬砌环模型的切面上等角度分布,所述键孔与连接键相对应。
所述将步骤13)得到的可拼接切槽衬砌环模型进行拼装包括错缝拼装或通缝拼装。
所述盾构隧道原型的纵向等效刚度η具体为:
其中,为盾构隧道管环截面中性轴角度,具体为:
其中,Ec和Ac分别为盾构隧道管环弹性模量和横截面面积,Eb和Ab分别为盾构隧道的螺栓的弹性模量和截面面积,n为盾构隧道的螺栓的数量。
所述步骤2)具体为:
21)等比例缩小盾构隧道原型的管环,构成均质管环模型;
22)削减步骤21)得到的均质管环模型的厚度,得到薄壁均质管环模型;
23)在步骤22)得到的薄壁均质管环模型上设置连接键和键孔,得到可拼接薄壁均质管环模型;
24)将步骤23)得到的可拼接薄壁均质管环模型进行拼装,得到均值等效管段部分。
所述薄壁均质管环模型满足:
αE=(1-ηslslαs 4)1/4
其中,ηsl为精细化管环部分的纵向等效刚度,dE为薄壁均质管环模型的内径,ds为精细化管环部分的内径,D为盾构隧道的多尺度模型的外径。
所述比例通过数值试验确定。
与现有技术相比,本发明具有以下有益效果:
(1)通过将整体模型拆分为精细化管环部分和均值等效管段部分,简化了盾构隧道模型的制作工艺,减小了模型建立的难度。
(2)整个模型的制作只需等比例缩小盾构隧道原型的管环,在管环上设置凹槽、连接键、键孔以及减小管环厚度即可,便于制作,节约了制作成本。
(3)通过建立均值等效管段部分,可以保证对大尺度隧道宏观响应的模拟。
(4)通过建立精细化管环部分,可以准确反映隧道细部的动力响应。
(5)通过设置连接键和键孔,可以以拼装的方式完成盾构隧道模型的建设,简化了模型的拼装过程。
(6)由于建立的多尺度模型可以通过拼装实现,易于根据实际情况进行组装,因此便于根据盾构隧道振动试验台的大小进行拼装,适用于盾构隧道振动试验台。
附图说明
图1为实施例中设计的切槽衬砌环模型的示意图;
图2为实施例中设计的切槽衬砌环模型的剖面图;
图3为实施例中设计的均值等效管段部分的示意图;
图4为实施例中多尺度模型数值模拟对比示意图。
具体实施方式
本发明提供了一种用于盾构隧道振动试验台的多尺度模型设计方法,用于建立盾构隧道的多尺度模型,该方法包括下列步骤:
1)建立精细化管环部分(SER):
11)等比例缩小盾构隧道原型的管环,构成衬砌环模型;
12)在步骤11)得到的衬砌环模型上设置切槽,保障衬砌环模型的等效横向刚度ηr与盾构隧道原型一致,得到切槽衬砌环模型;
13)在步骤12)得到的切槽衬砌环模型上设置连接键和键孔,得到可拼接切槽衬砌环模型;
14)将步骤13)得到的可拼接切槽衬砌环模型进行拼装,得到精细化管环部分,所述精细化管环部分的纵向等效刚度ηsl与盾构隧道原型的纵向等效刚度η一致;
2)建立均值等效管段部分(EUT):
21)等比例缩小盾构隧道原型的管环,构成均质管环模型;
22)削减步骤21)得到的均质管环模型的厚度,得到薄壁均质管环模型;
23)在步骤22)得到的薄壁均质管环模型上设置连接键和键孔,得到可拼接薄壁均质管环模型;
24)将步骤23)得到的可拼接薄壁均质管环模型进行拼装,得到均值等效管段部分;
3)将精细化管环部分和均值等效管段部分按比例交替拼接,得到盾构隧道的多尺度模型。
