CN106317124B - 一种自旋交叉中空纳米球及其制备方法和应用 - Google Patents

一种自旋交叉中空纳米球及其制备方法和应用 Download PDF

Info

Publication number
CN106317124B
CN106317124B CN201610599473.7A CN201610599473A CN106317124B CN 106317124 B CN106317124 B CN 106317124B CN 201610599473 A CN201610599473 A CN 201610599473A CN 106317124 B CN106317124 B CN 106317124B
Authority
CN
China
Prior art keywords
spin crossover
hollow nanospheres
solution
spin
crossover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610599473.7A
Other languages
English (en)
Other versions
CN106317124A (zh
Inventor
罗洋辉
孙伯旺
王靖雯
吴鸿帅
张雅雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610599473.7A priority Critical patent/CN106317124B/zh
Publication of CN106317124A publication Critical patent/CN106317124A/zh
Application granted granted Critical
Publication of CN106317124B publication Critical patent/CN106317124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种自旋交叉中空纳米球及其制备方法和应用。所述的自旋交叉中空纳米球是由两亲性的自旋交叉配合物在pH=7.2‑7.4的磷酸缓冲盐溶液(PBS)中自组装而成,所述的两亲性自旋交叉配合物的化学结构式如下:所述的自组装是脂质体方式形成双层球形结构,固态的纳米球是通过冷冻干燥得到。本发明所述的自旋交叉中空纳米球不含任何表面活性剂,中空纳米球结构提高了自旋交叉的转变温度,实现了常温范围内的自旋交叉行为,所述的自旋交叉中空纳米球制备简单,性能稳定,在信息储存,分子开关,分子显示等分子电子器件方面有巨大的应用前景。

