CN106365209A - 通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法 - Google Patents

通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法 Download PDF

Info

Publication number
CN106365209A
CN106365209A CN201610738713.7A CN201610738713A CN106365209A CN 106365209 A CN106365209 A CN 106365209A CN 201610738713 A CN201610738713 A CN 201610738713A CN 106365209 A CN106365209 A CN 106365209A
Authority
CN
China
Prior art keywords
melnikovite
thermal transition
magnetic material
nano
fe3s4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610738713.7A
Other languages
English (en)
Inventor
黄菲
高尚
刘佳
高文元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201610738713.7A priority Critical patent/CN106365209A/zh
Publication of CN106365209A publication Critical patent/CN106365209A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明提供了一种磁性纳米材料的制备方法。实验采用硫代硫酸钠(Na2S2O3)、硫化钠(Na2S)和硫酸亚铁(FeSO4•7H2O)等无机无毒原料,通过“湿”阶段的化学沉淀反应和“干”阶段的高温热分解过程,在温度200℃时,利用热转化分解的实验方法成功制备了具有较强铁磁性的粒状纳米级矿物材料硫复铁矿(Fe3S4),并利用XRD、SEM表征了Fe3S4的晶体结构和形貌特征,利用振动样品磁强计表征了样品的磁性能。结果表明制备的Fe3S4纳米材料较纯,并具有较优异磁性能。本次研究解决了Fe3S4材料纯相不易合成的难题,对于新型功能材料的开发具有重要意义。

Description

通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法
技术领域:本发明涉及一种粒状纳米级磁性矿物材料的制备方法。
背景技术:磁性材料一直是国民经济、国防工业的重要支柱和基础,广泛应用于电信、自动控制、通讯、家用电器等领域。而现代社会信息化发展的总趋势是向小、轻、薄以及多功能方向发展,因而要求磁性材料向高性能、新功能方向发展。当传统材料的尺寸被细化到纳米量级的时候,磁性材料就具有许多独特的性能,如量子尺寸效应、超顺磁性、宏观量子隧道效应、磁有序颗粒的小尺寸效应、特异的表观磁性等。
硫复铁矿首次发现于美国加州的湖底沉积物中。近年来,由于海底矿物岩石特征研究的深入,Fe3S4开始被广泛发现于湖泊、海洋沉积物和一些沉积-热液叠加型硫化物矿床中。Fe3S4纳米颗粒对古地磁和环境磁学的研究有着重要的意义,其作为一种磁性功能材料也越来越受到人们重视。但天然硫复铁矿杂质含量较高,不稳定,极难提取获得,不能满足使用要求。
传统的理论和实践中发现,硫复铁矿是黄铁矿制备过程中的一种中间体,极易氧化,具有不稳定性。因此,纯相硫复铁矿样品难以制备和利用。曾报道的文献中虽然也有硫复铁矿的制备研究,但一般采用有机物为原料或添加一些毒性较大的有机表面活性剂,对环境和人体健康危害很大;并且制备工艺复杂,产物均一性较差,不利于大规模生产和利用。本研究通过简单易行的热转化无机分解反应过程,实现了硫复铁矿(Fe3S4)粒状纳米磁性矿物材料的人工制备,易于控制,工艺重复性好,质量稳定,成本低廉,在纳米磁性材料制备领域具有实际意义。
发明内容:
发明目的:本发明提供一种纳米磁性矿物材料的制备方法,其目的在于实验条件下,突破纯相Fe3S4纳米材料不易合成的难题,以无毒无害的无机盐溶液为原料,利用热转化分解法制备出纯相的、具备较好磁性能的、均匀粒状的纳米硫复铁矿矿物晶体材料。
技术方案:
本发明是通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法,该方法以硫酸亚铁、硫代硫酸钠和硫化钠无机盐作为原料;
该方法包括如下步骤:
(1)前驱物制备:取硫代硫酸钠、硫化钠和硫酸亚铁置于烧杯中,加入去离子水,充分搅拌混合,得混合溶液;将所述混合溶液密闭隔绝氧气,保温,冷却,过滤得到前驱物沉淀;
(2)热转化分解:将步骤(1)得到的前驱物沉淀置于坩埚中密封,放入真空管式炉中持续加热,得到固体粉末样品,即纯相的Fe3S4粒状纳米晶。
所述步骤(1)中硫代硫酸钠、硫化钠和硫酸亚铁的质量比为1:2:2;所述保温温度为70℃,保温时间为20h。
所述步骤(2)中持续加热温度为200℃,持续时间30h。
优点及效果:本方法全部采用毒害较小的无机盐溶液为原料,降低了实际工业生产对人和环境带来的危害,同时降低了实验成本,一举两得。并且该方法制备的Fe3S4晶体为均一尺寸和形貌的粒状纳米晶,粒度在50nm左右,与前人制备的片状晶体相比,均匀性好,粒度进一步减小,应用更加广泛。
该方法制备工艺简单易行,反应条件温和,不仅可以省去通保护气体的过程,并且避免在溶液加热过程中进行实验操作,降低了实验的危险性;热分解过程最终得到的为固体粉末样品,可直接利用,无需反复的洗涤、离心干燥过程。因此,热转化分解法工艺流程简单,易于操作,就经济利益和实验操作讲,是值得尝试的制备方法。
该方法制备的硫复铁矿磁性矿物材料物相单一,属于纳米级别,具有均一的粒径和形貌,质量稳定,表现出较好的可控性和磁性能。
附图说明:
图1为不同温度条件下采用多晶X射线衍射仪进行物相分析的衍射图谱;
图2为在200℃、加热时间为30小时条件下制备的硫复铁矿矿物晶体,采用多晶X射线衍射仪进行物相分析的衍射图谱;
图3-4为在200℃、加热时间为30小时条件下粒状硫复铁矿纳米晶的SEM形貌像;
图5-10为利用透射电子显微镜观测的200℃粒状硫复铁矿形貌、成分和结构特征。其中图5、图6、图7为纳米尺度的粒状硫复铁矿明场像;图8为粒状硫复铁矿的能谱成分分析;图9为硫复铁矿单晶的选区电子衍射谱;图10为多晶Fe3S4纳米晶聚集形成的多晶衍射环;
图11为样品的磁滞回线;
图12为样品的剩磁和矫顽磁力。
具体实施方式:
下面结合附图和具体实施例对本发明进行详细说明。
本方法是以硫酸亚铁(FeSO4·7H2O)、硫代硫酸钠(Na2S2O3)和硫化钠(Na2S)无机盐为原料,采取如下步骤:
(1)前驱物制备:取一定比例硫代硫酸钠(Na2S2O3)、硫化钠(Na2S)和硫酸亚铁(FeSO4·7H2O)置于烧杯中,加入一定量去离子水,充分搅拌混合,得混合溶液;将混合溶液密闭隔绝氧气,低温条件下保温一段时间,冷却,过滤得到前驱物沉淀;
(2)热转化分解:将得到的前驱物沉淀置于坩埚中密封,放入真空管式炉中一定温度持续加热一段时间,得到固体粉末样品,即纯相的Fe3S4粒状纳米晶。
所述步骤(1)中Na2S2O3、Na2S和FeSO4·7H2O三者物质的量比值1:2:2;保温较佳温度70℃,保温时间20h。
所述步骤(2)中热分解温度较佳值为200℃,持续时间30h。
具体实施例:
在天然硫复铁矿晶体研究基础上,参考天然地质条件设计实验,以无机盐溶液为反应物,盐浓度13%左右,pH在4-5之间,提出了热转化分解的实验方法。通过由“湿”到“干”两阶段的过渡转化过程,实现硫复铁矿晶体的结晶与生长。
实验原理:
实验分两阶段进行,第一阶段是在“湿”的条件下完成化学沉积,此阶段反应原理为:
FeSO4+Na2S2+NaSX→Fe2S3↓+FeSX↓+Na2SO4 (2)
第二阶段,在“干”条件下完成矿物的结晶、生长。此阶段反应原理为:
此过程中还可能发生如下反应:
以硫代硫酸钠(Na2S2O3)、硫化钠(Na2S)、硫酸亚铁(FeSO4·7H2O)为原料,按1:2:2比例置于烧杯中,加入140ml去离子水,制成溶液。在70℃保温20h,冲洗,过滤得到前驱物沉淀。将前驱物置于真空设备中,加热温度分别控制在160℃、200℃、260℃、290℃、320℃、350℃、380℃条件下加热30h,最终得到黑色固体粉末。
利用PW3040/60型多晶X射线衍射仪对不同温度下产物进行物相分析,所获数据用OriginPro8.5画出晶体衍射图,发现200℃时可制备出纯相的Fe3S4矿物晶体,结果如图1、图2所示。
XRD测试结果显示,160℃时,产物中杂相较多;200℃时,样品中出现了硫复铁矿(Fe3S4)全部特征晶面(200)、(311)、(400)、(511)、(440)的衍射峰,并且衍射峰强度较大,峰型较窄,几乎为纯相的硫复铁矿;260℃时,物相成分仍以Fe3S4为主,但衍射峰高度开始下降,含少量FeS2和Fe1-xS杂相;随温度继续升高,硫复铁矿逐渐为黄铁矿取代;290℃以上时,产物以黄铁矿为主。由此可见,200℃为硫复铁矿磁性材料的最优制备温度。通过计算得到样品晶体结构为立方晶系,晶格常数为α=β=γ=90°。
附图3、4分别为用日本岛津SSX-550扫描电镜观察的硫复铁矿的SEM照片,如图所示,200℃下制备的硫复铁矿主要呈现出细小纳米晶颗粒聚集生长,其粒径和形貌非常均匀。
附图5-10为利用透射电子显微镜观测的200℃粒状硫复铁矿形貌、成分和结构特征。图5、6、7为纳米尺度的粒状硫复铁矿明场像。可见硫复铁矿颗粒大小较为均匀,大部分在50nm左右,部分呈聚集生长。图8为细小粒状硫复铁矿的能谱成分分析,结果出现Fe、S峰,且Fe:S=3:4,符合Fe3S4原子比。图9为硫复铁矿单晶的选区电子衍射谱,R1=2.8,R2=3.45,R1^R2=90°,经计算为硫复铁矿的[202]晶带;图10为多晶Fe3S4纳米晶聚集形成的多晶衍射环。透射电镜观测进一步证实均匀的纳米小晶粒为硫复铁矿结构,属于立方晶系,
附图11、图12为利用Lakeshore 7407型振动样品磁强计分析得到的样品的磁滞回线。测试粉末样品0.02g,使用硫酸纸包裹制成5mm*5mm的方形薄片,将其固定在石英管上,最大磁场强度(H)为106A·m-1,测试温度为室温(300K)。
从图中可以看出,Fe3S4纳米材料饱和磁化强度为27.08emu/g,剩余磁感应强度为6emu/g,矫顽力大小为220Oe,因此,认为此次合成的立方晶系的均匀粒状Fe3S4纳米材料在300K是铁磁性的材料,并且具有较好磁性能。
综上,本次研究利用热转化分解法成功合成了均匀粒状的Fe3S4纳米磁性材料,突破了Fe3S4纳米材料纯相不易合成的难题,是纳米磁性材料制备的重要进展。

Claims (3)

1.通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法,其特征在于:该方法以硫酸亚铁、硫代硫酸钠和硫化钠无机盐作为原料;
该方法包括如下步骤:
(1)前驱物制备:取硫代硫酸钠、硫化钠和硫酸亚铁置于烧杯中,加入去离子水,充分搅拌混合,得混合溶液;将所述混合溶液密闭隔绝氧气,保温,冷却,过滤得到前驱物沉淀;
(2)热转化分解:将步骤(1)得到的前驱物沉淀置于坩埚中密封,放入真空管式炉中持续加热,得到固体粉末样品,即纯相的Fe3S4粒状纳米晶。
2.根据权利要求1所述的通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法,其特征在于:所述步骤(1)中硫代硫酸钠、硫化钠和硫酸亚铁的质量比为1:2:2;所述保温温度为70℃,保温时间为20h。
3.根据权利要求1所述的通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法,其特征在于:所述步骤(2)中持续加热温度为200℃,持续时间30h。
CN201610738713.7A 2016-08-26 2016-08-26 通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法 Pending CN106365209A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610738713.7A CN106365209A (zh) 2016-08-26 2016-08-26 通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610738713.7A CN106365209A (zh) 2016-08-26 2016-08-26 通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法

Publications (1)

Publication Number Publication Date
CN106365209A true CN106365209A (zh) 2017-02-01

Family

ID=57903030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610738713.7A Pending CN106365209A (zh) 2016-08-26 2016-08-26 通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法

Country Status (1)

Country Link
CN (1) CN106365209A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817081A (zh) * 2012-08-22 2012-12-12 兰州大学 一种片状四硫化三铁纳米单晶的制备方法
CN102874879A (zh) * 2012-10-12 2013-01-16 中国科学技术大学 一种Fe3S4纳米晶材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817081A (zh) * 2012-08-22 2012-12-12 兰州大学 一种片状四硫化三铁纳米单晶的制备方法
CN102874879A (zh) * 2012-10-12 2013-01-16 中国科学技术大学 一种Fe3S4纳米晶材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHANG GAO ET AL.: ""Growth Mechanism and Stability Study on the Fe3S4 Nanocrystals Synthesized Under Thermal and Humid Conditions"", 《PROCEEDINGS OF THE 11TH INTERNATIONAL CONGRESS FOR APPLIED MINERALOGY (ICAM)》 *

Similar Documents

Publication Publication Date Title
Li et al. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1, 2-propanediamine
CN102874773B (zh) 多孔硒化镍纳米空心球的制备方法
Jalil et al. Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites
Sobhani et al. Morphological control of MnSe2/Se nanocomposites by amount of hydrazine through a hydrothermal process
Wang et al. Controlled growth and magnetic properties of α-Fe 2 O 3 nanocrystals: Octahedra, cuboctahedra and truncated cubes
Chybczyńska et al. Synthesis and properties of bismuth ferrite multiferroic flowers
Liu et al. Morphology study by using scanning electron microscopy
CN102718262B (zh) 一种纳米线组装的钨酸钙球形结构的制备方法
Peng et al. Controllable synthesis of MnS nanocrystals from a single-source precursor
CN101486486B (zh) 强磁场下ZnO及其稀磁半导体材料的制备方法与装置
CN101254939B (zh) 一种通过碱腐蚀反应制备氧化锌纳米空心球的方法
Tang et al. Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO 4 microstructures
Ghalawat et al. Study of the Phase-Evolution Mechanism of an Fe–Se System at the Nanoscale: Optimization of Synthesis Conditions for the Isolation of Pure Phases and Their Controlled Growth
Cao et al. Preparation and characterization of bifunctional ZnO/ZnS nanoribbons decorated by γ-Fe2O3 clusters
Sun et al. Thermal decomposition synthesis of single-crystalline porous ZnO nanoplates self-assembled by tiny nanocrystals and their pore-dependent magnetic properties
CN103305900A (zh) 在水热条件下制备纳-微米黄铁矿立方体状晶体的方法
CN106365209A (zh) 通过热转化分解法制备硫复铁矿粒状纳米磁性材料的方法
CN108408788B (zh) 黄铁矿纳米片定向附着生长的类八面体聚形晶的制备方法
Guan et al. Luminescent and magnetism properties of YPO4: Eu3+ octahedron microcrystals
CN102592772A (zh) 埃洛石纳米管负载四氧化三铁复合型磁性流体及其制备方法
Ma et al. The dilute magnetic and optical properties of Mn-doped ZnO nanowires
CN102826519B (zh) 一种二硒化亚铁微米棒簇和微球的制备方法
Perales-Perez et al. Evidence of ferromagnetism in Zn1− xMxO (M= Ni, Cu) nanocrystals for spintronics
CN102531068A (zh) 一种大量合成单分散四氧化三铁纳米晶的方法
CN107955966B (zh) 一种三维交叉生长的海胆状单晶硒及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170201