步骤12)中的砌环模型的等效横向刚度ηr具体为:
其中,km为切槽衬砌环模型的刚度,ku为与切槽衬砌环模型同尺寸的均匀圆环的整体刚度,Δdu为与切槽衬砌环模型同尺寸的均匀圆环的直径最大变化量,Δdm为切槽衬砌环模型的直径最大变化量。
步骤13)中的连接键在切槽衬砌环模型的切面上等角度分布,键孔与连接键相对应。将步骤13)得到的可拼接切槽衬砌环模型进行拼装包括错缝拼装或通缝拼装。
步骤14)中的盾构隧道原型的纵向等效刚度η具体为:
其中,为盾构隧道管环截面中性轴角度,具体为:
其中,Ec和Ac分别为盾构隧道管环弹性模量和横截面面积,Eb和Ab分别为盾构隧道的螺栓的弹性模量和截面面积,n为盾构隧道的螺栓的数量。
步骤21)中的薄壁均质管环模型满足:
αE=(1-ηslslαs 4)1/4
其中,ηsl为精细化管环部分的纵向等效刚度,dE为薄壁均质管环模型的内径,ds为精细化管环部分的内径,D为盾构隧道的多尺度模型的外径。
根据上述步骤建立盾构隧道的多尺度模型,如图1与图2所示,为构成SER部分的盾构管片切槽模型。隧道结构每个衬砌环单独制作,通过相似比设计,选取PE聚乙烯材料为模型材料。按照1/60的几何尺寸相似比缩尺之后,外径250mm,内径210mm,环宽33.3mm。衬砌环模型在原结构纵缝处设置切槽,模拟原结构衬砌环上纵缝与环向螺栓的传力效果,以实现对衬砌环整体的刚度等效。通过调研主尺试验与数值研究结果总结隧道等效横向刚度介于0.6与0.8之间,而通过室内静力试验测得在切槽深度为10mm时,本模型横向刚度系数为0.72,进而验证了横向刚度的等效性。
切槽衬砌环模型在原结构纵向螺栓设置处设有连接键,螺栓为圆柱体,高9mm,圆截面直径10mm,在距离模拟螺栓底部3mm处设置有截面为半圆形(直径2mm)的凹槽,可在凹槽上套橡胶环,为衬砌环模型间的相互错动位移提供空间。环背面连接键相对应位置设置键孔,两个衬砌环模型可以通过连接键和键孔直接机械咬合在一起,并以此模拟原结构纵向螺栓的机械特性。连接键在切槽圆环模型等角度分布,多个切槽圆环模型以错缝或通缝的形式拼接在一起形成SER部分。
根据公式
计算原型隧道纵向等效刚度系数
其中为隧道圆环截面中性轴角度,满足关系
其中Ec,Ac分别为隧道管片弹性模量和横截面面积;Eb,Ab分别为螺栓的弹性模量与截面面积;n为螺栓的数量。计算得盾构隧道原型的纵向等效刚度为0.33。另一方面,通过数值计算,得到通缝拼接模型纵向刚度系数0.34,错缝拼接模型纵向刚度系数0.37。
在设计EUT模型部分时,由于EUT为连续均质圆管,且若材料与SER模型一致,则必须削减模型壁厚。如图3所示,EUT模型同样采用PE材料,设计单个EUT部分长度为600mm,外径250mm,同样通过将连接键和键孔连接的方式与SER部分相连,组成盾构隧道多尺度模型。折减后壁厚满足关系:
αE=(1-ηslslαs 4)1/4
其中ηsl为SER拼装管片纵向等效刚度系数,dE为EUT段模型内径,ds为SER段模型内径,D为模型外径
通过折减之后圆管壁厚为5mm。
最后,如图4表示,通过一系列数值试验将不同长度比例a:b(SER长度与EUT长度之比)的多尺度模型与全SER精细模型相对比,确定a:b的最优比例为3:4。

Claims (7)

1.一种用于盾构隧道振动试验台的多尺度模型设计方法,用于建立盾构隧道的多尺度模型,其特征在于,所述方法包括下列步骤:
1)建立精细化管环部分;
2)建立均值等效管段部分;
3)将精细化管环部分和均值等效管段部分按比例交替拼接,得到盾构隧道的多尺度模型;
所述步骤2)具体为:
21)等比例缩小盾构隧道原型的管环,构成均质管环模型;
22)削减步骤21)得到的均质管环模型的厚度,得到薄壁均质管环模型;
23)在步骤22)得到的薄壁均质管环模型上设置连接键和键孔,得到可拼接薄壁均质管环模型;
24)将步骤23)得到的可拼接薄壁均质管环模型进行拼装,得到均值等效管段部分;
所述薄壁均质管环模型满足:
αE=(1-ηslslαs 4)1/4
其中,ηsl为精细化管环部分的纵向等效刚度,dE为薄壁均质管环模型的内径,ds为精细化管环部分的内径,D为盾构隧道的多尺度模型的外径,αE为薄壁均质管环模型的内径与盾构隧道的多尺度模型的外径的径向比,αs为精细化管环部分的内径与盾构隧道的多尺度模型的外径的径向比。
2.根据权利要求1所述的用于盾构隧道振动试验台的多尺度模型设计方法,其特征在于,所述步骤1)具体为:
11)等比例缩小盾构隧道原型的管环,构成衬砌环模型;
12)在步骤11)得到的衬砌环模型上设置切槽,保障衬砌环模型的等效横向刚度ηr与盾构隧道原型一致,得到切槽衬砌环模型;
13)在步骤12)得到的切槽衬砌环模型上设置连接键和键孔,得到可拼接切槽衬砌环模型;
14)将步骤13)得到的可拼接切槽衬砌环模型进行拼装,得到精细化管环部分,所述精细化管环部分的纵向等效刚度ηsl与盾构隧道原型的纵向等效刚度η一致。
3.根据权利要求2所述的用于盾构隧道振动试验台的多尺度模型设计方法,其特征在于,所述衬砌环模型的等效横向刚度ηr具体为:
其中,km为切槽衬砌环模型的刚度,ku为与切槽衬砌环模型同尺寸的均匀圆环的整体刚度,Δdu为与切槽衬砌环模型同尺寸的均匀圆环的直径最大变化量,Δdm为切槽衬砌环模型的直径最大变化量。
4.根据权利要求2所述的用于盾构隧道振动试验台的多尺度模型设计方法,其特征在于,所述连接键在切槽衬砌环模型的切面上等角度分布,所述键孔与连接键相对应。
5.根据权利要求2所述的用于盾构隧道振动试验台的多尺度模型设计方法,其特征在于,所述将步骤13)得到的可拼接切槽衬砌环模型进行拼装包括错缝拼装或通缝拼装。
6.根据权利要求2所述的用于盾构隧道振动试验台的多尺度模型设计方法,其特征在于,所述盾构隧道原型的纵向等效刚度η具体为:
其中,为盾构隧道管环截面中性轴角度,具体为:
其中,Ec和Ac分别为盾构隧道管环弹性模量和横截面面积,Eb和Ab分别为盾构隧道的螺栓的弹性模量和截面面积,n为盾构隧道的螺栓的数量。
7.根据权利要求1所述的用于盾构隧道振动试验台的多尺度模型设计方法,其特征在于,所述比例通过数值试验确定。
CN201610785337.7A 2016-08-31 2016-08-31 一种用于盾构隧道振动试验台的多尺度模型设计方法 Expired - Fee Related CN106441758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610785337.7A CN106441758B (zh) 2016-08-31 2016-08-31 一种用于盾构隧道振动试验台的多尺度模型设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610785337.7A CN106441758B (zh) 2016-08-31 2016-08-31 一种用于盾构隧道振动试验台的多尺度模型设计方法

Publications (2)

Publication Number Publication Date
CN106441758A CN106441758A (zh) 2017-02-22
CN106441758B true CN106441758B (zh) 2018-10-30

Family

ID=58090518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610785337.7A Expired - Fee Related CN106441758B (zh) 2016-08-31 2016-08-31 一种用于盾构隧道振动试验台的多尺度模型设计方法

Country Status (1)

Country Link
CN (1) CN106441758B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107420105B (zh) * 2017-08-01 2018-12-18 大连理工大学 全断面岩石掘进机关键部位振动与应变监测方法
CN108776033B (zh) * 2018-03-30 2023-09-22 西南交通大学 一种用于盾构隧道纵向模型试验的衬砌模型及制作方法
CN113640136B (zh) * 2021-08-12 2023-12-15 华东交通大学 一种盾构管片缩尺模型实验装置及实验方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332334A (en) * 1992-02-21 1994-07-26 Ingenieure Mayreder, Kraus & Co. Consult Gesellschaft M.B.H. Tunnel wall with lining
JP3735532B2 (ja) * 2000-01-31 2006-01-18 ジオスター株式会社 シールド工事用セグメントリング
CN101299008A (zh) * 2008-06-13 2008-11-05 同济大学 可模拟盾构隧道管片接头的试验模型及其制作方法
CN101435746A (zh) * 2008-12-15 2009-05-20 西南交通大学 盾构隧道结构模型综合试验***
CN101950318A (zh) * 2010-10-02 2011-01-19 上海交通大学 基于混合模型的输水隧道模拟方法
CN103953349A (zh) * 2014-04-24 2014-07-30 西南交通大学 一种管片接头刚度可控变化的隧道模型试验方法
CN104677664A (zh) * 2015-02-12 2015-06-03 上海交通大学 盾构隧道上浮机理的模型试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332334A (en) * 1992-02-21 1994-07-26 Ingenieure Mayreder, Kraus & Co. Consult Gesellschaft M.B.H. Tunnel wall with lining
JP3735532B2 (ja) * 2000-01-31 2006-01-18 ジオスター株式会社 シールド工事用セグメントリング
CN101299008A (zh) * 2008-06-13 2008-11-05 同济大学 可模拟盾构隧道管片接头的试验模型及其制作方法
CN101435746A (zh) * 2008-12-15 2009-05-20 西南交通大学 盾构隧道结构模型综合试验***
CN101950318A (zh) * 2010-10-02 2011-01-19 上海交通大学 基于混合模型的输水隧道模拟方法
CN103953349A (zh) * 2014-04-24 2014-07-30 西南交通大学 一种管片接头刚度可控变化的隧道模型试验方法
CN104677664A (zh) * 2015-02-12 2015-06-03 上海交通大学 盾构隧道上浮机理的模型试验装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于模型试验的盾构隧道纵向刚度分析;叶飞 等;《岩上工程学报》;20150131;第37卷(第1期);第84页左栏第3段至第86页图5,第88页左栏倒数第2段及表2 *

Also Published As

Publication number Publication date
CN106441758A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106441758B (zh) 一种用于盾构隧道振动试验台的多尺度模型设计方法
CN108776033A (zh) 一种用于盾构隧道纵向模型试验的衬砌模型及制作方法
CN101299008B (zh) 可模拟盾构隧道管片接头的试验模型的制作方法
CN103726654B (zh) 混凝土结构的异形薄壳的施工方法
CN103956109B (zh) 一种衬砌结构接头刚度可变的隧道模型试验方法
CN105973141B (zh) 一种盾构隧道管片错台测量装置
CN105466741B (zh) 一种任意方位多组节理岩桥试样制备装置
CN104834783B (zh) 点蚀随机分布的圆柱壳数值模型的参数化构建方法
CN107060829B (zh) 用于隧道模型试验的拼装式衬砌结构及其制作方法
CN105387274A (zh) 一种地下管线修复辅助方法、装置及***
CN103866736B (zh) 一种矿震对煤矿地下水库影响的物理模拟试验***及方法
CN102426396A (zh) 一种模拟深部位移引发地层变形协调机制的试验装置
CN104596822A (zh) 一种原位柱状节理岩石的试验模型制备方法
CN109488332A (zh) 成型盾构隧道管片内力检测方法
CN105887915A (zh) 一种基于bim的地脚螺栓定位方法
CN104848838A (zh) 两种构形条件下岩土试样剪切带倾角演变规律的观测方法
CN105510154A (zh) 一种测定岩土试件抗剪强度指标的装置及测定方法
CN105588802A (zh) 一种用于模拟巷道围岩塑性区的三维实验***及实验方法
CN106017961A (zh) 一种模拟盾构隧道管片接头的试验模型
CN208476552U (zh) 一种用于盾构隧道纵向模型试验的管片衬砌模型
CN106021840A (zh) 一种用于反演横观各向同性岩体地应力的方法
Lee et al. Use of epoxy in developing miniature ball penetrometers
CN103344214A (zh) 一种1.6次抛物线型特大桥墩测量及墩身线形控制方法
CN106053110B (zh) 一种用于盾构隧道模型试验的管环模型设计方法
CN105643135A (zh) 一种油气管道拘束模拟装置及其测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181030

Termination date: 20200831

CF01 Termination of patent right due to non-payment of annual fee