Description

一种自旋交叉中空纳米球及其制备方法和应用
技术领域
本发明属于自旋交叉纳米材料领域,更具体地,涉及一种自旋交叉中空纳米球及其制备方法和应用。
背景技术
在分子基磁性材料当中,分子双稳态现象是引人瞩目的一个领域。自旋交叉是最重要的双稳态材料之一,在特定外界刺激条件下(如温度、压力、光、强磁场等)的高自旋和低自旋状态之间的相互转换,会伴随着一系列磁学、光学、热学等性能变化。这种优良的特性使得自旋交叉材料在分子水平上的新型信息存储器件、分子开关、显示器件、探测器件等领域具有诱人的应用前景(Chem Soc Rev 2011,40,3313-3335)。
自旋交叉材料研究的最终目的是使这类材料达到实用化。目前,研究者们已投入了大量的精力在纳米级别自旋交叉材料的探索研究,主要包括制备具有自旋交叉功能的纳米颗粒、纳米纤维以及纳米薄膜等。其中,纳米级尺寸,组装方式等因素对自旋交叉行为有着至关重要的影响,控制纳米材料尺寸和组装方式是纳米级自旋交叉材料研究的主要内容(Adv Mater 2013,25(12),1745-1749)。
目前所报导的自旋交叉纳米颗粒是通过使用大量表明活性剂的微乳液或反胶束技术,或利用具有特殊功能的聚合物通过均相法制备(Angew Chem Int Ed 2012,51(48),11995-11999)。这些技术的一个严重缺点是:大量的表面活性剂或功能聚合物的存在会大大稀释材料中自旋交叉中心的密度,从而降低了自旋交叉行为探测的灵敏度。因此,探索无表面活性剂或功能聚合物的自旋交叉纳米材料制备技术显得尤为重要。
将脂质体制备技术应用到自旋交叉纳米材料制备,是一种极具优势的解决方案。脂质体组装方式结合纳米材料,已在药物传递,药物缓控,等领域广泛应 用(Nano Lett2008,8,941-944)。而在自旋交叉研究领域,将自旋交叉材料通过脂质体自组装方式组装成纳米材料的研究尚未见报道。
发明内容
技术问题:本发明要解决的技术问题是克服现有自旋交叉纳米材料含有大量的表面活性剂或功能聚合物,从而降低了自旋交叉行为探测灵敏度的缺陷和技术不足,提供一种纯粹的、粒度分布均匀的自旋交叉纳米材料。
本发明的目的是提供一种自旋交叉中空纳米球。
本发明的另一目的是提供上述自旋交叉中空纳米球的制备方法。
本发明的再一目的是提供上述自旋交叉中空纳米球的应用。
技术方案:本发明上述目的通过以下技术方案实现:
本发明提供了一种自旋交叉中空纳米球,该纳米球由两亲性自旋交叉配合物在磷酸缓冲盐溶液PBS自组装而成,化学结构式如下:
其中,n≥5。
所述的磷酸缓冲盐溶液PBS组份包括如下摩尔比:
90%-94%Na2HPO4
1.0%-3.0%KH2PO4
4%-6%NaCl
1%KCl。
所述的PBS溶液的pH=7.2-7.4。
由脂质体自组装方式组装成双层的中空纳米球,纳米球外径在70-200nm,内径在50-150nm。
本发明的自旋交叉中空纳米球的制备方法包括如下步骤:
两亲性自旋交叉配合物的合成包括以下步骤:
1).合成亲脂性的烷基化2,2’-联吡啶配体:4,4’-二羧酸-2,2’-联吡啶在干燥的SOCl2溶液中回流2h,旋转蒸干除去多余的SOCl2溶液,即得到4,4-二酰氯-2,2-联吡啶。后者分别再与2倍摩尔量的烷烃伯胺,以及过量的三乙胺,在二氯甲烷溶液中缩合得到亲脂性的烷基化2,2’-联吡啶配体;
2).合成亲水性的Fe(H2Bpz2)组分:摩尔比1:2的Fe(ClO4)2·6H2O和配体KH2Bpz2在氮气氛围中溶解于醇溶液中,搅拌20分钟,生成的白色沉淀KClO4过滤除去,即得到Fe(H2Bpz2)的醇溶液;
3)上述亲脂性的烷基化2,2’-联吡啶配体和亲水性的Fe(H2Bpz2)醇溶液在热的氯仿中混合,即析出得到两亲性的自旋交叉配合物
自旋交叉中空纳米球的制备方法,包括如下步骤:
S1.将所合成两亲性配合物,在圆底烧瓶中溶解于氯仿溶剂,得到澄清溶液;
S2.将所得氯仿溶液在60-70℃下旋转蒸干,形成均匀分布的薄膜;
S3.向所得薄膜加入PBS溶液,60-80℃下匀速摇晃20-30分钟,得到***悬浊液;
S4.所得***悬浊液冷冻干燥,得到***固态纳米球。
所述的上述PBS溶液的pH=7.2-7.4。
所述的步骤1)中,三乙胺的过量倍数为3-6倍。
所述的步骤2)中,醇溶液为甲醇或乙醇。
所述的步骤3)中,氯仿溶液的温度为60-80℃。
本发明的自旋交叉中空纳米球应用于信息储存,分子开关,分子显示等分子电子器件中。
有益效果:本发明提供了一种自旋交叉中空纳米球及其制备方法和应用。利用本发明所述制备方法和利用上述材料制备出自旋交叉中空纳米球,所述的自旋交叉中空纳米球具有以下优点:
(1)是一种纯粹的自旋交叉纳米材料,不含表面活性剂或功能配合物。
(2)纳米球在溶液和固体状态均稳定存在。
(3)可实现常温的自旋交叉行为。
(4)制备方法灵活,可以得到不同尺寸的纳米球。
(6)本发明所述的自旋交叉中空纳米球可应用是用于信息储存,分子开关,分子显示等分子电子器件中。
附图说明
图1为本发明的自旋交叉中空纳米球的自组装方式。
图2为本发明的自旋交叉中空纳米球在溶液中的状态,纳米球透射电镜形貌。
图3为本发明的自旋交叉中空纳米球在固体状态的磁化率曲线。
具体实施方式
以下结合说明附图和具体实施例来进一步说明此发明。但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂,方法和设备为本技术领域常规试剂,方法和设备。
除非特别说明,本发明所用的材料和试剂均为市售。
以下呈现出部分实验数据来说明问题。
实施例1亲脂性的烷基化2,2’-联吡啶配体合成
本实例以N4,N4′-二己基-(2,2′-联吡啶)-4,4′-二酰胺(N4,N4′-dihexyl-(2,2′-bipyridine)-4,4′-dicarboxamide,dhbdc)为例:100mg 4,4’-二羧酸-2,2’-联吡啶在250mL的圆底烧瓶中溶解于60mL干燥的SOCl2溶液中,80℃回流2h。60℃旋转蒸干除去多余的SOCl2溶液,即得到114.34g4,4-二酰氯-2,2-联吡啶。所得 到的4,4-二酰氯-2,2-联吡啶立即溶解于80mL二氯甲烷溶液中,并向此溶液中加入83mg己胺和100mg三乙胺,室温搅拌2h,即得到亲脂性的dhbdc配体。
实施例2亲水性的Fe(H2Bpz2)组分合成
0.2mmol的Fe(ClO4)2·6H2O和0.4mmol的配体KH2Bpz2在氮气氛围中溶解于20mL甲醇溶液中,搅拌20分钟,生成的白色沉淀KClO4过滤除去。得到的滤液即为Fe(H2Bpz2)的甲醇溶液。
实施例3两亲性的自旋交叉配合物合成
本实例以[Fe(H2Bpz2)2(dhbdc)]为例:上述得到的Fe(H2Bpz2)滤液在60℃温度下缓慢的加入到20mL溶有0.2mmol配体dhbdc的氯仿溶液中。溶液立即变成棕色,并伴随着棕色固体的析出。所得混悬溶液在60℃搅拌1小时后,过滤,得到棕色固体,10mL甲醇和10mL氯仿溶液分别洗涤所得固体,即得到纯的[Fe(H2Bpz2)2(dhbdc)]产物。
实施例4自旋交叉中空纳米球制备
本实例以两亲性的自旋交叉配合物[Fe(H2Bpz2)2(dhbdc)]为材料,制备自旋交叉中空纳米球(纳米球自组装示意图如图1所示)。具体步骤如下:
S1.将30mg两亲性的自旋交叉配合物[Fe(H2Bpz2)2(dhbdc)],在圆底烧瓶中溶解于50氯仿溶剂,搅拌得到澄清溶液;
S2.将上述氯仿溶液在60-70℃下旋转蒸干,在烧杯壁上形成均匀的薄膜;
S3.向上述所得薄膜加入30mL PBS溶液,60-80℃下匀速摇晃20-30分钟,得到***悬浊液(图2a所示);
S4.所得***悬浊液冷冻干燥,得到***固态纳米球。
实施例5自旋交叉中空纳米球形貌及尺寸表征
自旋交叉中空纳米球的形貌和尺寸分布分别通过transmission electronmicroscopy(TEM)和dynamic lightscattering(DLS)表征,图2显示了测试结果。在测试之前,***的微乳液通过微孔滤膜(Φ50(0.2/0.45))过滤。图2b和c分别显示了纳米球在200nm和100nm尺度下的TEM图像,图像清晰显示了大体上粒度均一的中空球形结构,TEM图像中纳米球上灰白部分即为球内腔。
实施例6变温磁化率测试
取10mg冷冻干燥得到的***固态纳米球,在2000Oe磁场强度,400-200K的温度范围内进行了磁化率测量,降温速率为2K/min。样品的磁化率曲线(χmTvs T)如图3所示,所有纳米球样品在315K附件发生了完全的自旋交叉行为。这些结果表明,本发明方法所得到的自旋交叉中空纳米球可应用是用于信息储存,分子开关,分子显示等分子电子器件中。

Claims (10)

1.一种自旋交叉中空纳米球,其特征在于,该纳米球由两亲性自旋交叉配合物在磷酸缓冲盐溶液PBS自组装而成,两亲性自旋交叉配合物化学结构式如下:
其中,n=5-15。
2.根据权利要求1所述的自旋交叉中空纳米球,其特征在于,所述的磷酸缓冲盐溶液PBS组份包括如下摩尔比:
90%-94%Na2HPO4
1.0%-3.0%KH2PO4
4%-6%NaCl
1%KCl。
3.根据权利要求2所述的自旋交叉中空纳米球,其特征在于,所述的PBS溶液的pH=7.2-7.4。
4.根据权利要求1所述的自旋交叉中空纳米球,其特征在于,由脂质体自组装方式组装成双层的中空纳米球,纳米球外径在70-200nm,内径在50-150nm。
5.一种如权利要求1所述的自旋交叉中空纳米球的制备方法,其特征在于,该方法包括如下步骤:
两亲性自旋交叉配合物的合成包括以下步骤:
1).合成亲脂性的烷基化2,2’-联吡啶配体:4,4’-二羧酸-2,2’-联吡啶在干燥的SOCl2溶液中回流2h,旋转蒸干除去多余的SOCl2溶液,即得到4,4’-二酰氯-2,2’-联吡啶后者分别再与2倍摩尔量的烷烃伯胺,以及过量的三乙胺,在二氯甲烷溶液中缩合得到亲脂性的烷基化2,2’-联吡啶配体;
2).合成亲水性的Fe(H2Bpz2)组分:摩尔比1:2的Fe(ClO4)2·6H2O和配体KH2Bpz2在氮气氛围中溶解于醇溶液中,搅拌20分钟,生成的白色沉淀KClO4过滤除去,即得到Fe(H2Bpz2)的醇溶液;
3)上述亲脂性的烷基化2,2’-联吡啶配体和亲水性的Fe(H2Bpz2)醇溶液在热的氯仿中混合,即析出得到两亲性的自旋交叉配合物
自旋交叉中空纳米球的制备方法,包括如下步骤:
S1.将所合成两亲性配合物,在圆底烧瓶中溶解于氯仿溶剂,得到澄清溶液;
S2.将所得氯仿溶液在60-70℃下旋转蒸干,形成均匀分布的薄膜;
S3.向所得薄膜加入PBS溶液,60-80℃下匀速摇晃20-30分钟,得到***悬浊液;
S4.所得***悬浊液冷冻干燥,得到***固态纳米球。
6.根据权利要求5所述的自旋交叉中空纳米球的制备方法,其特征在于,所述的上述PBS溶液的pH=7.2-7.4。
7.根据权利要求5所述的自旋交叉中空纳米球的制备方法,其特征在于,所述的步骤1)中,三乙胺的过量倍数为3-6倍。
8.根据权利要求5所述的自旋交叉中空纳米球的制备方法,其特征在于,所述的步骤2)中,醇溶液为甲醇或乙醇。
9.根据权利要求5所述的自旋交叉中空纳米球的制备方法,其特征在于,所述的步骤3)中,氯仿溶液的温度为60-80℃。
10.根据权利要求1所述自旋交叉中空纳米球的应用,其特征在于,用于信息储存,分子开关,分子显示的分子电子器件中。
CN201610599473.7A 2016-07-27 2016-07-27 一种自旋交叉中空纳米球及其制备方法和应用 Active CN106317124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610599473.7A CN106317124B (zh) 2016-07-27 2016-07-27 一种自旋交叉中空纳米球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610599473.7A CN106317124B (zh) 2016-07-27 2016-07-27 一种自旋交叉中空纳米球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106317124A CN106317124A (zh) 2017-01-11
CN106317124B true CN106317124B (zh) 2018-08-21

Family

ID=57739305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610599473.7A Active CN106317124B (zh) 2016-07-27 2016-07-27 一种自旋交叉中空纳米球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106317124B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659356B (zh) * 2018-12-18 2021-08-27 河南师范大学 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2102605A1 (en) * 1991-05-23 1992-11-24 Evan C. Unger Liposoluble compounds for magnetic resonance imaging
CN101288664A (zh) * 2008-06-11 2008-10-22 东南大学 核壳结构磁性纳米微囊的制备方法
JP6800748B2 (ja) * 2013-06-14 2020-12-16 アカマラ セラピューティクス、インコーポレイテッド 脂質ベース白金化合物およびナノ粒子

Also Published As

Publication number Publication date
CN106317124A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Feng et al. Self-assembly of AIEgens
Xia et al. Monodisperse inorganic supraparticles: formation mechanism, properties and applications
Niu et al. Preparation of uniform, water‐soluble, and multifunctional nanocomposites with tunable sizes
Bhosale et al. Flower-like supramolecular self-assembly of phosphonic acid appended naphthalene diimide and melamine
Jing et al. Self‐Assembly Vesicles Made from a Cyclodextrin Supramolecular Complex
Agarwal et al. Characterization of nanomaterials using nuclear magnetic resonance spectroscopy
Atabaev et al. Mesoporous silica with fibrous morphology: a multifunctional core–shell platform for biomedical applications
Bhat et al. Nanoparticle− gel hybrid material designed with bile acid analogues
Chen et al. Synthesis and characterization of magnetic nanoparticles coated with polystyrene sulfonic acid for biomedical applications
Wang et al. Targeted delivery and pH-responsive release of stereoisomeric anti-cancer drugs using β-cyclodextrin assemblied Fe3O4 nanoparticles
Yang et al. Surface activity, micellization, and application of nano-surfactants—amphiphilic carbon dots
Sun et al. Controlled transformation from nanorods to vesicles induced by cyclomaltoheptaoses (β-cyclodextrins)
CN102372307B (zh) 由四氧化三铁纳米晶一步制备磁性空心团簇的方法
Ma et al. A multistimuli-responsive supramolecular vesicle constructed by cyclodextrins and tyrosine
Ma et al. Stimulus-responsive supramolecular vesicles with effective anticancer activity prepared by cyclodextrin and ftorafur
Zhao et al. Comparative studies on molecular induced aggregation of hepta-imidazoliumyl-β-cyclodextrin towards anionic surfactants
CN106317124B (zh) 一种自旋交叉中空纳米球及其制备方法和应用
Xin et al. Realizing enhanced luminescence of silver nanocluster–peptide soft hydrogels by PEI reinforcement
Juárez et al. One‐dimensional magnetic nanowires obtained by protein fibril biotemplating
Rajendiran et al. A study of supramolecular host–guest interaction of dothiepin and doxepin drugs with cyclodextrin macrocycles
Kumar et al. Magnetic field-guided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles
Ma et al. Reversible pH-responsive helical nanoribbons formed using camptothecin
Hu et al. One-pot preparation of zwitterionic graphene nanosheets with exceptional redispersibility and its application in pickering emulsions
Lobaz et al. Photoluminescent polysaccharide-coated germanium (IV) oxide nanoparticles
Li et al. Magnetic nanoparticles modified by citrate groups for magnetically responsive photonic crystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant