CN106309364B - 一种雷公藤红素纳米混悬剂及其制备方法 - Google Patents

一种雷公藤红素纳米混悬剂及其制备方法 Download PDF

Info

Publication number
CN106309364B
CN106309364B CN201610886793.0A CN201610886793A CN106309364B CN 106309364 B CN106309364 B CN 106309364B CN 201610886793 A CN201610886793 A CN 201610886793A CN 106309364 B CN106309364 B CN 106309364B
Authority
CN
China
Prior art keywords
stabilizer
suspension
tripterine nanometer
nanometer suspension
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610886793.0A
Other languages
English (en)
Other versions
CN106309364A (zh
Inventor
王向涛
张明珠
韩美华
郭一飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Medicinal Plant Development of CAMS and PUMC
Original Assignee
Institute of Medicinal Plant Development of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Medicinal Plant Development of CAMS and PUMC filed Critical Institute of Medicinal Plant Development of CAMS and PUMC
Priority to CN201610886793.0A priority Critical patent/CN106309364B/zh
Publication of CN106309364A publication Critical patent/CN106309364A/zh
Application granted granted Critical
Publication of CN106309364B publication Critical patent/CN106309364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于医药技术领域,具体涉及一种用mPEG‑PCL、mPEG‑DSPE、苄泽78、SPC、Tween80、BSA、TPGS等两亲性稳定剂制备的雷公藤红素纳米混悬剂制备方法及其应用。所述的雷公藤红素纳米混悬剂采用溶剂沉淀‑超声注入法制备,其处方组成:雷公藤红素与稳定剂的组合比例为1∶0.1~1(重量比);载药量最高达85%,粒径最小可达67.1nm,多分散性良好;在胃肠液中及血浆中均稳定,即可口服给药,也可以静脉注射;体外具有良好的缓释效果,无突释;该纳米混悬剂相比于原药溶液在体外对肿瘤细胞抑制率显著;体内药效实验同时表现出了卓越的抗肿瘤药效,具有广阔的应用开发前景。

Description

一种雷公藤红素纳米混悬剂及其制备方法
技术领域
本发明涉及药物制剂领域,具体涉及一种用mPEG-PCL、mPEG-DSPE、苄泽78、SPC、Tween80、BSA、TPGS等两亲性稳定剂制备的雷公藤红素纳米混悬剂,及其制备方法及应用。
背景技术
雷公藤红素(Celastrol简称CSL)来源于卫矛科植物雷公藤的根、叶和花,为雷公藤的三萜单体成分,研究发现CSL对多种免疫***疾病有显著疗效,近几年研究发现其抗肿瘤作用也较为显著,研究发现其对大鼠肾上腺髓质嗜铬瘤分化细胞株PC12、细胞大鼠神经胶质瘤C6细胞株、鼻咽癌细胞株CNE-1、SHG-44胶质瘤细胞株、***HeLa细胞、人***癌细胞PC-3、白血病细胞U937、人肺癌细胞(H727、H1299、A549)、人乳腺癌细胞株MCF-7等具有显著疗效。
CSL难溶于水,导致体内研究中的给药方式受到极大限制。已有的体内研究多采用悬浮灌胃,或者腹腔给药,但均由于生物利用度较低导致难以最大程度的发挥疗效。并且CSL的毒副作用较大,对生殖、内分泌和消化***有一定毒性。
药物通过不同的方法制备而成的纳米大小的颗粒就是纳米粒,其中包括胶束、纳米晶、聚合物纳米粒、纳米混悬剂等。将难溶性药物制备成为纳米粒已成为解决难溶性药物的给药问题的主要方法之一。同时,药物多包封在纳米粒内部,进入体内之后有溶出的过程,可以达到缓慢释放的效果,从而在一定程度上改善药物的不稳定性,延缓代谢。当纳米粒的粒径较小时(如300nm以内),还会由于EPR(enhanced permeation and retention)效应对肿瘤细胞产生归巢效应,达到被动靶向肿瘤的效果。因此,难溶性药物,尤其是抗肿瘤药物的临床应用可以通过纳米给药***来解决。
纳米混悬剂是纳米给药***的重要分支,运用合适的制备方法,将两亲性的稳定剂与药物直接制备成纳米大小的微粒,是纳米粒的一种。与使用了大量辅料的其他纳米给药***相比,纳米混悬剂具有较多优点:(1)理论上,纳米混悬剂是近乎纯药物,具有最大限度的载药量,特别适合大剂量难溶性药物的口服和注射给药;(2)适用范围广,无论是难溶于水的药物,还是水、油都难溶的药物,都可利用一定的方法制得相应的纳米混悬剂,且可通过相应技术实现工业化大生产。纳米混悬剂处方组成简单、工艺简单、制备快速,干燥后所得粉末作为中间体进一步制备成口服、注射、外用等不同的剂型,方便携带,提高病人顺应性。
发明内容
本发明的目的之一在于提供一种制备方法简便、载药量高、稳定性高,能实现雷公藤红素的体内外缓释、增强抗癌疗效的纳米混悬剂。
一种雷公藤红素纳米混悬剂,由雷公藤红素和稳定剂组成,药物与稳定剂的质量比为1∶0.1~1。
一种雷公藤红素纳米混悬剂,选用的稳定剂为mPEG-PCL、mPEG-DSPE、苄泽78、SPC、Tween80、BSA、TPGS等两亲性稳定剂中的一种或多种联合运用。
本发明目的之二在于提供一种雷公藤红素纳米混悬剂的制备方法,本发明采用的是溶剂沉淀-超声或搅拌注入的方法制备纳米混悬剂,技术方案如下:
(1)雷公藤红素和稳定剂溶于能与水混溶的有机溶剂中;
(2)超声或搅拌条件下将含有药物和稳定剂的有机溶剂注入到水中;
(3)减压旋转蒸发或透析法除去有机溶剂;
上述制备方法,其特征在于:步骤(1)所述的稳定剂为mPEG-PCL、mPEG-DSPE、苄泽78、SPC、Tween80、BSA、TPGS等两亲性稳定剂。其中mPEG-PCL、mPEG-DSPE、中PEG嵌段的分子量的范围为500-5000,优选分子量500-2000。mPEG-PCL中PCL嵌段的分子量范围为500-5000,优选分子量500-2000。
上述制备方法,其特征在于步骤(1)所述的有机溶剂选自DMSO、DMF、甲醇、乙醇、乙腈、异丙醇、PEG400中的一种或两种或多种的混合体系,只要混合体系能和水混溶同时能很好的溶解药物和辅料即可。药物在有机溶剂中的浓度为2mg/ml~40mg/ml(w/v),稳定剂的浓度为5mg/ml~30mg/ml(w/v);步骤(2)中有机溶剂与水相的体积比为1∶10~100(v/v)。步骤(2)中的超声条件为250HZ,超声温度为12℃-60℃,超声时间为1-30min。步骤(2)中的搅拌的条件为100~1000rpm,搅拌温度为12℃-60℃,搅拌时间1~60min。
步骤(3)还可以通过冷冻干燥进一步固化,所用冻干保护剂可以是泊洛沙姆、BSA、HP-β-CD、甘露醇、乳糖中的一种或两种及两种以上的组合,优选BSA为冻干保护剂;冻干保护剂的用量为0.1%-20%(g/100mL),优选的冻干保护剂用量为0.5-5%(g/100mL)。
本发明的目的之三在于提供一种雷公藤红素纳米混悬剂在制备注射剂中的应用,所述的注射剂包括注射液和无菌粉针。水相分散介质可用高浓度的氯化钠或葡萄糖水溶液调成0.9%氯化钠或者5%葡萄糖生理等渗体系,适应静脉给药应用。本发明的雷公藤红素纳米粒冻干粉可加入适量的无菌药用0.9%氯化钠或者5%葡萄糖水溶液稀释,重建成供静脉给药用的均匀分散体系,适合运输处藏。
本发明的纳米混悬剂的优点在于:(1)处方简单,最少可以只含有药物和稳定剂;(2)载药量可高达85%,同时平均粒径可小于100nm,具有非常高的药物传输效率,同时易实现对肿瘤的被动靶向;(3)体外释放没有突释,缓慢释放72h以上;(4)在人工胃肠液和血浆中稳定,既可以口服给药,也可以静脉注射;(5)载药量可根据需要再很宽的范围内(10-85%)调整,在低载药量时纳米混悬剂以胶束的形式存在。
本发明的雷公藤红素纳米混悬剂经体外细胞毒实验表明,表现出较雷公藤红素溶液(5%吐温80的生理盐水)有更高的肿瘤细胞抑制率。
本发明的雷公藤红素纳米混悬剂经荷瘤小鼠药效实验证明,其特征在于给药后,体重均呈上升趋势,说明药物对小鼠没有明显的毒副作用。
本发明的纳米混悬剂工艺简单,辅料经济安全易得,有广阔的产业化前景。
附图说明
图1为实施例1中CSL纳米混悬剂的平均粒径分布图
图2为实施例1中透射电镜照片
图3为实施例1中CSL纳米混悬剂在人工胃肠液、血浆中的稳定性考察(n=3)
图4为实施例1中CSL纳米混悬剂在0.5%吐温的PBS中的体外释放曲线(n=3)
图5为实施例1中CSL纳米混悬剂对C6细胞毒考察(n=6)
图6为实施例1中CSL纳米混悬剂对HepG 2细胞毒考察(n=6)
图7为实施例1中H22荷瘤小鼠体重随时间变化曲线(n=10)
图8为实施例1中H22荷瘤小鼠肿瘤体积随时间变化曲线(n=10)
具体实施方式
下面将描述本发明的几个实施例,但本发明的内容完全不局限于此。
实施例1
将5mg雷公藤红素(CSL)、5mgPEG2000-PCL2000共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为67.1nm(图1),多分散性指数(PDI)为0.232,电位值-10.4mV。
实施例2
将5mg雷公藤红素(CSL)、5mgPEG2000-PCL1140共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为74.2nm,多分散性指数(PDI)为0.201,电位值-12.6mV。
实施例3
将5mg雷公藤红素(CSL)、5mgPEG5000-PCL2000共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为76.4nm,多分散性指数(PDI)为0.192,电位值-13.8mV。
实施例4
将5mg雷公藤红素(CSL)、5mgSPC共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为175.7nm,多分散性指数(PDI)为0.118,电位值-22.1mV。
实施例5
将5mg雷公藤红素(CSL)、5mgTPGs共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为107.4nm,多分散性指数(PDI)为0.143,电位值-22.3mV。
实施例6
将5mg雷公藤红素(CSL)、5mg mPEG2000-DSPE共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为130.3nm,多分散性指数(PDI)为0.176,电位值-30.8mV。
实施例7
将5mg雷公藤红素(CSL)、5mg苄泽78共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为113.4nm,多分散性指数(PDI)为0.153,电位值-20.6mV。
实施例8
将5mg雷公藤红素(CSL)、5mg吐温80共同溶解于0.2mL甲醇中,室温条件下250HZ超声缓慢滴注于5mL去离子水中,继续超声3min,旋转蒸发除去甲醇,即得CSL纳米混悬剂。平均粒径为144.1nm,多分散性指数(PDI)为0.193,电位值-18.7mV。
实施例9
制备6mg/mL浓度的实例1中CSL混悬剂,吸取6μL滴到300目的铜网上,空气中自然晾干,后用0.1%醋酸铀染色10min,透射电镜下观察粒子的形态(图2)。
实施例10
实例1中CSL纳米混悬剂在0.9%NaCl、5%Glu、PBS中的稳定性考察
配置1.8%NaCl、10%Glu的溶液,随后将此溶液和PBS分别与实例一中的CSL纳米混悬剂(1mg/mL)1∶1等体积混合,37℃孵育并在特定的时间点测其粒径的变化。
结果:CSL纳米混悬剂在0.9%NaCl、5%Glu、PBS基本稳定,孵育24h之内未发现明显沉淀或粒径增大的现象(下表所示)。
实施例11
CSL纳米混悬剂在人工胃肠液、血浆中的稳定性考察
人工胃液的配置:取浓度为1mol/L的稀盐酸16.4mL,加800mL蒸馏水,10g胃蛋白酶,混匀,加水稀释至1000mL。
人工肠液的配置:6.8g磷酸二氢钾,加水500mL,用0.1mol/L氢氧化钠调pH6.8,另取胰蛋白酶10g,加水溶解,两液混合后加水稀释至1000mL。
取0.5mL过膜后的配置好的人工胃肠液和大鼠血浆,与实例1中的CSL纳米混悬剂混合后(4∶1,v/v),37℃孵育,并在特定时间点测其粒径的变化。
结果:在人工胃肠液中,CSL纳米混悬剂在12h之内粒径变化几乎不大,在血浆中24h之内并未发现沉淀(图3),说明CSL纳米混悬剂在人工胃肠液中基本稳定,能够口服给药,在血浆中也较为稳定。
实施例12
CSL纳米混悬剂的溶血考察
小鼠摘眼球取血后,于5000rpm离心5min,弃上清。随后用0.9%的NaCl吹打洗涤几遍,直至上清无明显红色。随后血细胞用0.9%NaCl的溶液稀释至红细胞含量为4%(v/v)。取此悬浮液0.5mL与0.5mL的不同浓度的已调等渗的纳米混悬剂混合,37℃孵育4h后,5000rpm离心5min,取上清于酶标仪在540nm处测吸光值。同时将4%的红细胞悬浮液与0.9%的NaCl混合作为阴性对照,4%的红细胞悬浮液与去离子水混合作为阳性对照。
溶血率(%)=(OD样品-A阴性对照)/(A阳性对照-A阴性对照)×100
结果:CSL纳米混悬剂的溶血率很低(如下表),体内静脉给药时所需的浓度完全不溶血,满足静脉注射的条件。
实施例13
CSL纳米混悬剂的体外释放实验
方案:取制备好的实例1中的CSL纳米混悬剂4mL(1mg/mL,平行三份),于截留分子量在8000-14000的透析袋(MWCO=20000,Spectra/Por,USA)中,分别置于50ml含0.5%吐温80的PBS中,37℃下100rpm搅拌,定时吸取1ml释放液,同时加入等体积的新鲜释放介质,取出的释放外液13000rpm离心20分钟后,HPLC测定CSL的含量,计算累积释放率。
结果:CSL纳米混悬剂能够缓慢释放(图4),整个过程无明显突释。
实施例14
CSL纳米混悬剂对C6、HepG 2的体外细胞毒考察
方案:用含10%胎牛血清的1640培养液将C6、HepG 2细胞配成单细胞悬液,以每孔1.0×104个细胞左右接种到96孔板。5%CO2、37℃细胞培养24h后,吸去培养液,用不含胎牛血清的培养基稀释CSL纳米混悬剂至不同浓度梯度,加入150uL继续培养(同时以不含胎牛血清的培养基作为空白对照),每个浓度6个复孔。孵育24h后,吸去样品溶液,每孔加MTT溶液(5mg·mL-1,PBS配制)20μL;继续孵育4h后,终止孵育,吸去孔内液体,每孔加200μL DMSO,振荡20min,使蓝紫色结晶物充分溶解。选择570nm波长,在酶联免疫荧光仪检测OD值。
细胞抑制率(%)=(空白对照组OD-实验组OD)/空白对照组OD×100%。
结果:结果显示,和雷公藤红素DMSO溶液相比,纳米混悬剂对C6、HepG 2均具有更强的抑制作用(图6、图7)。孵育24h后,CSL溶液和纳米混悬剂的IC50值如下表(n=6,mean±SD,**p<0.01vs.CSL solution):
实施例15
CSL纳米混悬剂在H22荷瘤小鼠的抗肿瘤药效研究
给药方案:将筛选出来的荷瘤小鼠随机分为3组,每组10只,除正常饮食外,尾静脉注射CSL纳米混悬剂4mg/kg、CSL溶液(5%吐温80的生理盐水),生理盐水为阴性对照组。隔天给药,共给药5次。
考察指标:隔天给药时用电子秤称量小鼠体重;用游标卡尺测量肿瘤体积。实验结束后,脱颈椎处死小鼠,完整剥离腋下肿瘤组织称重,计算抑瘤率。
抑瘤率(%)=(1一治疗组平均瘤重/生理盐水组平均瘤重)×100%。
结果:CSL纳米混悬剂给药组、CSL溶液,生理盐水组的体重均产生了上升的趋势(图7),瘤体积变化也呈一定的上升趋势(图8),说明雷公藤红素纳米混悬剂以及CSL溶液在给药剂量下没有明显的毒副作用。但CSL纳米混悬剂静脉注射时表现出卓越的抗肿瘤治疗,4mg/kg尾静脉给药的肿瘤抑制率达到70.36%,说明4mg/kg的给药剂量是接受的,CSL纳米混悬剂及CSL溶液对H22荷瘤小鼠的抑瘤率如下表(n=10,mean±SD):
Notes:##p<0.01vs Negative control,and&p<0.05vs CSL nanosuspension4mg/kg.

Claims (8)

1.一种雷公藤红素纳米混悬剂,其特征在于:所述的纳米混悬剂由雷公藤红素单体和稳定剂组成,药物与稳定剂的质量比为1∶0.1~1;所述稳定剂选自mPEG-PCL、mPEG2000-DSPE、苄泽78、SPC、Tween80、TPGS两亲性稳定剂,其中mPEG-PCL中PEG嵌段的分子量范围为500-5000,PCL嵌段的分子量为500-5000。
2.根据权利要求1所述的雷公藤红素纳米混悬剂,其特征在于:所述mPEG-PCL中PEG嵌段的分子量的范围为500-2000,PCL嵌段的分子量为500-2000。
3.如权利要求1或2所述的雷公藤红素纳米混悬剂,其特征在于载药量最高达85%,粒径10-1000nm。
4.如权利要求1或2所述的雷公藤红素纳米混悬剂,其特征在于:平均粒径在40-150nm。
5.根据权利要求1所述的雷公藤红素纳米混悬剂的制备方法,其特征在于:采用搅拌注入、超声注入法,包括以下步骤:
(1)雷公藤红素药物和稳定剂溶于能与水混溶的有机溶剂中;
(2)超声或搅拌条件下将含有药物和稳定剂的有机溶剂注入到水中;
(3)减压旋转蒸发或透析法除去有机溶剂;通过冷冻干燥进一步固化,所用冻干保护剂为泊洛沙姆、BSA、HP-β-CD中的一种或两种以上的组合;冻干保护剂的用量为0.1%-20%;
步骤(1)和步骤(2)所述的有机溶剂选自DMSO、DMF、甲醇、乙醇、乙腈、异丙醇、PEG400中的一种或多种的混合体系;药物在有机溶剂中的浓度为2mg/ml~40mg/ml,稳定剂的浓度为5mg/ml~30mg/ml;步骤(2)中有机溶剂与水相的体积比为1∶10~100;步骤(2)中的超声条件为250HZ,超声温度为12℃-60℃,超声时间为1-30min;步骤(2)中的搅拌条件为100~1000rpm,搅拌温度为12℃-60℃,搅拌时间1~60min。
6.根据权利要求5所述的雷公藤红素纳米混悬剂的制备方法,其特征在于:步骤(3)中的冻干保护剂为BSA,冻干保护剂的用量为0.5-5%。
7.根据权利要求1所述的雷公藤红素纳米混悬剂,用于制备注射剂,所述的注射剂选自注射液和无菌粉针;水相分散介质为用高浓度的氯化钠或葡萄糖水溶液调成0.9%氯化钠或者5%葡萄糖生理等渗体系,适应静脉给药应用;雷公藤红素纳米粒冻干粉加入适量的无菌药用0.9%氯化钠或者5%葡萄糖水溶液稀释,重建成供静脉给药用的均匀分散体系,适合运输储藏。
8.如权利要求1所述的雷公藤红素纳米混悬剂在制备***药物中的应用。
CN201610886793.0A 2016-10-12 2016-10-12 一种雷公藤红素纳米混悬剂及其制备方法 Active CN106309364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610886793.0A CN106309364B (zh) 2016-10-12 2016-10-12 一种雷公藤红素纳米混悬剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610886793.0A CN106309364B (zh) 2016-10-12 2016-10-12 一种雷公藤红素纳米混悬剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106309364A CN106309364A (zh) 2017-01-11
CN106309364B true CN106309364B (zh) 2019-09-24

Family

ID=57821056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610886793.0A Active CN106309364B (zh) 2016-10-12 2016-10-12 一种雷公藤红素纳米混悬剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106309364B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108159001B (zh) * 2018-01-29 2019-08-09 安徽工业大学 一种超临界压缩流体沉淀法制备雷公藤红素纳米颗粒的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944109A (zh) * 2016-05-03 2016-09-21 四川大学 一种肾小球靶向的蛋白纳米颗粒药物组合物及其用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944109A (zh) * 2016-05-03 2016-09-21 四川大学 一种肾小球靶向的蛋白纳米颗粒药物组合物及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model;Zhanrong Li, et al;《International Journal of Nanomedicine》;20120508(第07期);2389–2398 *
Zhanrong Li, et al.Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model.《International Journal of Nanomedicine》.2012,(第07期), *

Also Published As

Publication number Publication date
CN106309364A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Hatami et al. Gambogic acid: a shining natural compound to nanomedicine for cancer therapeutics
Liu et al. Targeted cancer therapy with novel high drug-loading nanocrystals
Yen et al. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities
Butt et al. In Vitro Characterization of Pluronic F127 and d‐α‐Tocopheryl Polyethylene Glycol 1000 Succinate Mixed Micelles as Nanocarriers for Targeted Anticancer‐Drug Delivery
Zhou et al. Folate-chitosan-gemcitabine core-shell nanoparticles targeted to pancreatic cancer
KR101180558B1 (ko) 암의 진단과 치료를 동시에 수행하는 항암제
Qu et al. Self-assembled micelles based on N-octyl-N’-phthalyl-O-phosphoryl chitosan derivative as an effective oral carrier of paclitaxel
CN106083769A (zh) 一种还原响应的紫杉醇前药及制备纳米胶束载体方法
CN106420604B (zh) 一种番荔素类药物的纳米混悬剂及其制备方法
Tang et al. Therapeutic effect of sorafenib-loaded TPGS-b-PCL nanoparticles on liver cancer
Bhujbal et al. Metformin-loaded hyaluronic acid nanostructure for oral delivery
Dadras et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system
Xu et al. Application of traditional Chinese medicine preparation in targeting drug delivery system
Zheng et al. Application of luteolin nanomicelles anti-glioma effect with improvement in vitro and in vivo
Jangid et al. Improving anticancer activity of chrysin using tumor microenvironment pH-responsive and self-assembled nanoparticles
Ma et al. Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers
Wang et al. Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles
Liang et al. A NAG-guided nano-delivery system for redox-and pH-triggered intracellularly sequential drug release in cancer cells
Yuan et al. Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles
Yu et al. GSH-responsive curcumin/doxorubicin encapsulated Bactrian camel serum albumin nanocomposites with synergistic effect against lung cancer cells
Barani et al. Preparation, characterization, cytotoxicity and pharmacokinetics of niosomes containing gemcitabine: In vitro, in vivo, and simulation studies
CN106309364B (zh) 一种雷公藤红素纳米混悬剂及其制备方法
Yuan et al. Paclitaxel‐Loaded β‐Cyclodextrin‐Modified Poly (Acrylic Acid) Nanoparticles through Multivalent Inclusion for Anticancer Therapy
Lu et al. Ginsenoside Rb1 stabilized and paclitaxel/protopanaxadiol co-loaded nanoparticles for synergistic treatment of breast tumor
Jia et al. Preparation, physicochemical characterization and cytotoxicity in vitro of gemcitabine-loaded PEG-PDLLA nanovesicles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant