CN106352592B - 连续吸附制冷与发电*** - Google Patents

连续吸附制冷与发电*** Download PDF

Info

Publication number
CN106352592B
CN106352592B CN201610697367.2A CN201610697367A CN106352592B CN 106352592 B CN106352592 B CN 106352592B CN 201610697367 A CN201610697367 A CN 201610697367A CN 106352592 B CN106352592 B CN 106352592B
Authority
CN
China
Prior art keywords
condenser
evaporator
adsorbent bed
triple valve
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610697367.2A
Other languages
English (en)
Other versions
CN106352592A (zh
Inventor
陆紫生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610697367.2A priority Critical patent/CN106352592B/zh
Publication of CN106352592A publication Critical patent/CN106352592A/zh
Application granted granted Critical
Publication of CN106352592B publication Critical patent/CN106352592B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

一种连续吸附制冷与发电***,包括:水箱、冷却水板式换热器、膨胀机、发电机、加热器、左右对称设置且相互连通的一对吸附床、一对冷凝器和一对蒸发器,其中:右冷凝器与左吸附床和右吸附床分别相连,吸附床、冷凝器和蒸发器由上而下依次设置;加热器和水箱均分别与一对吸附床相连,水箱和冷却水板式换热器相连,冷却水板式换热器与左冷凝器相连;膨胀机一端与左蒸发器相连,另一端与发电机相连;本发明可实现相变加热、强制对流冷却、吸附质回收和相变热量回收的循环,提高制冷效率和可靠性,并可同时用于发电,提高能量利用效率。

Description

连续吸附制冷与发电***
技术领域
本发明涉及的是一种吸附制冷领域的技术,具体是一种连续吸附制冷与发电***。
背景技术
中国《能源发展战略行动计划(2014‐2020年)》提出,到2020年,一次能源消费总量控制在48亿吨标准煤左右,煤炭消费总量控制在42亿吨左右;到2020年,基本形成比较完善的能源安全保障体系。国内一次能源生产总量达到42亿吨标准煤,能源自给能力保持在85%左右;到2020年,非化石能源占一次能源消费比重达到15%,天然气比重达到10%以上,煤炭消费比重控制在62%以内;到2020年,基本形成统一开放竞争有序的现代能源市场体系。
针对这些目标,中国必须调整优化经济结构,转变能源消费理念,强化工业、交通、建筑节能和需求侧管理,重视生活节能,严格控制能源消费总量过快增长,切实扭转粗放用能方式,不断提高能源使用效率;并且积极发展天然气、核电、可再生能源等清洁能源等。
吸附制冷与发电技术被认为是一种很有前景的太阳能利用技术,其主要优点有:(1)可由低品位热源驱动,无需压缩机或溶液泵,耗电量较少;(2)无温室气体排放,并且使用环境友好型吸附剂和制冷剂;(3)吸附式空调的结构和控制***相对简单。
近年来,国内外大量科研人员在吸附循环方面的研究主要是围绕提高吸附制冷***的循环吸附量以及COP。如O.Taylan模拟了吸附制冷热波循环,其原理是充分利用高温床的热量来加热低温床。这一循环取得了较好的理论结果,但其要求吸附床的传热系数极高,而现有的换热器难以满足此要求。所以,热波循环还处于理论研究阶段。U.Aep Saepul等研究了回质循环,即在高温高压床冷却前,利用高压床的压力突然下降,其内部吸附剂可以再解吸出制冷剂,进而提高解吸量。
发明内容
本发明针对现有技术不能连续制冷与发电、不能进行热量回收以及吸附质回收以及***的性能系数以及制冷功率无法达到要求等缺陷,提出一种连续吸附制冷与发电***,通过成对吸附床、冷凝器和蒸发器,以及加热器、水箱、冷却水板式换热器、膨胀机、发电机、水泵等共同实现相变加热、强制对流冷却、吸附质回收和相变式热量回收,实现高效连续的制冷与发电。
本发明是通过以下技术方案实现的:
本发明包括:水箱、冷却水板式换热器、膨胀机、发电机、加热器、左右对称设置且相互连通的一对吸附床、一对冷凝器和一对蒸发器,其中:右冷凝器与一对吸附床分别相连,吸附床、冷凝器和蒸发器由上而下依次设置;左吸附床、左冷凝器和左蒸发器依次相连,右吸附床、右冷凝器和右蒸发器依次相连;加热器和水箱均分别与一对吸附床相连,水箱和冷却水板式换热器相连,冷却水板式换热器与左冷凝器相连;膨胀机一端与左蒸发器相连,另一端与发电机相连。
所述的左吸附床、右吸附床、左冷凝器、右冷凝器、左蒸发器和右蒸发器内均设有换热管。
所述的左吸附床与右吸附床通过并联的吸附床入水管和吸附床出水管相连。
所述的左吸附床和右吸附床的换热管的一端与吸附床入水管的两端分别相连,另一端与吸附床出水管的两端分别相连。
所述的吸附床入水管上从左至右依次设有第一三通阀、第二三通阀和第三三通阀。
所述的吸附床出水管上从左至右依次设有第四三通阀、第五三通阀和第六三通阀。
所述的加热器的上下两端分别与第二三通阀和第五三通阀相连。
所述的加热器的左右两侧分别设有废热排出管和废热进入管。
所述的左冷凝器与右冷凝器通过冷凝器水管相连。
所述的右冷凝器通过冷凝器出水管与左吸附床和右吸附床分别相连。
所述的冷凝器出水管一端与右冷凝器相连,另一端与第一三通阀和第三三通阀分别相连。
所述的右冷凝器的换热器一端与冷凝器出水管相连,另一端与冷凝器水管相连。
所述的左冷凝器与左吸附床之间、右冷凝器与右吸附床之间分别通过第二氨路管相连。
所述的左冷凝器与左蒸发器之间、右冷凝器与右蒸发器之间分别通过第一氨路管相连。
所述的水箱上端通过水箱入水管分别与第四三通阀和第六三通阀相连,水箱的下端通过换热器入水管与冷却水板式换热器相连。
所述的冷却水板式换热器通过冷凝器入水管与左冷凝器相连。
所述的冷却水板式换热器的下端和右侧分别设有入水管和出水管。
所述的冷凝器入水管上设有水泵。
所述的左冷凝器的换热管一端与冷凝器水管相连,另一端与冷凝器入水管相连。
所述的左蒸发器与右蒸发器通过并联的蒸发器入水管和氨管相连。
所述的左蒸发器和右蒸发器的换热管的一端分别与蒸发器入水管的两端相连,另一端分别与左蒸发器出水管和右蒸发器出水管相连。
所述的蒸发器入水管上设有第七三通阀。
所述的氨管上设有氨阀、第八三通阀和第九三通阀,其中:第八三通阀的两个端口和第九三通阀的两个端口分别相连,第八三通阀的另一个端口和第九三通阀的另一个端口分别与氨阀的两侧相连。
所述的膨胀机并联设置于第八三通阀和第九三通阀相连的两个端口之间。
技术效果
与现有技术相比,本发明可实现相变加热、强制对流冷却、吸附质回收和相变热量回收的连续循环,可以有效地提高传热系数,同时可以减少阀门使用;连续吸附制冷***一直处于正压,从而提高***的可靠性;循环吸附量得到提高,从而提高制冷功率和性能系数COP;同时可利用连续制冷吸附***的压差进行发电,进一步提高能量利用效率。
附图说明
图1为本发明示意图;
图中:1为左吸附床、2为右吸附床、3为左冷凝器、4为右冷凝器、5为左蒸发器、6为右蒸发器、7为加热器、8为水箱、9为冷却水板式换热器、10为换热管、11为第一三通阀、12为第二三通阀、13为第三三通阀、14为第四三通阀、15为第五三通阀、16为第六三通阀、17为第七三通阀、18为第八三通阀、19为第九三通阀、20为氨阀、21为吸附床入水管、22为吸附床出水管、23为第一氨路管、24为第二氨路管、25为冷凝器水管、26为水泵、27为冷凝器入水管、28为冷凝器出水管、29为水箱入水管、30为换热器入水管、31为蒸发器入水管、32为氨管、33为左蒸发器出水管、34为右蒸发器出水管、35为废热排出管、36为废热进入管、37为入水管、38为出水管、39为膨胀机、40为发电机。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例包括:左吸附床1、右吸附床2、左冷凝器3、右冷凝器4、左蒸发器5、右蒸发器6、加热器7、水箱8、冷却水板式换热器9、膨胀机39和发电机40,其中:左吸附床1与右吸附床2、左冷凝器3与右冷凝器4、左蒸发器5与右蒸发器6对称设置且相互连通,右冷凝器4与左吸附床1和右吸附床2分别相连;左吸附床1、左冷凝器3和左蒸发器5由上而下依次设置;左吸附床1、左冷凝器3和左蒸发器5依次相连,右吸附床2、右冷凝器4和右蒸发器6依次相连;加热器7和水箱8均与左吸附床1与右吸附床2分别相连,水箱8和冷却水板式换热器9相连,冷却水板式换热器9与左冷凝器3相连;膨胀机39一端与左蒸发器5相连,另一端与发电机40相连。
所述的左吸附床1、右吸附床2、左冷凝器3、右冷凝器4、左蒸发器5和右蒸发器6内均设有换热管10。
所述的左吸附床1与右吸附床2通过并联的吸附床入水管21和吸附床出水管22相连。
所述的左吸附床1和右吸附床2的换热管10的一端与吸附床入水管21的两端分别相连,另一端与吸附床出水管22的两端分别相连。
所述的吸附床入水管21上从左至右依次设有第一三通阀11、第二三通阀12和第三三通阀13。
所述的吸附床出水管22上从左至右依次设有第四三通阀14、第五三通阀15和第六三通阀16。
所述的加热器7的上下两端分别与第二三通阀12和第五三通阀15相连。
所述的加热器7的左右两侧分别设有废热排出管35和废热进入管36。
所述的左冷凝器3与右冷凝器4通过冷凝器水管25相连。
所述的右冷凝器4通过冷凝器出水管28与左吸附床1和右吸附床2分别相连。
所述的冷凝器出水管28一端与右冷凝器4相连,另一端与第一三通阀11和第三三通阀13分别相连。
所述的右冷凝器4的换热器一端与冷凝器出水管28相连,另一端与冷凝器水管25相连。
所述的左冷凝器3与左吸附床1之间、右冷凝器4与右吸附床2之间分别通过第二氨路管24相连。
所述的左冷凝器3与左蒸发器5之间、右冷凝器4与右蒸发器6之间分别通过第一氨路管23相连。
所述的水箱8上端通过水箱入水管29分别与第四三通阀14和第六三通阀16相连,水箱8的下端通过换热器入水管30与冷却水板式换热器9相连。
所述的冷却水板式换热器9通过冷凝器入水管27与左冷凝器3相连。
所述的冷却水板式换热器9的下端和右侧分别设有入水管37和出水管38。
所述的冷凝器入水管27上设有水泵26。
所述的左冷凝器3的换热管10一端与冷凝器水管25相连,另一端与冷凝器入水管27相连。
所述的左蒸发器5与右蒸发器6通过并联的蒸发器入水管31和氨管32相连。
所述的左蒸发器5和右蒸发器6的换热管10的一端分别与蒸发器入水管31的两端相连,另一端分别与左蒸发器出水管33和右蒸发器出水管34相连。
所述的蒸发器入水管31上设有第七三通阀17。
所述的氨管32上设有氨阀20、第八三通阀18和第九三通阀19,其中:第八三通阀18的两个端口和第九三通阀19的两个端口分别相连,第八三通阀18的另一个端口和第九三通阀19的另一个端口分别与氨阀20的两侧相连。
所述的膨胀机39并联设置于第八三通阀18和第九三通阀19相连的两个端口之间。
加热解吸时,加热器7产生的水蒸气通过第二三通阀12分别通入左吸附床1和右吸附床2的换热管10,换热后形成的液体水通过吸附床出水管22分别流经第四三通阀14和第六三通阀16汇入第五三通阀15后回到加热器7。
冷却时,冷却水板式换热器9用来冷却***的冷却水,水泵26泵出的低温冷却水依次流经冷凝器入水管27、左冷凝器3的换热管10、冷凝器水管25、右冷凝器4的换热管10、冷凝器出水管28进入第一三通阀11和第三三通阀13,分别经过左吸附床1和右吸附床2的换热管10换热,经过吸附床出水管22后分别通过第四三通阀14和第六三通阀16接入水箱入水管29,进入水箱8,并经过换热器入水管30流入冷却水板式换热器9,完成相变换热型热量回收。
所述的氨阀20仅在吸附质回收时打开。
冷量输出时,冷媒水依次经过第七三通阀17和蒸发器入水管31分别进入左蒸发器5和右蒸发器6的换热管10进行换热,换热过的低温冷媒分别经左蒸发器出水管33和右蒸发器出水管34流出。
发电时,左蒸发器5和右蒸发器6的...分别经过第八三通阀18和第九三通阀19进入膨胀机39,从而使发电机40发电。
本实施例在输出冷量‐18℃时,吸附制冷效率为0.25,发电效率为6~9%。

Claims (6)

1.一种连续吸附制冷与发电***,其特征在于,包括:水箱、冷却水板式换热器、膨胀机、发电机、加热器、左右对称设置且相互连通的一对吸附床、一对冷凝器和一对蒸发器,其中:右冷凝器与一对吸附床分别相连,吸附床、冷凝器和蒸发器由上而下依次设置;左吸附床、左冷凝器和左蒸发器依次相连,右吸附床、右冷凝器和右蒸发器依次相连;加热器和水箱均分别与一对吸附床相连,水箱和冷却水板式换热器相连,冷却水板式换热器与左冷凝器相连;膨胀机一端与左蒸发器相连,另一端与发电机相连;
所述的左蒸发器与右蒸发器通过并联的蒸发器入水管和氨管相连,其中:蒸发器入水管上设有第七三通阀,氨管上设有氨阀、第八和第九三通阀,其中:第八三通阀的两个端口和第九三通阀的两个端口分别相连,第八三通阀的另一个端口和第九三通阀的另一个端口分别与氨阀的两侧相连;膨胀机并联设置于第八三通阀和第九三通阀相连的两个端口之间。
2.根据权利要求1所述的连续吸附制冷与发电***,其特征是,所述的左吸附床、右吸附床、左冷凝器、右冷凝器、左蒸发器和右蒸发器内均设有换热管。
3.根据权利要求1所述的连续吸附制冷与发电***,其特征是,所述的左吸附床与右吸附床通过并联的吸附床入水管和吸附床出水管相连,其中:吸附床入水管和吸附床出水管上分别设有串联的三个三通阀,加热器的上下两端分别与吸附床入水管和吸附床出水管上彼此并联的两个三通阀相连,右冷凝器与吸附床入水管上的两个三通阀分别相连,水箱上端与吸附床出水管上的两个三通阀分别相连,下端与冷却水板式换热器相连。
4.根据权利要求1所述的连续吸附制冷与发电***,其特征是,所述的加热器的左右两侧分别设有废热排出管和废热进入管。
5.根据权利要求1所述的连续吸附制冷与发电***,其特征是,所述的冷却水板式换热器的下端和右侧分别设有入水管和出水管。
6.根据权利要求1所述的连续吸附制冷与发电***,其特征是,所述的冷却水板式换热器与左冷凝器之间设有水泵。
CN201610697367.2A 2016-08-19 2016-08-19 连续吸附制冷与发电*** Expired - Fee Related CN106352592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610697367.2A CN106352592B (zh) 2016-08-19 2016-08-19 连续吸附制冷与发电***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610697367.2A CN106352592B (zh) 2016-08-19 2016-08-19 连续吸附制冷与发电***

Publications (2)

Publication Number Publication Date
CN106352592A CN106352592A (zh) 2017-01-25
CN106352592B true CN106352592B (zh) 2018-09-21

Family

ID=57844273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610697367.2A Expired - Fee Related CN106352592B (zh) 2016-08-19 2016-08-19 连续吸附制冷与发电***

Country Status (1)

Country Link
CN (1) CN106352592B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342581A (zh) * 2018-09-26 2019-02-15 上海交通大学 一种吸附***综合性能分析装置及基于该装置的分析方法
CN112292004B (zh) * 2020-10-27 2021-12-07 株洲中车时代电气股份有限公司 一种泵驱两相冷却***及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350372B2 (en) * 2003-10-27 2008-04-01 Wells David N System and method for selective heating and cooling
CN102203523A (zh) * 2008-10-24 2011-09-28 埃克森美孚研究工程公司 将未利用热用于冷却和/或发电的***
CN102748894A (zh) * 2012-07-31 2012-10-24 苟仲武 一种内置发电装置的吸收式制冷***
CN104089431A (zh) * 2014-07-21 2014-10-08 上海交通大学 一种太阳能驱动高效吸湿-热化学反应热泵***
CN104989474A (zh) * 2015-06-04 2015-10-21 广东美的制冷设备有限公司 基于低品位热能利用的有机朗肯循环发电与吸附制冷联供***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350372B2 (en) * 2003-10-27 2008-04-01 Wells David N System and method for selective heating and cooling
CN102203523A (zh) * 2008-10-24 2011-09-28 埃克森美孚研究工程公司 将未利用热用于冷却和/或发电的***
CN102748894A (zh) * 2012-07-31 2012-10-24 苟仲武 一种内置发电装置的吸收式制冷***
CN104089431A (zh) * 2014-07-21 2014-10-08 上海交通大学 一种太阳能驱动高效吸湿-热化学反应热泵***
CN104989474A (zh) * 2015-06-04 2015-10-21 广东美的制冷设备有限公司 基于低品位热能利用的有机朗肯循环发电与吸附制冷联供***

Also Published As

Publication number Publication date
CN106352592A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN103292513B (zh) 太阳能驱动单双效耦合型溴化锂制冷机
CN202002391U (zh) 喷液增焓式热泵热水器机组
CN106642789A (zh) 实现太阳能综合利用与土壤跨季节储能的热源塔热泵***
CN202216448U (zh) 扩散吸收式制冷与蒸汽压缩制冷联合循环装置
CN102322705B (zh) 扩散吸收式制冷与蒸汽压缩制冷联合循环装置
CN101556095A (zh) 低品位能驱动与机械功驱动复合热泵或制冷***
CN102997482A (zh) 采暖工况回收烟气余热的直燃型溴化锂吸收式冷热水机组
CN105222448A (zh) 太阳能吸附式接触法制取冰浆装置
CN203011002U (zh) 带烟气阀回收烟气余热的直燃型溴化锂吸收式冷热水机组
CN106352592B (zh) 连续吸附制冷与发电***
CN201203297Y (zh) 太阳能辅助直燃式冷热水机组
CN205048782U (zh) 一种压缩式与吸收式双能源联合蓄冷制冷一体机组
CN201177412Y (zh) 太阳能辅助吸收式直燃机余热回收冷热水机组
CN201926190U (zh) 低温热水复合能源双效溴化锂吸收式制冷机组
CN203190713U (zh) 一种增压型三相吸收式蓄能装置
CN203010995U (zh) 回收烟气余热的直燃型溴化锂吸收式冷热水机组
CN101619907B (zh) 一种高效率蒸汽双效溴化锂吸收式制冷机组
CN201218626Y (zh) 一种中温太阳能驱动且冷热双向利用的第三种吸收式热泵
CN101093118A (zh) 单级复合吸收式制冷机
CN103047791A (zh) 低温烟气双效溴化锂吸收式冷水机组及双效制冷方法
CN202521940U (zh) 一种太阳能二级溴化锂吸收式制冷装置
CN206504423U (zh) 利用土壤实现太阳能综合利用与跨季节储能的热源塔热泵
CN204963288U (zh) 一种使用太阳能和水源的溴化锂吸收式制热、制冷装置
CN205245634U (zh) 太阳能吸附式接触法制取冰浆装置
CN201218628Y (zh) 一种冷热双向同时利用的双效型第三种吸收式热泵

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180921

Termination date: 20210819

CF01 Termination of patent right due to non-payment of annual fee