CN106390354A - Method capable of improving anaerobic degradation speed of benzoic acid - Google Patents

Method capable of improving anaerobic degradation speed of benzoic acid Download PDF

Info

Publication number
CN106390354A
CN106390354A CN201610796224.7A CN201610796224A CN106390354A CN 106390354 A CN106390354 A CN 106390354A CN 201610796224 A CN201610796224 A CN 201610796224A CN 106390354 A CN106390354 A CN 106390354A
Authority
CN
China
Prior art keywords
benzoic acid
concentration
sulfate
degradation speed
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610796224.7A
Other languages
Chinese (zh)
Inventor
汤佳
庄莉
唐子阳
余震
王跃强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Institute of Eco Environmental Science and Technology
Original Assignee
Guangdong Institute of Eco Environmental Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of Eco Environmental Science and Technology filed Critical Guangdong Institute of Eco Environmental Science and Technology
Priority to CN201610796224.7A priority Critical patent/CN106390354A/en
Publication of CN106390354A publication Critical patent/CN106390354A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/32Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by treatment in molten chemical reagent, e.g. salts or metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Abstract

The invention discloses a method capable of improving the anaerobic degradation speed of benzoic acid. In the natural anaerobic system, sulfate and conductive ferric oxides are added at the same time, and the degradation speed of the benzoic acid can be improved. The method can be applied to organic pollutant biological treatment and has the wide application prospect.

Description

A kind of method improving benzoic acid anaerobic degradation speed
Technical field
The present invention relates to organic pollutant degradation field, relate more specifically to a kind of raising benzoic acid anaerobic degradation speed Method.
Background technology
Aromatic compound is the environment dirt that a class has the characteristics such as toxicity, mutagenicity, carcinogenecity and difficult for biological degradation Dye thing.It is now recognized that aromatic compound can be degraded by the independent action of single microorganism it is also possible to pass through difference Syntrophism cooperation between microorganism completes to degrade.In anaerobic environment, the primary transformants of aromatic compound generally will be before open loop Remove or simplify substituted radical, and then change into benzoic acid and phenol, and phenol also can be converted into benzoic acid before open loop.Cause This, as important mesostate in aromatic compound anaerobism mineralization process, its degraded is for aromatic series for benzoic acid Most important for the anaerobic degradation of compound.
The at present research of para Toluic Acid includes the microbe to screen and to these compounds not of degraded benzoic acid derivative Research with metabolic pathway.In nature, benzoic acid metabalism there is also several different approach, according in degradation process to oxygen Demand and final electron acceptor difference, aerobic degradation and anaerobic degradation can be divided into.Wherein, anaerobic degradation is then first to occur Reduction reaction eliminates the conjugation of aromatic rings, and then makes its deoxidization, degradation, and this process is with nitrate, sulfate, ferrum or CO2For final Electron acceptor.
A lot of antibacterials all have benzoic anaerobic degradation ability, mainly include some photosynthetic bacterias, denitrifying bacteria and Sulfur iron-reducing bacteria etc., in these antibacterials, is mainly degraded through following step para Toluic Acid:(1) benzoic acid is in benzene Form CoA thioesterase in the presence of formic acid CoA ligase;(2) reduction of phenyl ring;(3) on phenyl ring oh group introducing; (4) cracking of phenyl ring.However, under natural system, although microorganism is very abundant, system envirment factor is complicated, benzoic acid Anaerobic degradation rate not high, therefore find a kind of improve natural system under benzoic acid anaerobic degradation rate method, very With practical value.
Content of the invention
It is an object of the invention to provide a kind of method improving benzoic acid anaerobic degradation speed.
The technical solution used in the present invention is:
A kind of method improving benzoic acid anaerobic degradation speed, in anaerobism natural system, with benzoic acid for substrate of degrading, Add sulfate and electric conductivity iron oxides simultaneously, improve benzoic acid degradation speed.
Benzoic acid initial concentration is 1~5mM;Sulfate concentration is 3~20mM;In terms of iron atom, electric conductivity iron oxides Concentration 5~100mM.
As preferred, when benzoic acid initial concentration is 3mM, interpolations sulfate concentration is 12mM, in terms of iron atom, interpolation Electric conductivity iron oxides concentration is 50mM.
The electrical conductivity of described electric conductivity iron oxides is 10-1000S/cm.
Described sulfate is soluble sulphate.
In described anaerobism natural system, ORP is -30~-180mV.
The invention has the beneficial effects as follows:
In natural anaerobic system, add sulfate and electric conductivity iron oxides simultaneously, benzoic degraded speed can be improved Rate, the method can be applicable to, in organic pollution biological treatment, have broad application prospects.
Brief description
Fig. 1:The benzoic acid degradation dynamic figure (arrow represents time started second round) of different disposal;
Fig. 2:The benzoic acid degradation dynamic change that variable concentrations magnetic iron ore is processed.
Specific embodiment
By embodiment, the present invention is further explained, but protection domain is not limited only to this.
Embodiment 1
By Zhujiang River bed mud and water with 1:3 (mass volume ratio) mix homogeneously, fills gaseous mixture N2:CO2(v/v=80:20) to no Oxygen condition (ORP is -30~-180mV), adds 3mM sodium benzoate and 12mM sodium sulfate to carry out enrichment culture.
Dress liquid 98mL in 125mL anaerobism bottle, wherein inoculation bed mud enrichment culture thing 8mL, 120 culture medium 90mL, each In bottle, the final concentration of 3mM of sodium benzoate, is processed according to table 1 below.
Table 1, interpolation sodium sulfate and the packet of electric conductivity iron oxides
Carry out Anaerobic culturel after process:Fill N2:CO2(v:V=80:20) gaseous mixture, first inflates 1h, then liquid under liquid level Inflate 30min on face, make whole reaction system be in anaerobic state (ORP is -30~-180mV), be positioned over 30 DEG C of constant incubators Middle lucifuge quiescent culture.
Wherein 120 culture medium prescriptions are as shown in table 2~4.
Table 2,120 culture medium prescriptions
Table 3,318 vitamin formulas
Table 4,320 trace element formulas:
Concentration of benzoic acid in detection cultivation cycle system, treats that the process reaction of sodium benzoate and sodium sulfate in system terminates Afterwards, add the benzoic acid of same concentrations again and sodium sulfate carries out secondary enrichment.
Benzoic detection method:After taking supernatant samples to cross 0.22 μm of filter membrane, surveyed with high performance liquid chromatography (HPLC) Fixed, each sample introduction 20 μ L.Detection wavelength is 213nm.Mobile phase is methanol:0.05mol/L potassium dihydrogen phosphate mixed liquor (being separately added into glacial acetic acid and each 11.6mL of isopropanol in 500mL0.05mol/L potassium dihydrogen phosphate)=22:78, flow velocity 1mL/min.Eluent A is 5% methanol, and eluent B is 95% methanol.
Result is as shown in figure 1, within two Anaerobic culturel cycles, be not added with sodium sulfate treatment group (Ben and BenM group) Benzoic acid is entirely without degraded, and the benzoic acid adding sodium sulfate treatment group (BenS group) was completely degraded in 12 days, and explanation adds Plus sodium sulfate can remarkably promote the anaerobic degradation of sodium benzoate.Add the treatment group of sodium sulfate and electric conductivity iron oxides simultaneously (BenSM and BenSH group) benzoic acid degradation speed is all significantly better than independent interpolation sodium sulfate treatment group (BenS group), and conduction is described Property iron oxides can promote benzoic anaerobic degradation under the conditions of sulfate further, and has persistency.
Embodiment 2
By Zhujiang River bed mud and water with 1:3 (mass volume ratio) mix homogeneously, fills gaseous mixture N2∶CO2(v/v=80: 20) are to no Oxygen condition, adds 3mM sodium benzoate and 12mM sodium sulfate to carry out enrichment culture.
Dress liquid 98mL in 125mL anaerobism bottle, wherein inoculation bed mud enrichment culture thing 8mL, 120 culture medium 90mL, each In bottle, the final concentration of 3mM of sodium benzoate, is processed according to table 5 below.
Table 5, variable concentrations magnetic iron ore experiment process
120 culture medium prescriptions, Anaerobic culturel, benzoic acid detection method are with described in embodiment 2.
Result as shown in Fig. 2 add sodium sulfate and add again respectively 5,20 and 50mM magnetic iron ore treatment groups (BenSM5, BenSM20, BenSM50) benzoic acid degradation speed be all significantly better than and independent add sodium sulfate (BenS group).BenSM5、 The benzoic acid degradation rate of BenSM20 and BenSM50 is respectively 1.11,1.42 and 2.26 times of BenS degradation rate, mixing Magnetic iron ore concentration is that 50mM benzoic acid degradation rate is the fastest.

Claims (8)

1. a kind of improve benzoic acid anaerobic degradation speed method it is characterised in that:In anaerobism natural system, with benzoic acid it is Degraded substrate, adds sulfate and electric conductivity iron oxides simultaneously, improves benzoic acid degradation speed.
2. according to claim 1 method it is characterised in that:Benzoic acid initial concentration is 1~5mM.
3. according to claim 1 method it is characterised in that:Sulfate concentration is 3~20mM.
4. according to claim 1 method it is characterised in that:In terms of iron atom, electric conductivity iron oxides concentration 5~100mM.
5. method according to claims 2 to 4 it is characterised in that:When benzoic acid initial concentration is 3mM, add sulfate Concentration is 12mM, and in terms of iron atom, interpolation electric conductivity iron oxides concentration is 50mM.
6. according to claim 1 method it is characterised in that:The electrical conductivity of described electric conductivity iron oxides is 10-1000 S/cm.
7. according to claim 1 method it is characterised in that:Described sulfate is soluble sulphate.
8. according to claim 1 method it is characterised in that:In described anaerobism natural system, ORP is -30 ~ -180mV.
CN201610796224.7A 2016-08-31 2016-08-31 Method capable of improving anaerobic degradation speed of benzoic acid Pending CN106390354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610796224.7A CN106390354A (en) 2016-08-31 2016-08-31 Method capable of improving anaerobic degradation speed of benzoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610796224.7A CN106390354A (en) 2016-08-31 2016-08-31 Method capable of improving anaerobic degradation speed of benzoic acid

Publications (1)

Publication Number Publication Date
CN106390354A true CN106390354A (en) 2017-02-15

Family

ID=58001983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610796224.7A Pending CN106390354A (en) 2016-08-31 2016-08-31 Method capable of improving anaerobic degradation speed of benzoic acid

Country Status (1)

Country Link
CN (1) CN106390354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014634A (en) * 2017-11-15 2018-05-11 广东省生态环境技术研究所 A kind of method for accelerating methane emission reduction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269901A (en) * 2008-05-13 2008-09-24 广西丽桂环保科技有限公司 Comprehensive approach for process and cyclic utilization of sewage water
CN104961166A (en) * 2010-11-15 2015-10-07 阿彻丹尼尔斯米德兰德公司 Compositions and uses thereof in converting contaminants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269901A (en) * 2008-05-13 2008-09-24 广西丽桂环保科技有限公司 Comprehensive approach for process and cyclic utilization of sewage water
CN104961166A (en) * 2010-11-15 2015-10-07 阿彻丹尼尔斯米德兰德公司 Compositions and uses thereof in converting contaminants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐子阳 等: "土壤铁氧化物对有机质产甲烷过程的影响及其机制", 《生态学杂志》 *
牟伯中 等: "微生物对芳香烃的降解作用", 《环境与开发》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014634A (en) * 2017-11-15 2018-05-11 广东省生态环境技术研究所 A kind of method for accelerating methane emission reduction

Similar Documents

Publication Publication Date Title
Tang et al. Identification of the release and effects of AHLs in anammox culture for bacteria communication
CN106882871B (en) Nano magnetite coupling wastewater treatment process for enhancing anaerobic microorganism activity
Lu et al. Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide
CN108114976B (en) Method for restoring polluted soil
Zhu et al. Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe (III) compounds
Chen et al. The effects of Fe (III) and Fe (II) on anammox process and the Fe–N metabolism
Li et al. Enhanced performance and kinetics of marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Mn (II) and Ni (II) addition
Hong et al. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12
Peng et al. Denitrifying phosphorus removal with nitrite by a real‐time step feed sequencing batch reactor
Bratkova et al. Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading
Amorim et al. Influence of redox mediators and electron donors on the anaerobic removal of color and chemical oxygen demand from textile effluent
He et al. Insights into the effect of iron-carbon particle amendment on food waste composting: Physicochemical properties and the microbial community
Zhou et al. The short‐term and long‐term effects of Fe (II) on the performance of anammox granules
Zheng et al. A novel method for immobilizing anammox bacteria in polyurethane foam carriers through dewatering
Li et al. The degradation of dissolved organic matter in black and odorous water by humic substance-mediated Fe (II)/Fe (III) cycle under redox fluctuation
Liu et al. Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing
Huo et al. Iron ore or manganese ore filled constructed wetlands enhanced removal performance and changed removal process of nitrogen under sulfamethoxazole and trimethoprim stress
CN104560823A (en) Shewanella putrefaciens capable of effectively degrading acetonitrile and application of Shewanella putrefaciens
Xu et al. Fe (III)-enhanced azo reduction by Shewanella decolorationis S12
Zhang et al. Effects of water level on nitrous oxide emissions from vegetated ditches
CN106390354A (en) Method capable of improving anaerobic degradation speed of benzoic acid
Zhao et al. Anammox in a biofilter reactor to treat wastewater of high strength nitrogen
Xing et al. Extensive production and evolution of free radicals during composting
Dang et al. Quinone electron shuttle enhanced ammonium removal performance in anaerobic ammonium oxidation coupled with Fe (III) reduction
CN116790452A (en) Composite microbial agent capable of synchronously reducing emission of methane and nitrous oxide under anoxic condition and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170215