CN106310433A - Intelligent infusion robot system based on Internet of things - Google Patents

Intelligent infusion robot system based on Internet of things Download PDF

Info

Publication number
CN106310433A
CN106310433A CN201610727241.5A CN201610727241A CN106310433A CN 106310433 A CN106310433 A CN 106310433A CN 201610727241 A CN201610727241 A CN 201610727241A CN 106310433 A CN106310433 A CN 106310433A
Authority
CN
China
Prior art keywords
module
ultrasound wave
infusion
dolly
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610727241.5A
Other languages
Chinese (zh)
Inventor
谢亚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610727241.5A priority Critical patent/CN106310433A/en
Publication of CN106310433A publication Critical patent/CN106310433A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1414Hanging-up devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/009Nursing, e.g. carrying sick persons, pushing wheelchairs, distributing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1413Modular systems comprising interconnecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1414Hanging-up devices
    • A61M5/1415Stands, brackets or the like for supporting infusion accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1414Hanging-up devices
    • A61M5/1417Holders or handles for hanging up infusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/162Needle sets, i.e. connections by puncture between reservoir and tube ; Connections between reservoir and tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16813Flow controllers by controlling the degree of opening of the flow line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/1684Monitoring, detecting, signalling or eliminating infusion flow anomalies by detecting the amount of infusate remaining, e.g. signalling end of infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16877Adjusting flow; Devices for setting a flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/006Controls for manipulators by means of a wireless system for controlling one or several manipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/10General characteristics of the apparatus with powered movement mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • A61M2205/3523Communication with implanted devices, e.g. external control using telemetric means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3561Range local, e.g. within room or hospital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Nursing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Manipulator (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

The invention discloses an intelligent infusion robot based on Internet of things. The intelligent infusion robot comprises an ultrasonic following trolley, an infusion support, an infusion set, a wristband, a terminal control system and a remote control system, wherein the infusion support is arranged on the ultrasonic following trolley; the infusion set is arranged on the upper end part of the infusion support; the wristband comprises a wristband body, an ultrasonic transmitting module, a single-chip microcomputer, a first input module and a wireless communication module. By adopting the intelligent infusion robot, the technical problem of wobbling of liquid in an infusion bottle caused by wobbling of the infusion robot in a moving process can be solved effectively, so that liquid medicine can be infused into a patient at a uniform speed along an infusion tube.

Description

Intelligent transfusion robot system based on Internet of Things
The application is filing date 2016-06-19, Application No. 2016104375797, invention entitled based on Internet of Things Intelligent transfusion robot.
Technical field
The present invention relates to a kind of robot, be specifically related to a kind of medical infusion robot.
Background technology
Medical Robot, refers to that Medical Robot's kind is very for hospital, the medical treatment of clinic or the robot of medical assistance Many, different according to its purposes, there are clinical treatment robot, nursing robot, Medical teaching robot and for services for the disabled Robot etc..
Traditional infusion bottle is all to hang over above drip stand, and drip stand is placed on sick bed side, moves to get up to bother very much, when When client need is walked about, need to take off infusion bottle, then raise high, when sometimes patient is handicapped, in addition it is also necessary to nurse Or household follows patient and raises infusion bottle together high.
For often going the phenomenon of toilet during patient infusion, and for faster rehabilitation, doctor advises often especially Walk about, but a lot of patient infusion time is inconvenient to walk about very for a long time especially, then Patent No. " 2015207522799 ", invention entitled " from motion tracking infuse robot " utility model patent disclose a kind of transfusion It is also convenient for the transfusion robot walked about simultaneously.This robot can follow patient one piece walking automatically, very easy to use, But it is found that a problem in actual use: transfusion robot can rock during movement slightly, thus Cause the slosh in infusion bottle, thus cause the medicinal liquid in infusion bottle cannot be input to patient's along tube for transfusion evenly Internal.
Summary of the invention
It is an object of the invention to solve techniques below problem: transfusion robot can rock during movement, thus Cause the slosh in infusion bottle, thus cause the medicinal liquid in infusion bottle cannot be input to patient's along tube for transfusion evenly Internal.
In order to realize object above, the technical solution adopted in the present invention is: intelligent transfusion robot based on Internet of Things, It is characterized in that, follow dolly, drip stand, infusion set, bracelet, terminal control system and far-end including ultrasound wave and control system System;
Described drip stand is arranged on ultrasound wave and follows above dolly, and described infusion set is arranged at described transfusion Frame upper end;
Described bracelet includes bracelet body, ultrasonic emitting module, single-chip microcomputer, the first input module, radio communication mold Block;
Described ultrasonic emitting module, single-chip microcomputer, wireless communication module are arranged at bracelet body interior;
The first described input module is arranged at the outer surface of bracelet body;
Described ultrasonic emitting module, the first input module, wireless communication module electrically connect with single-chip microcomputer respectively;
Described terminal control system includes 4 ultrasound wave receiver modules, terminal controller, motor drive module, left electricity Machine, right motor;Display module, the second input module, GPS module, camera module;Battery module, charger module, terminal Wireless communication module;
Described far-end control system includes remote wireless communications module and remote controller;
4 described ultrasound wave receiver modules electrically connect with terminal controller respectively, and terminal controller is driven by motor Module controls left motor and right electric motor starting, stopping and rotating speed;
Described left motor, right motor are respectively used to drive the near front wheel, off-front wheel;
Described display module, the second input module, GPS module, camera module electrically connect with terminal controller respectively;
4 described ultrasound wave receiver modules are respectively arranged at ultrasound wave and follow the left front of dolly, right front, left back Side, right back;
Described camera module is arranged at the top of drip stand;
Described terminal control system is arranged at ultrasound wave and follows above dolly;
Described battery module outfan is unit module for power supply, and the outfan of charger module connects accumulator The charging input end of module;
Described terminal wireless communication module electrically connects with terminal controller;
Described remote wireless communications module electrically connects with remote controller;
Communicate between described terminal controller and remote controller;
Described infusion set includes circular cylindrical cavity and annular cavity;
Described circular cylindrical cavity and annular cavity concentric, and circular cylindrical cavity and annular cavity bottom surface altogether, The bottom of circular cylindrical cavity connects with the bottom of annular cavity;
The upper surface of described circular cylindrical cavity is provided with liquid filling hole, and liquid filling hole is provided with detachable stopper;
The upper surface of described circular cylindrical cavity is additionally provided with air inlet;
The lower surface of described annular cavity has 8 infusion holes around center of circle spaced set, and infusion hole is respectively provided with There is rubber closure;
Described infusion set also includes that bottle plug puncture unit unit, dropping funnel, flow regulator, liquid medicine filter, transfusion are soft Pipe, intravenous needle;One end of described infusion tube connects the outfan of bottle plug puncture unit unit, and the other end connects intravenous needle;Institute Dropping funnel, flow regulator, liquid medicine filter is set gradually on the infusion tube stated;
Described bottle plug puncture unit unit has 8 bottle plug puncture units, is inserted respectively under described annular cavity In 8 rubber closures on surface, the outfan of 8 bottle plug puncture units is converged by flexible pipe and forms an outfan;
Stop member is set near the input port of described bottle plug puncture unit, and the size of 8 bottle plug puncture units is complete Identical;
If the height of annular cavity is X1cm, the height of circular cylindrical cavity is X2cm;The volume of annular cavity Y1cm3, the volume of circular cylindrical cavity is Y2cm3
X2≥10*X1;Y2≥40*Y1;
Also include a transfusion bascule;
Described transfusion bascule includes at the bottom of control chamber, balance controller, three electric expansion bars, gyroscope, supports Seat, support cover, gripper shoe, annular cover plate and clamping screw;
Described control chamber and support base are installed in ultrasound wave and follow on dolly;
Described support cover is vertically mounted on support base;
Described support cover is columnar structured, and is provided with circular mounting hole at the top of support cover;
The circumferential edges of described center of circle installing hole is provided with a proof rubber circle;
Described balance controller and gyroscope are installed in control chamber, and gyroscope is for being horizontally mounted;
Described gripper shoe is positioned at support cover;
The two ends up and down of three described electric expansion bars are arranged on support cover inner top by spherical linkage respectively and prop up On the upper face of fagging;
On the three described electric expansion bars, three strong points on support cover inner top and on the supporting plate plate face Three strong points all constitute equilateral triangle;
The upper face center of described gripper shoe is provided with and intubates;
