CN106425691B - 基于激光干涉原理的精密主轴回转精度检测装置及方法 - Google Patents

基于激光干涉原理的精密主轴回转精度检测装置及方法 Download PDF

Info

Publication number
CN106425691B
CN106425691B CN201610806013.7A CN201610806013A CN106425691B CN 106425691 B CN106425691 B CN 106425691B CN 201610806013 A CN201610806013 A CN 201610806013A CN 106425691 B CN106425691 B CN 106425691B
Authority
CN
China
Prior art keywords
target ball
measuring
main shaft
light
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610806013.7A
Other languages
English (en)
Other versions
CN106425691A (zh
Inventor
郭俊康
孙岩辉
洪军
刘志刚
刘光辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201610806013.7A priority Critical patent/CN106425691B/zh
Publication of CN106425691A publication Critical patent/CN106425691A/zh
Application granted granted Critical
Publication of CN106425691B publication Critical patent/CN106425691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2409Arrangements for indirect observation of the working space using image recording means, e.g. a camera

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于激光干涉原理的精密主轴回转精度检测分析方法,精密主轴回转精度检测光路包括用于安装所需仪器的箱体,安装于箱体中的激光发射器、4个光学凸透镜、半透半反镜、基准球以及CCD相机,部分激光光束将由方箱上的圆孔射出打在靶球上,所述靶球通过延伸杆安装在精密主轴上。所述分析原理对CCD相机采集到的激光干涉图样进行分析,获得精密主轴的转速以及三向位移误差。本发明方便用于工程检测,无需误差分离,能够同时检测精密主轴的转速、轴向和径向位移误差,并且测量精度达到纳米量级。

Description

基于激光干涉原理的精密主轴回转精度检测装置及方法
【技术领域】
本发明属于精密主轴回转精度测试分析领域,涉及一种基于激光干涉原理的精密主轴回转精度检测装置及方法。
【背景技术】
精密主轴是高档数控机床的重要组成部件,其精度性能对机床加工能力有重要影响。而由于用于检测的特征面的制造误差与精密主轴的回转精度很接近,通常需要运用一定的手段实现误差分离,获得更为真实的回转精度结果。对于径向跳动,通常采用多个传感器不同角度上进行检测,进而运用数学方法处理所得信号,实现误差分离。主要的方法有正交法、三点法等。而对于轴向窜动,通常采用单传感器进行测量。
当前精密主轴回转精度检测方法存在以下缺点:
1)为降低加工误差的影响,用于检测的特征面加工精度要求很高;
2)多采用电容或电涡流位移传感器,检测受到被测面材质的影响;
3)为保证传感器的线性测量,对被测面直径和传感器到被测面的距离有很高要求;
4)径向跳动采用多传感器检测,传感器延长线应交于一点,且为进行误差分离,传感器角度要求较高,传感器的安装有很大难度;
5)主轴旋转速度需要单独检测,不利于同步分析。
【发明内容】
本发明的目的在于克服上述现有技术中的缺点,提出一种基于激光干涉原理的精密主轴回转精度检测分析方法。
为达到上述目的,本发明采用以下技术方案予以实现:
基于激光干涉原理的精密主轴回转精度检测装置,包括箱体和靶球;靶球通过连杆安装在被测精密主轴上;箱体中安装有能够发生稳定单色激光的激光源及干涉测试***;靶球的连杆与从箱体中射出的激光束轴线平行,并且靶球的球心在激光束汇聚点附近。
本发明进一步的改进在于:
所述干涉测试***包括依次设置于激光源出射光光轴上的第一扩束透镜、第二扩束透镜、第一汇聚透镜以及半透半反镜,半透半反镜一侧反射光光路上设置基准球,其汇聚点与基准球的球心重合,另一侧设置第二汇聚透镜;半透半反镜将经过第一汇聚透镜透射过来的光一部分反射至基准球,另一部分沿出射光光轴透射,经箱体上的圆孔射出至靶球;第二汇聚透镜将基准球与靶球的反射光汇聚,将球面波转换成平面波。
所述第二汇聚透镜的正后方设置用于测量反射波干涉图像的CCD相机。
一种基于激光干涉原理的精密主轴回转精度检测方法,包括以下步骤:
1)微调箱体,使射出的激光束汇聚点在精密主轴旋转过程中始终位于靶球坐标系的某一象限中且尽量靠近球心,使用CCD相机采集干涉图像,分析得到靶球中心误差位移;
2)控制精密主轴旋转,记录靶球中心移动轨迹;
3)分析靶球中心移动轨迹获得精密主轴的旋转速度及轴向和径向位移误差。
其进一步的改进在于:
所述步骤1)的具体方法如下:
设空气折射率为n=1,基准球和靶球的半径均为R,调整后靶球中心在靶球坐标系中的坐标为δ=(δx,δy,δz);靶球坐标系是原点位于射出激光束汇聚点的坐标系;在靶球上某一点P(x,y,z)处的光线,由于位移量相对R很小,入射光与反射光的夹角可忽略,视为重合;能够得到在P点及基准球对应点处,经过反射后,光线的光程差为:
另外由于P点在靶球球面上,有几何关系:
x2+y2+z2=R2 (2)
在CCD相机上建立测量坐标用于测量干涉图像数据;设基准球球心到第二汇聚透镜的距离为d,则CCD相机与球面上对应的各点,坐标值的放大系数为:
联立式(1)、(2)、(3),得到测量坐标系中各点的坐标值(xc,yc,zc)、光程差Δ与靶球位移误差(δx,δy,δz)的关系为:
当光程差为波长λ的整数倍时,干涉获得亮条纹,通过关系式看出是一系列椭圆;根据干涉图像的三个性质参数与方程各系数之间的关系计算得到光束汇聚点在靶球坐标系中的坐标(δx,δy,δz),即靶球球心的位置。
所述涉图像的三个性质参数为干涉图像亮条纹的长短轴比值、短轴方向角以及两级亮条纹间距。
所述步骤3)的具体方法如下:
3-1)提取轨迹在xOy平面中投影的基频即为精密主轴旋转频率;
3-2)做轨迹在xOy平面中投影的最小包络圆,其直径为精密主轴的径向位移误差;
3-3)做轨迹在z轴上的投影,其长度为精密主轴轴向窜动。
与现有技术相比,本发明具有以下有益效果:
本发明利用球面波的干涉图像,分析获得转速及径向和轴向位移误差;利用干涉图像整体信息,对检测面加工精度要求大大降低;激光波长不受反射面材质的影响,对被测面材质无要求;而且激光波长有很好的一致性及稳定性,测量具有很好的线性特性。本发明由于该方法使用干涉图像的整体信息进行分析,只要求保证检测面的基本尺寸,对检测面的加工精度要求大大降低,同时也降低了设备的保存维护要求;对检测面的材质、尺寸大小要求低,省略了传感器标定等操作,使测试工作更简单方便,适用范围也更加广泛;本发明可以同时检测精密主轴的转速及径向和轴向位移误差,避免多传感器之间的不同步等问题;最后,本发明不需要考虑多个传感器之间的位置关系,也无需进行误差分离,测量更加准确。
【附图说明】
图1为基于激光干涉原理的精密主轴回转精度检测光路图;
图2为光程差示意图;
图3为干涉条纹示意图;
图4为靶球中心运动轨迹示意图;
图5为径向位移误差评价方法示意图;
图6为轴向窜动评价方法示意图。
其中:1-靶球;2-基准球;3-半透半反镜;4-箱体;5-激光源;6-第一扩束透镜;7-第二扩束透镜;8-第一汇聚透镜;9-CCD相机;10-第二汇聚透镜。
【具体实施方式】
下面结合附图对本发明做进一步详细描述:
参见图1,本发明基于激光干涉原理的精密主轴回转精度检测装置,包括箱体4和靶球1。箱体4固定在空间中,箱体4中安装有激光发生及干涉测试***;激光发射***包括激光源5,能够发生稳定的单色激光,干涉测试***包括,第一扩束透镜6,第二扩束透镜7,第一汇聚透镜8,半透半反镜3,基准球2,第二汇聚透镜10,CCD相机9;第一扩束透镜6,第二扩束透镜7对激光源5发生的激光束有准直扩束作用;第一汇聚透镜8将调整后的激光束进行汇聚,由平面波转换形成球面波;球面波通过半透半反镜3,一部分反射至基准球2,汇聚点与球心重合,另一部分通过箱体4上的圆孔射出至靶球;第二汇聚透镜10与第一汇聚透镜8参数一致且关于半透半反镜3对称,可将基准球2与靶球1的反射光汇聚,将球面波转换形成平面波;CCD相机9位于第二汇聚透镜10的正后方,测量反射波的干涉图像。
靶球1通过连杆安装在被测精密主轴上;靶球1的连杆与从箱体4中射出的激光束轴线平行,并且靶球1的球心在激光束汇聚点附近。
如图2所示,靶球上某一点P(x,y,z)处的光线,由于位移量相对R很小,入射光与反射光的夹角可忽略,视为重合。那么光程差为当前光路比原有光路所少的一段距离的两倍。
如图3所示,是靶球中心存在位移误差时,CCD相机上获得的干涉亮条纹的图像,是一系列椭圆。
如图4所示,是靶球中心可能的运动轨迹,位于坐标系的第Ⅰ象限。因此根据干涉图像求得的三个误差值均为正值。
如图5所示,将靶球中心运动轨迹在xOy平面中投影,进而获得最小包络圆,圆的直径就是精密主轴径向位移误差。
如图6所示,将靶球中心运动轨迹在z轴上进行投影,得到投影线段的长度,即为精密主轴的轴向窜动。
本发明还公开了一种基于干涉图像检测精密主轴回转精度的测试方法,包括以下步骤:
1)微调箱体,使射出的激光束汇聚点在精密主轴旋转过程中始终位于靶球坐标系的第Ⅰ象限中(也可在其他象限中,用于确定误差位移正负)且尽量靠近球心,使用CCD相机采集干涉图像,分析得到靶球中心误差位移。
设空气折射率为n=1,基准球和靶球的半径均为R,调整后靶球中心在靶球坐标系中的坐标为δ=(δx,δy,δz)。靶球坐标系是原点位于射出激光束汇聚点的坐标系。在靶球上某一点P(x,y,z)处的光线,由于位移量相对R很小,入射光与反射光的夹角可忽略,视为重合。可以得到在P点及基准球对应点处,经过反射后,光线的光程差为
另外由于P点在靶球球面上,有几何关系
x2+y2+z2=R2 (2)
在CCD相机上建立测量坐标用于测量干涉图像数据。设基准球球心到第二汇聚透镜10的距离为d,则CCD相机与球面上对应的各点,坐标值的放大系数为
联立式(1)、(2)、(3),可得测量坐标系中各点的坐标值(xc,yc,zc)、光程差Δ与靶球位移误差(δx,δy,δz)的关系为
当光程差为波长λ的整数倍时,干涉获得亮条纹,通过关系式可以看出是一系列椭圆。
根据干涉图像的三个性质参数(可取干涉图像亮条纹的长短轴比值、短轴方向角、两级亮条纹间距)与方程各系数之间的关系可计算得到光束汇聚点在靶球坐标系中的坐标(δx,δy,δz),即靶球球心的位置。
2)控制精密主轴旋转,记录靶球中心移动轨迹。
3)分析靶球中心移动轨迹获得精密主轴的旋转速度及轴向和径向位移误差。具体分析方法为:
a.提取轨迹在xOy平面中投影的基频即为精密主轴旋转频率;
b.做轨迹在xOy平面中投影的最小包络圆,其直径为精密主轴的径向位移误差;
c.做轨迹在z轴上的投影,其长度为精密主轴轴向窜动。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (5)

1.基于激光干涉原理的精密主轴回转精度检测装置,其特征在于,包括箱体(4)和靶球(1);靶球(1)通过连杆安装在被测精密主轴上;箱体(4)中安装有能够发生稳定单色激光的激光源(5)及干涉测试***;靶球(1)的连杆与从箱体(4)中射出的激光束轴线平行,并且靶球(1)的球心在激光束汇聚点附近;
所述干涉测试***包括依次设置于激光源(5)出射光光轴上的第一扩束透镜(6)、第二扩束透镜(7)、第一汇聚透镜(8)以及半透半反镜(3),半透半反镜(3)一侧反射光光路上设置基准球(2),其汇聚点与基准球(2)的球心重合,另一侧设置第二汇聚透镜(10);半透半反镜(3)将经过第一汇聚透镜(8)透射过来的光一部分反射至基准球(2),另一部分沿出射光光轴透射,经箱体(4)上的圆孔射出至靶球(1);第二汇聚透镜(10)将基准球(2)与靶球(1)的反射光汇聚,将球面波转换成平面波。
2.根据权利要求1所述的基于激光干涉原理的精密主轴回转精度检测装置,其特征在于,所述第二汇聚透镜(10)的正后方设置用于测量反射波干涉图像的CCD相机(9)。
3.一种采用权利要求1或2所述装置的基于激光干涉原理的精密主轴回转精度检测方法,其特征在于,包括以下步骤:
1)微调箱体(4),使射出的激光束汇聚点在精密主轴旋转过程中始终位于靶球(1)坐标系的某一象限中且尽量靠近球心,使用CCD相机(9)采集干涉图像,分析得到靶球(1)中心误差位移;
2)控制精密主轴旋转,记录靶球(1)中心移动轨迹;
3)分析靶球(1)中心移动轨迹获得精密主轴的旋转速度及轴向和径向位移误差,具体方法如下:
3-1)提取轨迹在xOy平面中投影的基频即为精密主轴旋转频率;
3-2)做轨迹在xOy平面中投影的最小包络圆,其直径为精密主轴的径向位移误差;
3-3)做轨迹在z轴上的投影,其长度为精密主轴轴向窜动。
4.根据权利要求3所述的基于激光干涉原理的精密主轴回转精度检测方法,其特征在于,所述步骤1)的具体方法如下:
设空气折射率为n=1,基准球和靶球的半径均为R,调整后靶球中心在靶球坐标系中的坐标为δ=(δx,δy,δz);靶球坐标系是原点位于射出激光束汇聚点的坐标系;在靶球上某一点P(x,y,z)处的光线,由于位移量相对R很小,入射光与反射光的夹角可忽略,视为重合;能够得到在P点及基准球对应点处,经过反射后,光线的光程差为:
另外由于P点在靶球球面上,有几何关系:
x2+y2+z2=R2 (2)
在CCD相机上建立测量坐标用于测量干涉图像数据;设基准球球心到第二汇聚透镜(10)的距离为d,则CCD相机与球面上对应的各点,坐标值的放大系数为:
联立式(1)、(2)、(3),得到测量坐标系中各点的坐标值(xc,yc,zc)、光程差Δ与靶球位移误差(δx,δy,δz)的关系为:
当光程差为波长λ的整数倍时,干涉获得亮条纹,通过关系式看出是一系列椭圆;根据干涉图像的三个性质参数与方程各系数之间的关系计算得到光束汇聚点在靶球坐标系中的坐标(δx,δy,δz),即靶球球心的位置。
5.根据权利要求4所述的基于激光干涉原理的精密主轴回转精度检测方法,其特征在于,所述涉图像的三个性质参数为干涉图像亮条纹的长短轴比值、短轴方向角以及两级亮条纹间距。
CN201610806013.7A 2016-09-06 2016-09-06 基于激光干涉原理的精密主轴回转精度检测装置及方法 Active CN106425691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610806013.7A CN106425691B (zh) 2016-09-06 2016-09-06 基于激光干涉原理的精密主轴回转精度检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610806013.7A CN106425691B (zh) 2016-09-06 2016-09-06 基于激光干涉原理的精密主轴回转精度检测装置及方法

Publications (2)

Publication Number Publication Date
CN106425691A CN106425691A (zh) 2017-02-22
CN106425691B true CN106425691B (zh) 2018-07-17

Family

ID=58164049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610806013.7A Active CN106425691B (zh) 2016-09-06 2016-09-06 基于激光干涉原理的精密主轴回转精度检测装置及方法

Country Status (1)

Country Link
CN (1) CN106425691B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030529B (zh) * 2017-06-19 2019-03-19 清华大学 一种机床运动部件悬浮驱动的激光制导***
CN107621601B (zh) * 2017-08-07 2020-04-21 大族激光科技产业集团股份有限公司 飞针测试机的运动轴的定位精度的测试***及其测试方法
CN110160770B (zh) * 2019-06-25 2021-12-21 沈阳工业大学 高速旋转主轴实时检测装置及其检测方法
CN111001829B (zh) * 2019-10-25 2021-07-02 郑州旅游职业学院 一种车床回转误差检测监控装置
CN111360580B (zh) * 2019-12-26 2022-05-13 武汉善福重型机床有限公司 一种非标机床同步数控轴检测方法
CN111442724A (zh) * 2020-04-30 2020-07-24 中国科学院西安光学精密机械研究所 一种大型精密环形导轨运行精度检测装置及其检测方法
CN115541225B (zh) * 2022-10-29 2023-09-05 通用技术集团机床工程研究院有限公司 一种超精密机床主轴在线精度分析方法与***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109625A (zh) * 2007-08-01 2008-01-23 北京理工大学 光学测孔内螺旋导轨旋转角度的方法
CN203572451U (zh) * 2013-10-14 2014-04-30 北京航天计量测试技术研究所 立轴式激光小角度测量装置
CN104111163A (zh) * 2014-07-23 2014-10-22 中国科学院上海光学精密机械研究所 凸透镜焦距的测量装置和测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109625A (zh) * 2007-08-01 2008-01-23 北京理工大学 光学测孔内螺旋导轨旋转角度的方法
CN203572451U (zh) * 2013-10-14 2014-04-30 北京航天计量测试技术研究所 立轴式激光小角度测量装置
CN104111163A (zh) * 2014-07-23 2014-10-22 中国科学院上海光学精密机械研究所 凸透镜焦距的测量装置和测量方法

Also Published As

Publication number Publication date
CN106425691A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106425691B (zh) 基于激光干涉原理的精密主轴回转精度检测装置及方法
CN102168955B (zh) 一种光学球面曲率半径的检测方法
CN109341546B (zh) 一种点激光位移传感器在任意安装位姿下的光束标定方法
CN104160294B (zh) 利用干涉测量法确定距离变化的方法
CN101629814B (zh) 差动共焦瞄准触发式空心球体内外轮廓及壁厚测量方法与装置
CN105423917B (zh) 位置敏感探测器定位误差的标定方法
CN108592827B (zh) 精密测角传感器及其测量方法
CN107462210B (zh) 直线导轨的滚转角测量装置
CN104848802B (zh) 法线跟踪式差动共焦非球面测量方法与***
CN107843213A (zh) 共焦自准直中心偏和曲率半径测量方法与装置
CN105444673B (zh) 旋转平移绝对检测法中确定光学元件中心的装置及方法
CN103175486A (zh) 一种圆柱度误差的拼接干涉测量装置及方法
CN106767395A (zh) 一种用于直线导轨六项几何误差高分辨力高效测量***及方法
CN104864822A (zh) 基于激光干涉的法线跟踪式非球面测量方法与***
CN108981593A (zh) 激光三角法透镜中心厚度测量装置及其测量方法
CN108344381A (zh) 一种非接触式三维面形测量方法
CN115540730A (zh) 一种高陡度或深凹复杂曲面的坐标测量***与方法
CN108731593B (zh) 一种前后双目的位置姿态光学测量结构与方法
CN109974579A (zh) 光学旋转抛物面基准件阵列中心距离的标定装置
CN109141868A (zh) 精密轴系误差运动的测量装置及测量方法
Marani et al. A 3D vision system for high resolution surface reconstruction
TW201530100A (zh) 光學量測系統及以此系統量測線性位移、轉動角度、滾動角度之方法
CN108332686B (zh) 一种锥形镜锥角的检测装置和方法
CN109596064A (zh) 双目共焦立体视觉扫描振镜位置误差矫正装置和方法
CN205940927U (zh) 摆镜特性参数测试装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Guo Junkang

Inventor after: Sun Yanhui

Inventor after: Hong Jun

Inventor after: Liu Zhigang

Inventor after: Liu Guanghui

Inventor before: Hong Jun

Inventor before: Sun Yanhui

Inventor before: Liu Zhigang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant