CN106336895A - Hydrofining catalyst - Google Patents

Hydrofining catalyst Download PDF

Info

Publication number
CN106336895A
CN106336895A CN201610711877.0A CN201610711877A CN106336895A CN 106336895 A CN106336895 A CN 106336895A CN 201610711877 A CN201610711877 A CN 201610711877A CN 106336895 A CN106336895 A CN 106336895A
Authority
CN
China
Prior art keywords
catalyst
kit
carrier
present
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610711877.0A
Other languages
Chinese (zh)
Inventor
朱忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xishan Lvchun Plastic Products Factory
Original Assignee
Xishan Lvchun Plastic Products Factory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xishan Lvchun Plastic Products Factory filed Critical Xishan Lvchun Plastic Products Factory
Priority to CN201610711877.0A priority Critical patent/CN106336895A/en
Publication of CN106336895A publication Critical patent/CN106336895A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Abstract

The invention discloses a hydrofining catalyst. The catalyst comprises a carrier and an active component. According to the carrier, KIT-1 of heteroatom Co<2+> is doped in a synthetic skeleton structure, wherein the doping content is 0.56%-0.75% of weight of KIT-1. The active component is a mixture of molybdenum nitride MO2N, tungsten nitride W2N, molybdenum carbide Mo2C and tungsten carbide WC. Total content of the active component is 1-15% of weight of the carrier KIT-1. The catalyst also contains a catalytic addictive, which is a mixture of Cr2O3, ZrO2, CeO2, V2O5 and NbOPO4. By the use of the catalyst, total sulfur content of FCC gasoline can be reduced to 10 ppm and below so as to meet gasoline ''China 5''standard. Meanwhile, by the adoption of the catalyst, octane number of FCC gasoline is not obviously reduced.

Description

A kind of Hydrobon catalyst
Technical field
The present invention relates to catalyst technical field, and in particular to a kind of hydrodesulfurization catalyst for refining, is more preferably related to one Plant fcc gasoline hydrodesulfurizationmethod and reduce the catalyst that octane number reduces amplitude.
Background technology
Enter 21st century, the demand of fuel oil and use increase substantially, and sulfur-containing compound therein is brought Problem of environmental pollution, more cause the concern of people.The oxysulfide that sulfide in fuel oil produces through engine combustion (sox) it is discharged in the air, produce acid rain and the pollution of fumes of sulphuric acid type etc., cause atmospheric pollution.
Sulfur is that nature is present in one of gasoline harmful substance, and in gasoline product, more than 80% sulfur carrys out self-catalysis and splits Change (fcc) gasoline, with the continuous change weight of crude oil, the sulfur content in fcc gasoline also can be continuously increased.External gasoline is generally from Fcc (34%), catalytic reforming (33%), and alkylation, the technique such as isomerization and etherificate (about totally 33%);And home-produced fuel 80% is from fcc gasoline.Sulfur due in gasoline 85%~95% is derived from fcc gasoline so that sulfur content in China's gasoline A lot of more than external gasoline.A lot of experts have carried out the research that sulfur affects on motor vehicle exhaust emission, and result shows: if by gasoline In sulfur content from 450 μ g g-1It is reduced to 50 μ g g-1, no in vehicle exhaustxAverage 9%, the co that reduces averagely reduces 19%, hc averagely reduce 18%, and Toxic averagely reduces 16%.Thus, effective fuel oil hydrodesulfurization technology, to society, warp Ji, the development of environment play the role of important.
Most effective, the most economical sulfur method that hydrodesulfurization (hds) technology is well recognized as at present, especially selective hydrogenation Desulfurization technology, the saturation of suppression alkene of trying one's best while removing gasoline a large amount of sulfur-containing compound is to reduce loss of octane number. This kind of technology has operating condition and relaxes, and yield of gasoline is high, and hydrogen consumes the features such as low and loss of octane number is little.Hydrodesulfurization technology Key is the selection of Hydrobon catalyst, and the cobaltmolybdate catalyst of support type is the important gasoline hydrodesulfurizationcatalyst catalyst of a class, Typically cobalt molybdenum is loaded on porous support (as aluminium oxide, silicon oxide, activated carbon or its complex carrier), be widely used in adding In hydrogen sweetening process, to obtain premium-type gasoline product.
Hydrodesulfurization (hds) technology is to grow up the fifties, and the nineties, this technology welcome second improving and developing Individual peak period, its technical maturity, all the time, become sulfur, nitrogen, oxygen in removing distillate, improve oil product Practical Performance and clear The maximally efficient means of cleanliness.The activity and selectivity of catalyst is the key factor of impact hydrofinishing efficiency and depth, The economy that high performance catalyst is brought and environmental benefit are very significant, have therefore attracted numerous enterprises and researcher to put into To in efficient catalyst exploitation, the catalyst prod that develop many function admirables, differs from one another.Hydrogenation technique is sent out rapidly The basic reason of exhibition is the development of catalyst, but can cause alkene saturation and product octane number while routine techniquess desulfurization (ron) decline, therefore can desulfurization and the few selective hydrogenation new technique of loss of octane number to become hds method in recent years improved Main way.
The resolve technological development catalytic cracking of akzo nobel company exploitation reduces the resolve of content of sulfur in gasoline Additive product series, using high hydrogen transfer activity component and adm-20, can make cracking gasoline sulfur content reduce by 20%, Resolve-700 gasoline reduction sulfur additives are currently in industrial evaluation.
Containing Sulfur in exxon research engineering company and akzo nobel company joint development selectively removing fcc gasoline The scanfining technology of compound, and in 1998, this technology is pushed to industrialization.It adopts traditional hydrotreating flow process, leads to Cross meticulous selecting catalyst (rt-225), make loss of octane number and hydrogen consumption reach minimum.
The prime-g technology of French ifp exploitation, this technology is developed by French studying and designing institute (ifp), using dual catalyst System.Its process conditions relaxes, and hydrogenation of olefins activity is low, alkene saturation and cracking reaction does not occur, liquid yield reaches 100%, Desulfurization degree is more than 95%, and loss of octane number is few, and hydrogen consumption is low.By fcc heavy petrol hydrodesulfurization, being in harmonious proportion the gasoline product obtaining can To realize the target of sulfur content 100~150 μ g g-1;By the hydrodesulfurization respectively of fcc petroleum benzin, achievable sulfur content 30 μ The target of g g-1.
For the feature of domestic fcc gasoline sulfur-bearing, Fushun Petrochemical Research Institute (fripp) develops fcc gasoline and selects Property hydrogen addition technology (oct-m) and full distillation gasoline selective hydrogenation technology (frs), device can produce sulfur nutrient and be not more than 150μg·g-1GB gasoline.Oct-m technology, after Shijiazhuang Oil Refinery, China Petrochemical Corp. continuously runs 17 months, adopts Two kinds of prioritization schemes that fripp recommends, after fcc gasoline hydrogenation, sulfur nutrient reaches GB and standard.
On May 5th, 2016, department of the Committee of Development and Reform, the Ministry of Finance, Chinese Ministry of Environmental Protection etc. seven issues and " accelerates finished product oil quality with regard to printing and distributing Upgrade job scheme " notify, scheme clearly expands automobile-used vapour, diesel oil state five standard execution scope.From original Jing-jin-ji region, length three Angle, Pearl River Delta region key cities expand whole eastern region 11 provinces and cities (Beijing, Tianjin, Hebei, Liaoning, Shanghai, rivers to Soviet Union, Zhejiang, Fujian, Shandong, Guangdong and Hainan).Before 31 days October in 2015, eastern region is protected possesses manufacturing country five mark for enterprise Quasi- motor petrol (oil of blend component containing ethanol petrol), the ability of derv fuel.From 1 day January in 2016, eastern region supplies comprehensively Motor petrol (ethanol petrol containing e10), the derv fuel (biodiesel containing b5) of state five standard should be met.
At present, the main method reducing fcc content of sulfur in gasoline is catalytic desulfurhydrogenation.But hydrotreating method exists such as Lower deficiency: (1) equipment investment is big;(2) it is hydrogenated with the severe reaction conditions of de- thiophenic sulfur, operating cost is high;(3) alkene is de- in hydrogenation Easily there is saturation under the conditions of sulfur, not only consume a large amount of hydrogen, and lead to octane number to reduce.Fcc gasoline desulfurization degree requires Higher, operating condition is harsher, and the loss of octane number is also bigger.
How a kind of Hydrobon catalyst is therefore provided, can effectively the sulfur content in gasoline be controlled in below 10ppm, To meet state five standard, octane number loss simultaneously is less or does not lose, and is the difficult problem that this area faces.
Content of the invention
It is an object of the invention to proposing a kind of Hydrobon catalyst, this catalyst can be by the total sulfur in fcc gasoline Content is reduced to below 10ppm, to meet gasoline state five standard.Meanwhile, this catalyst using the octane also making fcc gasoline Value significantly reduces.
For reaching this purpose, the present invention employs the following technical solutions:
A kind of catalyst of hydrodesulfurization, described catalyst includes carrier and active component.
Described carrier is to mix hetero atom co in synthesis framing structure2+Kit-1.
Described active component is nitridation two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2C and the mixture of tungsten carbide wc.
Described catalyst also contains catalyst aid, and described catalyst aid is cr2o3、zro2、ceo2、v2o5And nbopo4's Mixture.
Kit-1 molecular sieve has one-dimensional channels and crosses each other to form three-dimensional disordered structure, and this structure is conducive to catalysis, absorption During material transmission.Pure silicon mesopore molecular sieve kit-1 has more preferable heat stability and hydrothermally stable than mcm-241, hms Property.The present invention through in numerous mesoporous materials, such as kit-1, kit-6, mcm-22, mcm-36, mcm-48, mcm-49, Mcm56 etc., carries out contrast test selection, finds the goal of the invention only having kit-1 can reach the present invention, other mesoporous materials are all There is such-and-such defect, there is the technical difficulty being difficult to overcome when being applied in the present invention, the therefore present invention selects to use Kit-1 is as carrier basis.
Although pure silicon kit-1 mesopore molecular sieve hydro-thermal performance is very outstanding, inventor's research is later discovered that, its addition , after chemical modification, its hydrothermal stability obtains bigger raising for hetero atom or surface.Therefore, the present invention is modified to it, with Increase its catalysis activity.The present invention approach modified to kit-1 mesopore molecular sieve is: in kit-1 building-up process, adds co2+ Saline solution, before kit-1 framework of molecular sieve structure is formed, by isomorphous substitution by co2+Replace part backbone element thus embedding Enter to improve on the whole catalysis activity, absorption and the thermodynamic stability of kit-1 mesopore molecular sieve in the skeleton of molecular sieve Can etc..
Although the method that kit-1 mesopore molecular sieve is modified or approach are a lot, inventor finds, the catalysis of the present invention Agent can only be using doping co2+Kit-1 just enable sulfur content as carrier and control and the balance of loss of octane number, inventor tastes Try doping: al in kit-13+、fe3+、zn2+、ga3+In the ion producing anionic surface center, find not enabling institute State effect.Modification approach another with inventor passes through ion exchange by cu2+It is supported on kit-1 inner surfaces of pores to compare, the present invention Isomorphous substitution approach more stable.Although described mechanism is not known at present, this has no effect on the enforcement of the present invention, invention According to well-known theory and it is experimentally confirmed that there is cooperative effect in it and the active component of the present invention between to people.
Described co2+Must control within specific content range in the doping in kit-1, its doping is with weight Meter, be the 0.56%-0.75% of kit-1 weight, such as 0.57%, 0.58%, 0.59%, 0.6%, 0.61%, 0.62%, 0.63%th, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.7%, 0.71%, 0.72%, 0.73%, 0.74 etc..
Inventor finds, outside this range, can lead to drastically reducing of octane number.More pleasurable, when co2+When the doping in kit-1 controls in the range of 0.63%-0.72%, it is the strongest to the control of octane number, when draw with co2+When doping is transverse axis, curve chart with target octane number as the longitudinal axis, in this content range, sulfur content can control extremely low Within the scope of, the desulfurized effect that it produces, far beyond expection, belongs to unforeseeable technique effect.
The total content of described active component is the 1%-15%, preferably 3-12%, further preferred 5- of carrier kit-1 weight 10%.For example, described content can for 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%th, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%th, 14%, 14.5% etc..
In the present invention, being particularly limited to active component is nitridation two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2C and tungsten carbide wc Mixed proportion, inventor finds, the effect that different mixed proportions reaches is entirely different.Inventor finds, nitrogenizes two molybdenums mo2N, tungsten nitride w2N, molybdenum carbide mo2The mixed proportion (mol ratio) of c and tungsten carbide wc is 1:(0.4-0.6): (0.28- 0.45): (0.8-1.2), only control nitridation two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2The mol ratio of c and tungsten carbide wc exists Should in the range of, can realize that in fcc gasoline, sulfur content controls in below 10ppm and octane number is not decreased obviously.? That is, four kinds of active components of the present invention are 1:(0.4-0.6 only in mol ratio): (0.28-0.45): when (0.8-1.2), Just possesses cooperative effect.Outside this molar ratio range, or omit or replace any one component, do not enable to assist Same effect.
Preferably, two molybdenum mo are nitrogenized2N, tungsten nitride w2N, molybdenum carbide mo2The mol ratio of c and tungsten carbide wc is 1:(0.45- 0.5): (0.35-0.45): (0.8-1.0), more preferably 1:(0.45-0.48): (0.4-0.45): (0.9-1.0), Preferably 1:0.48:0.42:0.95.
An object of the present invention also resides in the promoter providing described catalyst.Catalyst of the present invention also contains There is catalyst aid, described catalyst aid is cr2o3、zro2、ceo2、v2o5And nbopo4The mixture of (niobium phosphate).
Although in hydrofinishing particularly hydrodesulfurization field, there is a catalyst aid of maturation, such as p, f and b etc., its For adjusting the property of carrier, weaken strong interaction between metal and carrier, improve the surface texture of catalyst, improve metal Reducibility, promote active component to be reduced to lower valency, to improve the catalytic performance of catalyst.But above-mentioned p, f and b catalysis helps Agent in application with the carrier of the present invention with active component when, for high sulphur component, it promotes the effect of catalytic desulfurization/refined ?.
The present invention passes through in numerous conventional cocatalyst component, and carries out in amount of activated component selecting, compounds, Find eventually to adopt cr2o3、zro2、ceo2、v2o5And nbopo4The catalyst facilitation to the present invention for the mixture of (niobium phosphate) Substantially, its hydrothermal stability can be significantly improved, and improve its anti-coking deactivation, thus improving its service life.
Described cr2o3、zro2、ceo2、v2o5And nbopo4Between there is no the ratio of fixation that is to say, that cr2o3、zro2、 ceo2、v2o5And nbopo4Each respective content reaches effective dose.Preferably, the cr that the present invention adopts2o3、zro2、 ceo2、v2o5And nbopo4Respective content is the 1-7% of (respectively) carrier quality, preferably 2-4%.
Although not having specific proportion requirement between catalyst aid of the present invention, each auxiliary agent allows for reaching To the requirement of effective dose, the content of catalyst aid effect, the 1-7% of such as carrier quality can be played.The present invention is selecting During find, omitting or replacing one or more of described auxiliary agent, the technique effect all not reaching the present invention (improves water Heat stability, reduces coking and improves service life) close that is to say, that there is specific cooperation between the catalyst aid of the present invention System.
It is true that the present invention once attempted the niobium phosphate nbopo in catalyst aid4Replace with five oxidation two girl nb2o5, Have found that while in auxiliary agent and have also been introduced nb, but its technique effect is significantly lower than niobium phosphate nbopo4, not only hydrothermal stability is slightly for it Difference, its beds coking is relatively rapid, thus leading to catalyst duct to block, beds pressure drop rise is relatively Hurry up.The present invention also once attempted introducing other phosphate, although this attempt introducing phosphate anion, but equally existed hydro-thermal Stability is relatively slightly worse, and its beds coking is relatively rapid, thus leading to catalyst duct to block, beds pressure drop Rise relatively fast.
Although present invention introduces catalyst aid has so many advantage, the present invention should be noted that, introduces catalysis Auxiliary agent is only one of preferred version, even if not introducing this catalyst aid, nor affects on the enforcement of main inventive purpose of the present invention. Do not introduce the catalyst aid particularly niobium phosphate of the present invention,, compared to the scheme introducing catalyst aid, its defect is only phase for it To.I.e. this defect be with respect to introduce catalyst aid after defect, its with respect to other prior arts outside the present invention, Institute mentioned by the present invention is advantageous or new features yet suffer from.This catalyst aid is not to solve technical problem underlying of the present invention Indispensable technological means, it is optimization further to technical solution of the present invention, solves new technical problem.
The preparation method of described catalyst can take infusion process and other alternative methods of routine, people in the art The prior art unrestricted choice that member can grasp according to it, the present invention repeats no more.The typical but non-limiting example of the present invention As follows:
By sodium silicate, cetyl trimethylammonium bromide (ctab), sodium ethylene diamine tetracetate (edta) and distillation hydromassage You mix the ratio than 1:0.25:1:60, load with teflon-lined autoclave pressure, after stirring under 373k Constant temperature 24h, the ph of re-adjustments mixture are 10.5, after constant temperature 4 times, take out product, with distilled water cyclic washing to filtrate Ph=7, then under 373k, constant temperature overnight, obtains the kit-1 with surfactant.Kit-1 with surfactant is existed Roasting 1.5h under 523k, then roasting 6h in air atmosphere under 813k, obtains kit-1 powder body.By this powder body 0.1mol/l Salpeter solution carry out pickling (control solid-to-liquid ratio be 1:10), stir 0.5h under room temperature, filter, be washed with distilled water to filtrate Dry under ph=7,373k and obtain matrix kit-1 molecular sieve.
The catalyst of the present invention, can be used for the hydrodesulfurization of gasoline, is particularly suitable for the hydrodesulfurization of fcc gasoline.
The present invention passes through to choose specific incorporation hetero atom co2+Kit-1 as carrier, and the nitridation choosing special ratios Two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2As active component, described catalyst also contains catalysis to be helped c and tungsten carbide wc Agent, described catalyst aid is cr2o3、zro2、ceo2、v2o5And nbopo4Mixture so that this catalyst produce cooperative effect, The hydrodesulfurization of fcc gasoline can be controlled and is less than 5ppm in total sulfur content, simultaneously octane number reduce amplitude control 0.5-2% it Interior.
Specific embodiment
The present invention is illustrated to the catalyst of the present invention by following embodiments.
Embodiment 1
Catalyst is prepared by infusion process, carrier is doping co2+Kit-1, doping control in kit-1 for the co2+ Make the 0.65% of carrier quality.Described active component nitrogenizes two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2C's and tungsten carbide wc Total content is the 10% of carrier quality, and its mol ratio is 1:0.4:0.3:0.8.
Described Catalyst packing is entered fixed bed reactors, the reaction tube of described reactor is by the stainless steel of internal diameter 50mm Become, reaction bed temperature is measured with ugu808 type temp controlled meter, the twin columns that raw material light oil is manufactured by Beijing Satellite Manufacturing Factory Plug micro pump continuous conveying, hydrogen is supplied by gas cylinder and uses Beijing Sevenstar-HC d07-11a/zm gas mass flow gauge control Flow velocity processed, loaded catalyst is 2kg.Reacted product carries out gas-liquid separation after the cooling of water-bath room temperature.
Raw materials used for full fraction fcc gasoline, it contains alkene 25.3m%, aromatic hydrocarbons 40.2m%, alkane 28.8m%, grinds Studying carefully method octane number is 94.2, total sulfur content 660 μ g/g.
Control reaction condition is: 370 DEG C of temperature, Hydrogen Vapor Pressure 3.0mpa, hydrogen to oil volume ratio 600, volume space velocity 3h-1.
Test final product, its research octane number (RON) still reaches 94.0, and total sulfur content is reduced to 3ppm.
Embodiment 2
Catalyst is prepared by infusion process, carrier is the kit-1 of doping co2+, doping in kit-1 for the co2+ Control the 0.7% of carrier quality.Described active component nitrogenizes two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2C and tungsten carbide wc Total content be carrier quality 10%, its mol ratio be 1:0.6:0.45): 1.2.
Remaining condition is same as Example 1.
Test final product, its research octane number (RON) still reaches 94.0, and total sulfur content is reduced to 2ppm.
Comparative example 1
The carrier of embodiment 1 is replaced with γ-al2o3, remaining condition is constant.
Test final product, its research octane number (RON) is 80, total sulfur content is 34ppm.
Comparative example 2
The carrier of embodiment 1 is replaced with unadulterated kit-1, remaining condition is constant.
Test final product, its research octane number (RON) is 82, total sulfur content is 37ppm.
Comparative example 3
Co by embodiment 12+Replace with zn2+, remaining condition is constant.
Test final product, its research octane number (RON) is 82, total sulfur content is 31ppm.
Comparative example 4
Doping in kit-1 for the co2+ in embodiment 1 is controlled the 0.5% of carrier quality, remaining condition is constant.
Test final product, its research octane number (RON) is 84, total sulfur content is 49ppm.
Comparative example 5
By the co in embodiment 12+Doping in kit-1 controls the 0.8% of carrier quality, and remaining condition is constant.
Test final product, its research octane number (RON) is 83, total sulfur content is 41ppm.
Embodiment 1 and comparative example 1-5 show, certain content scope and certain loads metal ions that the application adopts Kit-1 carrier, when replacing with other known carriers of this area, or carrier is identical but co2+When doping is different, all reach not To the technique effect of the present invention, the therefore co of the certain content scope of the present invention2+Doping kit-1 carrier and catalyst other components Between possess cooperative effect, create unforeseeable technique effect.
Comparative example 6
Omit the mo in embodiment 12N, remaining condition is constant.
Test final product, its research octane number (RON) is 84, total sulfur content is 45ppm.
Comparative example 7
Omit the wc in embodiment 1, remaining condition is constant.
Test final product, its research octane number (RON) is 83, total sulfur content is 44ppm.
, between several active component of catalyst of the present invention, there is specific connection in above-described embodiment and the explanation of comparative example 6-7 System, being omitted or substituted one of which or several, all can not reaching the certain effects of the application it was demonstrated which creating cooperative effect.
Embodiment 3
Catalyst aid cr is contained in catalyst2o3、zro2、ceo2、v2o5And nbopo4, its content be respectively 1%, 1.5%, 2%th, 1% and 3%, remaining is same as Example 1.
Test final product, after it uses 3 months, beds pressure drop is not any change, use compared to same The beds pressure drop of time embodiment 1 reduces 15.3%.
Comparative example 8
Compared to embodiment 3, by nbopo therein4Omit, remaining condition is identical.
Test final product, after it uses 3 months, beds pressure drop raises, real compared to same use time The beds pressure drop applying example 1 only reduces 2.1%.
Comparative example 9
Compared to embodiment 3, by ceo therein2Omit, remaining condition is identical.
Test final product, after it uses 3 months, beds pressure drop raises, real compared to same use time The beds pressure drop applying example 1 only reduces 2.4%.
Embodiment 3 and comparative example 8-9 show, there is conspiracy relation between the catalyst aid of the present invention, when being omitted or substituted One of or several groups of timesharing, all can not reach the present invention and add minimizing coking during catalyst aid thus stoping catalyst bed The high technique effect of lamination falling-rising.That is, it demonstrates the service life that the catalyst aid of the present invention can improve described catalyst, And other catalyst aid effects are not so good as this specific catalyst aid.
Applicant states, the present invention illustrates the catalyst of the present invention by above-described embodiment, but the present invention does not limit to In above-mentioned catalyst, that is, do not mean that the present invention has to rely on above-mentioned detailed catalysts and could implement.The skill of art Art personnel are it will be clearly understood that the adding of any improvement in the present invention, the equivalence replacement to each raw material of product of the present invention and auxiliary element Plus, the selection of concrete mode etc., all fall within protection scope of the present invention and open within the scope of.

Claims (6)

1. the de- refined agent of a kind of hydrogenation, described catalyst include carrier and active component it is characterised in that
Described carrier is to mix hetero atom co in synthesis framing structure2+Kit-1, its doping be kit-1 weight 0.56%- 0.75%;
Described active component is nitridation two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2C and the mixture of tungsten carbide wc, described activity The total content of component is the 1%-15% of carrier kit-1 weight;
Described catalyst also contains catalyst aid, and described catalyst aid is cr2o3、zro2、ceo2、v2o5And nbopo4Mixing Thing.
2. Hydrobon catalyst as claimed in claim 1 is it is characterised in that hetero atom co2+Doping be kit-1 weight 0.63%-0.72%.
3. Hydrobon catalyst as claimed in claim 1 is it is characterised in that the total content of described active component is carrier The 3-12% of kit-1 weight, preferably 5-10%.
4. Hydrobon catalyst as claimed in claim 1 is it is characterised in that nitrogenize two molybdenum mo2N, tungsten nitride w2N, molybdenum carbide mo2The mol ratio of c and tungsten carbide wc is 1:(0.45-0.5): (0.35-0.45): (0.8-1.0), more preferably 1: (0.45-0.48): (0.4-0.45): (0.9-1.0), most preferably 1:0.48:0.42:0.95.
5. Hydrobon catalyst as claimed in claim 1 is it is characterised in that described Hydrobon catalyst is used for fcc vapour The hydrodesulfurization of oil refines.
6. Hydrobon catalyst as claimed in claim 1 is it is characterised in that cr2o3、zro2、ceo2、v2o5And nbopo4Respectively From content be respectively carrier quality 1-7%, preferably 2-4%.
CN201610711877.0A 2016-08-23 2016-08-23 Hydrofining catalyst Withdrawn CN106336895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610711877.0A CN106336895A (en) 2016-08-23 2016-08-23 Hydrofining catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610711877.0A CN106336895A (en) 2016-08-23 2016-08-23 Hydrofining catalyst

Publications (1)

Publication Number Publication Date
CN106336895A true CN106336895A (en) 2017-01-18

Family

ID=57825172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610711877.0A Withdrawn CN106336895A (en) 2016-08-23 2016-08-23 Hydrofining catalyst

Country Status (1)

Country Link
CN (1) CN106336895A (en)

Similar Documents

Publication Publication Date Title
CN106268912A (en) A kind of Hydrobon catalyst
CN106336895A (en) Hydrofining catalyst
CN106140247A (en) A kind of Hydrobon catalyst
CN106378175A (en) A hydrodesulfurization catalyst
CN106433758A (en) HDS (hydrodesulfurization) technology of FCC (fluid catalytic cracking) gasoline
CN106318450A (en) Hydrofining catalyst
CN106311314A (en) Hydrodesulphurization catalyst
CN106423248A (en) Hydrofining catalyst
CN106622358A (en) Composite support hydrodesulfurization catalyst
CN106378174A (en) A hydrofining catalyst
CN106268911A (en) A kind of Hydrobon catalyst
CN106221755A (en) A kind of FCC gasoline hydrodesulfurization
CN106244196A (en) A kind of FCC gasoline hydrodesulfurization
CN106221754A (en) A kind of FCC gasoline hydrodesulfurization
CN106221748A (en) A kind of FCC gasoline hydrodesulfurization
CN106190237A (en) A kind of FCC gasoline hydrodesulfurization
CN106281420A (en) A kind of FCC gasoline hydrodesulfurization
CN106433750A (en) Hydrogenation desulfurization and denitrification process of diesel oil
CN106244212A (en) A kind of FCC gasoline hydrodesulfurization
CN106190261A (en) A kind of FCC gasoline hydrodesulfurization
CN106268913A (en) A kind of Hydrobon catalyst
CN106318455A (en) Hydrogen desulfurization catalyst
CN106345511A (en) Hydrogen desulfurization catalyst with composite carrier
CN106190243A (en) A kind of FCC gasoline hydrodesulfurization
CN106190250A (en) A kind of FCC gasoline hydrodesulfurization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170118