Described clamping screw screws on the screwed hole intubating tube wall;
The lower end of described drip stand is through on being inserted into and intubate after the centre bore of annular cover plate and solid by clamping screw Fixed;
The outside diameter of described annular cover plate is more than the diameter of circular mounting hole;
The diameter of described circular mounting hole is more than the diameter of twice drip stand lower end;
Described balance controller motor-drive circuit with gyroscope and three electric expansion bars respectively is connected;
Described accumulator respectively balance controller, gyroscope and three electric expansion bars are powered.
Further, described remote controller, remote wireless communications module use smart mobile phone to realize.
Compared with prior art, it is an advantage of the current invention that: first, transfusion robot can rock during movement, Thus cause the slosh in infusion bottle, but the medicinal liquid of the present invention still can be input to patient along tube for transfusion evenly Internal.Second, owing to equipped with GPS module and camera module, therefore can understand patient's in real time by remote controller Position and the situation at scene;3rd, use transfusion bascule can follow dolly at ultrasound wave and move the process of rocking, reduce Drip stand rocks degree, it is ensured that transfusion normal safe is carried out.
Accompanying drawing explanation
Fig. 1 is the principle block diagram of the circuit control part of the present invention;
Fig. 2 is that ultrasound wave follows dolly schematic top plan view;
Fig. 3 is that ultrasound wave follows dolly front view (not drawing infusion set);
Fig. 4 is infusion set front view (schematic diagram);
Fig. 5 is the top view (schematic diagram) of infusion set;
Fig. 6 is the upward view (schematic diagram) of infusion set;
Fig. 7 is existing infusion bottle and tube for transfusion connection diagram;
Fig. 8 is bottle plug puncture unit cell schematics;
Fig. 9 is the circuit diagram of transfusion bascule;
Figure 10 is the plan structure schematic diagram of transfusion bascule;
Figure 11 is sectional structure schematic diagram at A-A in Figure 10.
Wherein, 1 is ultrasonic emitting module;2 is ultrasound wave receiver module;3 wheels;4 is that ultrasound wave follows dolly;5 are Drip stand;7 is camera module;8 is circular cylindrical cavity;9 is annular cavity;10 is rubber stopper;12 is infusion bottle;13 is defeated Liquid pipe;14 is stop member;15 is control chamber;16 is support cover;17 is annular cover plate;18 is to support base;19 is electronic stretching Contracting bar;20 is to intubate;21 is gripper shoe.
Detailed description of the invention
Below in conjunction with the accompanying drawings the present invention is described in further detail.
Need during use to be poured in the circular cylindrical cavity of device for storing liquid or by this medicinal liquid in infusion bottle Bright infusion set is made the disposable infusion bottle that directly substitutes and is used.
" dropping funnel, flow regulator, liquid medicine filter, infusion tube, intravenous needle;One end of described infusion tube connects The outfan of bottle plug puncture unit, the other end connects intravenous needle;Set gradually on described infusion tube dropping funnel, flow regulator, Liquid medicine filter " belong to existing known technology, it is not described in detail.
Annular cavity except lower surface be provided with infusion hole, in addition to bottom connects with circular cylindrical cavity, remaining is the most all located Place seals, and the upper surface of circular cylindrical cavity is provided with air inlet, but air inlet position is provided with air filtering disinfection device (now Have known technology), so that it is guaranteed that the liquid within infusion set is not polluted by outside air.
It is provided with air inlet pipe near the bottle plug puncture unit of existing tube for transfusion, and air inlet pipe is provided with air filtration and kills Bacterium device, this technology belongs to prior art.
Wherein, the height of circular cylindrical cavity takes 20cm, and the height of annular cavity takes 2cm;
The volume of circular cylindrical cavity is 1500cm3, the volume of annular cavity is 30cm3
Ultrasound wave is followed dolly and is used front-wheel drive.
The stop member of bottle plug puncture unit can ensure that 8 bottle plug puncture units are inserted into the rubber of the lower surface of annular cavity The degree of depth in leather plug is just the same, thus ensures that the pressure at the input port of 8 bottle plug puncture units is about the same, so stop part Part is extremely important.If stop member, 8 bottle plug puncture units are inserted into the rubber closure of the lower surface of annular cavity In the degree of depth certainly the most widely different (existing bottle plug puncture unit the most unobstructed the longest parts, it is impossible to fully-inserted enter ), owing to the size of 8 bottle plug puncture units is just the same, and it is provided with stop member, when the resistance of 8 bottle plug puncture units Just cannot be inserted into during the rubber closure of the lower surface that stopper part touches annular cavity.
Embodiment: intelligent transfusion robot based on Internet of Things, including ultrasound wave follow dolly, drip stand, infusion set, Bracelet, terminal control system and far-end control system;Described drip stand is arranged on ultrasound wave and follows above dolly, described Infusion set is arranged at described drip stand upper end;Described bracelet includes bracelet body, ultrasonic emitting module, monolithic Machine, the first input module, wireless communication module;
Described ultrasonic emitting module, single-chip microcomputer, wireless communication module are arranged at bracelet body interior;
The first described input module is arranged at the outer surface of bracelet body;
Described ultrasonic emitting module, the first input module, wireless communication module electrically connect with single-chip microcomputer respectively;Described Terminal control system include 4 ultrasound wave receiver modules, terminal controller, motor drive module, left motor, right motor;Aobvious Show module, the second input module, GPS module, camera module;Battery module, charger module, terminal wireless communication mould Block;
Described far-end control system includes remote wireless communications module and remote controller;
4 described ultrasound wave receiver modules electrically connect with terminal controller respectively, and terminal controller is driven by motor Module controls left motor and right electric motor starting, stopping and rotating speed;Described left motor, right motor be respectively used to drive the near front wheel, Off-front wheel;Described display module, the second input module, GPS module, camera module electrically connect with terminal controller respectively; 4 described ultrasound wave receiver modules are respectively arranged at ultrasound wave and follow the left front of dolly, right front, left back, right back;
Described camera module is arranged at the top of drip stand;Described terminal control system is arranged at ultrasound wave and follows little Above car;Described battery module outfan is unit module for power supply, and the outfan of charger module connects accumulator The charging input end of module;Described terminal wireless communication module electrically connects with terminal controller;Described remote wireless communications Module electrically connects with remote controller;Communicate between described terminal controller and remote controller;
Described infusion set includes circular cylindrical cavity and annular cavity;
Described circular cylindrical cavity and annular cavity concentric, and circular cylindrical cavity and annular cavity bottom surface altogether, The bottom of circular cylindrical cavity connects with the bottom of annular cavity;
The upper surface of described circular cylindrical cavity is provided with liquid filling hole, and liquid filling hole is provided with detachable stopper;
The upper surface of described circular cylindrical cavity is additionally provided with air inlet;
The lower surface of described annular cavity has 8 infusion holes around center of circle spaced set, and infusion hole is respectively provided with There is rubber closure;
Described infusion set also includes that bottle plug puncture unit unit, dropping funnel, flow regulator, liquid medicine filter, transfusion are soft Pipe, intravenous needle;One end of described infusion tube connects the outfan of bottle plug puncture unit unit, and the other end connects intravenous needle;Institute Dropping funnel, flow regulator, liquid medicine filter is set gradually on the infusion tube stated;
Described bottle plug puncture unit unit has 8 bottle plug puncture units, is inserted respectively under described annular cavity In 8 rubber closures on surface, the outfan of 8 bottle plug puncture units is converged by flexible pipe and forms an outfan;
Stop member is set near the input port of described bottle plug puncture unit, and the size of 8 bottle plug puncture units is complete Identical;
If the height of annular cavity is X1cm, the height of circular cylindrical cavity is X2cm;The volume of annular cavity Y1cm3, the volume of circular cylindrical cavity is Y2cm3
X2≥10*X1;Y2≥40*Y1;
Also include a transfusion bascule;
Described transfusion bascule includes at the bottom of control chamber, balance controller, three electric expansion bars, gyroscope, supports Seat, support cover, gripper shoe, annular cover plate and clamping screw;
Described control chamber and support base are installed in ultrasound wave and follow on dolly;
Described support cover is vertically mounted on support base;
Described support cover is columnar structured, and is provided with circular mounting hole at the top of support cover;
The circumferential edges of described center of circle installing hole is provided with a proof rubber circle;
Described balance controller and gyroscope are installed in control chamber, and gyroscope is for being horizontally mounted;
Described gripper shoe is positioned at support cover;
The two ends up and down of three described electric expansion bars are arranged on support cover inner top by spherical linkage respectively and prop up On the upper face of fagging;
On the three described electric expansion bars, three strong points on support cover inner top and on the supporting plate plate face Three strong points all constitute equilateral triangle;
The upper face center of described gripper shoe is provided with and intubates;
Described clamping screw screws on the screwed hole intubating tube wall;
The lower end of described drip stand is through on being inserted into and intubate after the centre bore of annular cover plate and solid by clamping screw Fixed;
The outside diameter of described annular cover plate is more than the diameter of circular mounting hole;
The diameter of described circular mounting hole is more than the diameter of twice drip stand lower end;
Described balance controller motor-drive circuit with gyroscope and three electric expansion bars respectively is connected;
Described accumulator respectively balance controller, gyroscope and three electric expansion bars are powered;
Wherein, described remote controller, remote wireless communications module use smart mobile phone to realize.
The present invention substantially operation principle describes: be worn at wrist by bracelet when client need is walked about, by the first input mould Block starts ultrasonic emitting module and starts to launch ultrasonic signal, starts timing, GPS by single-chip microcomputer and terminal controller communication Module, camera module are started working, and the signal of GPS module, camera module output is controlled with far-end by terminal controller Device communicates, and such remote controller can recognize patient's location and patient's field conditions in real time.
The signal that ultrasonic emitting module sends is received by four ultrasound wave receiver modules, and terminal controller surpasses according to four Distance between acoustic receiver module and ultrasonic emitting module, it is judged that the position of patient, thus control ultrasound wave and follow dolly Direction.
The present invention is capable of transfusion robot medicinal liquid during movement and remains able to defeated along tube for transfusion evenly Enter the internal principle explanation to patient: infusion set includes circular cylindrical cavity and annular cavity, due to circular cylindrical cavity Highly far above the height of annular cavity, and the bottom of circular cylindrical cavity connects with the bottom of annular cavity;So circle Liquid height within annular housing is the most constant (except medicinal liquid is totally lost the moment soon), when ultrasound wave follow dolly rock time, circle Liquid level within cylindrical chamber also can rock, but the lower surface of described annular cavity has 8 around center of circle spaced set Individual infusion hole, infusion hole is provided with rubber closure;Described bottle plug puncture unit has 8 inputs and 1 outfan, 8 Input is inserted respectively in 8 rubber closures of the lower surface of described annular cavity;So circular cylindrical cavity internal liquid level Although rock the change that can cause the pressure at each infusion hole, but the pressure sum at 8 infusion holes is the most constant (pressure at the infusion hole having becomes big, and at some infusion holes, pressure diminishes, and size is cancelled out each other), say, that 8 are defeated It is almost unchanged that pressure sum at fluid apertures is averaged.And bottle plug puncture unit has 8 inputs and 1 outfan, 8 Input is inserted respectively in 8 rubber closures of the lower surface of described annular cavity, the therefore outfan of bottle plug puncture unit The pressure at place is almost unchanged.
Robot ambulation control method i.e. ultrasound wave follows the control method of dolly:
The first step, patient follows dolly by the first input module input ultrasound wave of bracelet and starts walking order, monolithic After machine receives this order, single-chip microcomputer sends wireless signal to terminal controller, and terminal controller opens when receiving wireless signal simultaneously Dynamic 4 intervalometers start timing;
Second step, single-chip microcomputer is spaced 2s, Single-chip Controlling ultrasonic emitting mould after terminal controller sends wireless signal BOB(beginning of block) launches ultrasonic signal;
3rd step, left front, right front, left back, four ultrasound wave receiver modules of right back receive ultrasound wave letter Time interval between the moment that number moment distance terminal controller starts timing, correspondence is designated as respectively
The Δ t1 second, the Δ t2 second, the Δ t3 second, the Δ t4 second;
If Δ t1=Δ t2, Δ t3=Δ t4, then terminal controller control ultrasound wave follows dolly craspedodrome;
If Δ t1 > Δ is t2, Δ t3 > Δ t4, then terminal controller control ultrasound wave follows the near front wheel acceleration of dolly, before the right side Wheel slows down;
If Δ t1 < Δ is t2, Δ t3 < Δ t4, then terminal controller control ultrasound wave follows the near front wheel deceleration of dolly, before the right side Wheel accelerates.
Illustrate: 4 intervalometers can use hardware timer, it would however also be possible to employ software simulation intervalometer;Left front, Right front, left back, the most corresponding intervalometer of four ultrasound wave receiver modules of right back, ultrasound wave receiver module receives Timing, the timing time of such four intervalometers the most respectively Δ t1 is stopped respectively to intervalometer corresponding during ultrasonic signal Second, the Δ t2 second, the Δ t3 second, the Δ t4 second.
The transfusion bascule of the present invention operationally, is detected ultrasound wave in real time and follows the equilibrium-like of dolly by gyroscope State, then controlled the stroke of three electric expansion bars according to the poised state of detection by balance controller, thus realize drip stand Stability contorting, prevent dolly from causing drip stand acutely to rock during mobile rocking, it is ensured that infusion safety;Simultaneously because ring The effect of shape cover plate is prevented from foreign body and drops in support cover, affects the work of electric expansion bar;Proof rubber circle can alleviate Drip stand and the friction of circular mounting hole.
Intelligent transfusion robot system based on Internet of Things, it is characterised in that include that multiple ultrasound wave follows cart system And far-end control system;
Described ultrasound wave is followed cart system and is included that ultrasound wave follows dolly, drip stand, infusion set, bracelet, terminal Control system;
Described drip stand is arranged on ultrasound wave and follows above dolly, and described infusion set is arranged at described transfusion Frame upper end;
Described bracelet includes bracelet body, ultrasonic emitting module, single-chip microcomputer, the first input module, radio communication mold Block;
Described ultrasonic emitting module, single-chip microcomputer, wireless communication module are arranged at bracelet body interior;
The first described input module is arranged at the outer surface of bracelet body;
Described ultrasonic emitting module, the first input module, wireless communication module electrically connect with single-chip microcomputer respectively;
Described terminal control system includes 4 ultrasound wave receiver modules, terminal controller, motor drive module, left electricity Machine, right motor;Display module, the second input module, GPS module, camera module;Battery module, charger module, terminal Wireless communication module;
Described far-end control system includes remote wireless communications module and remote controller;
4 described ultrasound wave receiver modules electrically connect with terminal controller respectively, and terminal controller is driven by motor Module controls left motor and right electric motor starting, stopping and rotating speed;
Described left motor, right motor are respectively used to drive the near front wheel, off-front wheel;
Described display module, the second input module, GPS module, camera module electrically connect with terminal controller respectively;
4 described ultrasound wave receiver modules are respectively arranged at ultrasound wave and follow the left front of dolly, right front, left back Side, right back;
Described camera module is arranged at the top of drip stand;
Described terminal control system is arranged at ultrasound wave and follows above dolly;
Described battery module outfan is unit module for power supply, and the outfan of charger module connects accumulator The charging input end of module;
Described terminal wireless communication module electrically connects with terminal controller;
Described remote wireless communications module electrically connects with remote controller;
Communicate between described terminal controller and remote controller;
Described infusion set includes circular cylindrical cavity and annular cavity;
Described circular cylindrical cavity and annular cavity concentric, and circular cylindrical cavity and annular cavity bottom surface altogether, The bottom of circular cylindrical cavity connects with the bottom of annular cavity;
The upper surface of described circular cylindrical cavity is provided with liquid filling hole, and liquid filling hole is provided with detachable stopper;
The upper surface of described circular cylindrical cavity is additionally provided with air inlet;
The lower surface of described annular cavity has 8 infusion holes around center of circle spaced set, and infusion hole is respectively provided with There is rubber closure;
Described infusion set also includes that bottle plug puncture unit unit, dropping funnel, flow regulator, liquid medicine filter, transfusion are soft Pipe, intravenous needle;One end of described infusion tube connects the outfan of bottle plug puncture unit unit, and the other end connects intravenous needle;Institute Dropping funnel, flow regulator, liquid medicine filter is set gradually on the infusion tube stated;
Described bottle plug puncture unit unit has 8 bottle plug puncture units, is inserted respectively under described annular cavity In 8 rubber closures on surface, the outfan of 8 bottle plug puncture units is converged by flexible pipe and forms an outfan;
Stop member is set near the input port of described bottle plug puncture unit, and the size of 8 bottle plug puncture units is complete Identical;
If the height of annular cavity is X1cm, the height of circular cylindrical cavity is X2cm;The volume of annular cavity Y1cm3, the volume of circular cylindrical cavity is Y2cm3
X2≥10*X1;Y2≥40*Y1;
Also include multiple transfusion bascule;
Described transfusion bascule includes at the bottom of control chamber, balance controller, three electric expansion bars, gyroscope, supports Seat, support cover, gripper shoe, annular cover plate and clamping screw;
Described control chamber and support base are installed in ultrasound wave and follow on dolly;
Described support cover is vertically mounted on support base;
Described support cover is columnar structured, and is provided with circular mounting hole at the top of support cover;
The circumferential edges of described center of circle installing hole is provided with a proof rubber circle;
Described balance controller and gyroscope are installed in control chamber, and gyroscope is for being horizontally mounted;
Described gripper shoe is positioned at support cover;
The two ends up and down of three described electric expansion bars are arranged on support cover inner top by spherical linkage respectively and prop up On the upper face of fagging;
On the three described electric expansion bars, three strong points on support cover inner top and on the supporting plate plate face Three strong points all constitute equilateral triangle;
The upper face center of described gripper shoe is provided with and intubates;
Described clamping screw screws on the screwed hole intubating tube wall;
The lower end of described drip stand is through on being inserted into and intubate after the centre bore of annular cover plate and solid by clamping screw Fixed;
The outside diameter of described annular cover plate is more than the diameter of circular mounting hole;
The diameter of described circular mounting hole is more than the diameter of twice drip stand lower end;
Described balance controller motor-drive circuit with gyroscope and three electric expansion bars respectively is connected;Described Accumulator respectively balance controller, gyroscope and three electric expansion bars power;
Wherein, described remote controller, remote wireless communications module use smart mobile phone to realize.

Claims (2)

1. intelligent transfusion robot system based on Internet of Things, it is characterised in that include multiple ultrasound wave follow cart system and Far-end control system;
Described ultrasound wave is followed cart system and is included that ultrasound wave follows dolly, drip stand, infusion set, bracelet, terminal control System;
Described drip stand is arranged on ultrasound wave and follows above dolly, and described infusion set is arranged on described drip stand End;
Described bracelet includes bracelet body, ultrasonic emitting module, single-chip microcomputer, the first input module, wireless communication module;
Described ultrasonic emitting module, single-chip microcomputer, wireless communication module are arranged at bracelet body interior;
The first described input module is arranged at the outer surface of bracelet body;
Described ultrasonic emitting module, the first input module, wireless communication module electrically connect with single-chip microcomputer respectively;
Described terminal control system includes 4 ultrasound wave receiver modules, terminal controller, motor drive module, left motor, the right side Motor;Display module, the second input module, GPS module, camera module;Battery module, charger module, terminal wireless Communication module;
Described far-end control system includes remote wireless communications module and remote controller;
4 described ultrasound wave receiver modules electrically connect with terminal controller respectively, and terminal controller passes through motor drive module Control left motor and right electric motor starting, stopping and rotating speed;
Described left motor, right motor are respectively used to drive the near front wheel, off-front wheel;
Described display module, the second input module, GPS module, camera module electrically connect with terminal controller respectively;
4 described ultrasound wave receiver modules are respectively arranged at ultrasound wave and follow the left front of dolly, right front, left back, the right side Rear;
Described camera module is arranged at the top of drip stand;
Described terminal control system is arranged at ultrasound wave and follows above dolly;
Described battery module outfan is unit module for power supply, and the outfan of charger module connects battery module Charging input end;
Described terminal wireless communication module electrically connects with terminal controller;
Described remote wireless communications module electrically connects with remote controller;
Communicate between described terminal controller and remote controller;
Described infusion set includes circular cylindrical cavity and annular cavity;
Described circular cylindrical cavity and annular cavity concentric, and circular cylindrical cavity and annular cavity bottom surface, cylinder altogether The bottom of shape cavity connects with the bottom of annular cavity;
The upper surface of described circular cylindrical cavity is provided with liquid filling hole, and liquid filling hole is provided with detachable stopper;
The upper surface of described circular cylindrical cavity is additionally provided with air inlet;
The lower surface of described annular cavity has 8 infusion holes around center of circle spaced set, and infusion hole is provided with rubber Leather plug;
Described infusion set also includes bottle plug puncture unit unit, dropping funnel, flow regulator, liquid medicine filter, infusion tube, quiet Arteries and veins pin;One end of described infusion tube connects the outfan of bottle plug puncture unit unit, and the other end connects intravenous needle;Described is defeated Dropping funnel, flow regulator, liquid medicine filter is set gradually on liquid flexible pipe;
Described bottle plug puncture unit unit has 8 bottle plug puncture units, is inserted respectively into the lower surface of described annular cavity 8 rubber closures in, the outfan of 8 bottle plug puncture units by flexible pipe converge formed an outfan;
Stop member is set near the input port of described bottle plug puncture unit, and the size of 8 bottle plug puncture units is identical;
If the height of annular cavity is X1cm, the height of circular cylindrical cavity is X2cm;The volume Y1cm of annular cavity3, cylinder The volume of shape cavity is Y2cm3
X2≥10*X1;Y2≥40*Y1;
Also include multiple transfusion bascule;
Described transfusion bascule include control chamber, balance controller, three electric expansion bars, gyroscope, support base, Support cover, gripper shoe, annular cover plate and clamping screw;
Described control chamber and support base are installed in ultrasound wave and follow on dolly;
Described support cover is vertically mounted on support base;
Described support cover is columnar structured, and is provided with circular mounting hole at the top of support cover;
The circumferential edges of described center of circle installing hole is provided with a proof rubber circle;
Described balance controller and gyroscope are installed in control chamber, and gyroscope is for being horizontally mounted;
Described gripper shoe is positioned at support cover;
The two ends up and down of three described electric expansion bars are arranged on support cover inner top and gripper shoe by spherical linkage respectively Upper face on;
On the three described electric expansion bars, three strong points on support cover inner top and on the supporting plate plate face three The individual strong point all constitutes equilateral triangle;
The upper face center of described gripper shoe is provided with and intubates;
Described clamping screw screws on the screwed hole intubating tube wall;
The lower end of described drip stand is through on being inserted into and intubate after the centre bore of annular cover plate, and is fixed by clamping screw;
The outside diameter of described annular cover plate is more than the diameter of circular mounting hole;
The diameter of described circular mounting hole is more than the diameter of twice drip stand lower end;
Described balance controller motor-drive circuit with gyroscope and three electric expansion bars respectively is connected;
Described accumulator respectively balance controller, gyroscope and three electric expansion bars are powered;
Robot ambulation control method i.e. ultrasound wave follows the control method of dolly:
The first step, patient follows dolly by the first input module input ultrasound wave of bracelet and starts walking order, and single-chip microcomputer is received After this order, single-chip microcomputer sends wireless signal to terminal controller, starts 4 when terminal controller receives wireless signal simultaneously Intervalometer starts timing;
Second step, single-chip microcomputer is spaced 2s after terminal controller sends wireless signal, and Single-chip Controlling ultrasonic emitting module is opened Originate and penetrate ultrasonic signal;
3rd step, when left front, right front, left back, four ultrasound wave receiver modules of right back receive ultrasonic signal Carving the time interval between the moment that distance terminal controller starts timing, correspondence is designated as Δ t1 second, Δ t2 second, Δ t3 respectively Second, the Δ t4 second;
If Δ t1=Δ t2, Δ t3=Δ t4, then terminal controller control ultrasound wave follows dolly craspedodrome;
If Δ t1 > Δ is t2, Δ t3 > Δ t4, then terminal controller control ultrasound wave follows the near front wheel acceleration of dolly, and off-front wheel subtracts Speed;
If Δ t1 < Δ is t2, Δ t3 < Δ t4, then terminal controller control ultrasound wave follows the near front wheel deceleration of dolly, and off-front wheel adds Speed.
2. according to claim 1, described remote controller, remote wireless communications module use smart mobile phone to realize.
CN201610727241.5A 2016-06-19 2016-06-19 Intelligent infusion robot system based on Internet of things Pending CN106310433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610727241.5A CN106310433A (en) 2016-06-19 2016-06-19 Intelligent infusion robot system based on Internet of things

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610727241.5A CN106310433A (en) 2016-06-19 2016-06-19 Intelligent infusion robot system based on Internet of things
CN201610437579.7A CN105856259B (en) 2016-06-19 2016-06-19 Intelligent transfusion robot based on internet of things

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610437579.7A Division CN105856259B (en) 2016-06-19 2016-06-19 Intelligent transfusion robot based on internet of things

Publications (1)

Publication Number Publication Date
CN106310433A true CN106310433A (en) 2017-01-11

Family

ID=56650795

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201610437579.7A Expired - Fee Related CN105856259B (en) 2016-06-19 2016-06-19 Intelligent transfusion robot based on internet of things
CN201610727952.2A Withdrawn CN106166314A (en) 2016-06-19 2016-06-19 Intelligent transfusion robot based on internet of things
CN201610727241.5A Pending CN106310433A (en) 2016-06-19 2016-06-19 Intelligent infusion robot system based on Internet of things
CN201610737444.2A Withdrawn CN106267440A (en) 2016-06-19 2016-06-19 Intelligent transfusion robot system based on internet of things
CN201610724527.8A Pending CN106310432A (en) 2016-06-19 2016-06-19 Walking control method for intelligent infusion robot based on Internet of things

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201610437579.7A Expired - Fee Related CN105856259B (en) 2016-06-19 2016-06-19 Intelligent transfusion robot based on internet of things
CN201610727952.2A Withdrawn CN106166314A (en) 2016-06-19 2016-06-19 Intelligent transfusion robot based on internet of things

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201610737444.2A Withdrawn CN106267440A (en) 2016-06-19 2016-06-19 Intelligent transfusion robot system based on internet of things
CN201610724527.8A Pending CN106310432A (en) 2016-06-19 2016-06-19 Walking control method for intelligent infusion robot based on Internet of things

Country Status (1)

Country Link
CN (5) CN105856259B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109893706A (en) * 2019-04-15 2019-06-18 黄娉 A kind of medical robot that may span across step for assisted transfusion
CN113060696A (en) * 2021-03-18 2021-07-02 苏州市华创力自动化科技有限公司 Stability control method of rail type liquid conveying system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680774A (en) * 2016-12-13 2017-05-17 安徽乐年健康养老产业有限公司 Intelligent following and recording device
CN109350795A (en) * 2018-12-10 2019-02-19 山东科技大学 A kind of adaptively more bottles of intelligent infusion devices and its application method
BR112021017269A2 (en) 2019-03-15 2021-11-09 Ecolab Usa Inc System and method
BR112021026882A2 (en) 2019-07-03 2022-02-22 Ecolab Usa Inc Lighting matrix, and antimicrobial touchscreen display and lighting sets
US11985997B2 (en) 2019-11-26 2024-05-21 Ecolab Usa Inc. Automated sanitization of robotic food equipment using antimicrobial light
CN111658878A (en) * 2020-06-15 2020-09-15 宁波市成大机械研究所 Automatic following infusion support and side following method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816582A (en) * 2012-10-10 2014-05-28 葛锋 Integrated digital transfusion apparatus and transfusion monitoring and management method thereof
CN104133478A (en) * 2014-07-15 2014-11-05 大连大学 Mobile platform and mobile platform self-stabilizing method
CN204275152U (en) * 2014-11-24 2015-04-22 湖北楚天药业有限责任公司 Single use many bottle plug puncture units formula transfusion device
CN204582135U (en) * 2015-04-25 2015-08-26 李淑芬 A kind of Multi needle rapid fluid replacement device
CN205041882U (en) * 2015-09-28 2016-02-24 张建卿 Automatic trail infusion robot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523102A (en) * 2012-04-16 2015-08-13 チルドレンズ ナショナル メディカル センターChildren’S National Medical Center Dual-mode stereo imaging system for tracking and control in surgical and interventional procedures
CN203060439U (en) * 2013-02-18 2013-07-17 渤海大学 Continuous transfusion device
CN104889994A (en) * 2015-06-30 2015-09-09 广州绿松生物科技有限公司 Intelligent health service robot
CN205111858U (en) * 2015-10-13 2016-03-30 深圳市桑谷医疗机器人有限公司 Medicine extraction and injection manipulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816582A (en) * 2012-10-10 2014-05-28 葛锋 Integrated digital transfusion apparatus and transfusion monitoring and management method thereof
CN104133478A (en) * 2014-07-15 2014-11-05 大连大学 Mobile platform and mobile platform self-stabilizing method
CN204275152U (en) * 2014-11-24 2015-04-22 湖北楚天药业有限责任公司 Single use many bottle plug puncture units formula transfusion device
CN204582135U (en) * 2015-04-25 2015-08-26 李淑芬 A kind of Multi needle rapid fluid replacement device
CN205041882U (en) * 2015-09-28 2016-02-24 张建卿 Automatic trail infusion robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109893706A (en) * 2019-04-15 2019-06-18 黄娉 A kind of medical robot that may span across step for assisted transfusion
CN113060696A (en) * 2021-03-18 2021-07-02 苏州市华创力自动化科技有限公司 Stability control method of rail type liquid conveying system
CN113060696B (en) * 2021-03-18 2022-08-19 苏州市华创力自动化科技有限公司 Stability control method of rail type liquid conveying system

Also Published As

Publication number Publication date
CN105856259B (en) 2017-12-01
CN105856259A (en) 2016-08-17
CN106267440A (en) 2017-01-04
CN106310432A (en) 2017-01-11
CN106166314A (en) 2016-11-30

Similar Documents

Publication Publication Date Title
CN106310433A (en) Intelligent infusion robot system based on Internet of things
CN106310430A (en) Walking control method for intelligent infusion robot based on Internet of things
CN106075632A (en) Medicinal intelligent robot based on Internet of Things
CN106237427A (en) Medicinal intelligent robot ambulation control method based on Internet of Things
US9878093B2 (en) Miniature portable multifunctional infusion device
CN203196059U (en) Infusion set
CN109350794A (en) A kind of internal medicine Medical stand for transfusion
CN106075636A (en) Intelligent transfusion robot based on internet of things
CN104174111A (en) Negative pressure wound treatment device and control method thereof
CN105999462A (en) Medical intelligent robot based on Internet of Things
CN204766847U (en) Developments liquid medicine filter for pump
CN1600380B (en) Intermittent cupping device
CN213252012U (en) Infusion room is with flip-chip infusion support with remind function
CN104906659B (en) A kind of dynamic pump liquid medicine filter and its manufactured transfusion system
CN207306946U (en) Universality infusion controller
CN204840486U (en) Developments infusion system
CN109646759A (en) A kind of Portable transfusion apparatus
CN204106818U (en) Negative pressure wound therapy device
CN213284961U (en) Medical infusion bottle infusion monitoring device
CN204501897U (en) A kind of medicinal intelligent flask device
CN204766827U (en) Power device of infusion power pump
CN211724219U (en) Infusion support
CN106581810A (en) Multifunctional infusion support
CN110193115A (en) A kind of Portable transfusion apparatus
CN205268738U (en) Intelligent transfusion ware is used in nursing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170111

WD01 Invention patent application deemed withdrawn after publication