CN106291119B - 一种电导率测量方法、电路及电导率测量仪 - Google Patents

一种电导率测量方法、电路及电导率测量仪 Download PDF

Info

Publication number
CN106291119B
CN106291119B CN201610583932.2A CN201610583932A CN106291119B CN 106291119 B CN106291119 B CN 106291119B CN 201610583932 A CN201610583932 A CN 201610583932A CN 106291119 B CN106291119 B CN 106291119B
Authority
CN
China
Prior art keywords
unit
resistance
output end
input terminal
feet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610583932.2A
Other languages
English (en)
Other versions
CN106291119A (zh
Inventor
刘光举
谭跃林
黄�俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Green Grace Green Technology Co Ltd
Original Assignee
Shenzhen Green Grace Green Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Green Grace Green Technology Co Ltd filed Critical Shenzhen Green Grace Green Technology Co Ltd
Priority to CN201610583932.2A priority Critical patent/CN106291119B/zh
Publication of CN106291119A publication Critical patent/CN106291119A/zh
Application granted granted Critical
Publication of CN106291119B publication Critical patent/CN106291119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/22Measuring resistance of fluids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明适用于溶液测量领域,提供了一种电导率测量方法,该方法包括:生成交流方波信号;放大交流方波信号;将放大后的方波信号通过导线连接电极的一端,在电解质溶液里产生一个交变电场;通过电极的另一端检测电解质溶液在交变电场中产生于电导率仪电极两端的微弱的交流电流信号;将微弱的交流电流信号转变成交流电压信号;进行整流、滤波以得到稳定的直流电压信号;将直流电压信号转换为对应的电导率显示。本发明对检测到的信号进行判断,从而控制继电器切换输入方波信号的频率、振幅及检测量程,达到对仪器的软件成本、硬件成本的控制,延长电极使用寿命。

Description

一种电导率测量方法、电路及电导率测量仪
技术领域
本发明属于溶液测量领域,尤其涉及一种电导率测量方法、电路及电导率测量仪。
背景技术
电导率是一个衡量水溶液导电能力的电学物理量,是电阻率的倒数,一般用希腊字母κ表示(或者γ),κ=1/ρ。一般意义上,电导率的测量温度是标准温度(25℃)。在液体中,水的电导率是衡量水质的一个重要指标。电导率的测量在日常生产和生活中有着比较广泛的应用,如测量饮用水的电导率用来检测水中所含电解质的浓度,用来测量沿海地下水的电导率来查看其地下水收海水的入侵程度,还可以用测量电导率的方式来辨别地沟油等。
近年来,随着微电子工业清洗处理,饮用纯净水、药用蒸馏水、生物制品用水、动力锅炉及大型发电机组冷却用水需求量的急剧增加,越来越多的产品、技术开始对介质的导电性能、成份要求给出准确的分析和评价,而且在实时性、准确度等方面提出了更高的要求。
目前国内多数电导率仪用的二电极法来检测,然而,用二电极法来检测电导率,不能自动切换方波信号频率及方波信号振幅,并且长时间输出激励信号,影响电极工作寿命。
发明内容
本发明实施例的目的在于提供一种电导率测量方法,旨在解决现有用二电极法来检测电导率,无法自动切换方波信号频率及方波信号振幅,并且长时间输出激励信号,影响电极工作寿命的问题。
本发明实施例是这样实现的,一种电导率测量方法,所述方法包括下述步骤:
生成交流方波信号;
放大所述交流方波信号,以提高带载能力;
将放大后的方波信号通过导线连接电极的一端,在电解质溶液里产生一个交变电场;
通过电极的另一端检测电解质溶液在交变电场中产生于电极两端的微弱的交流电流信号;
将微弱的交流电流信号转变成交流电压信号;
对所述交流电压信号进行整流、滤波,得到稳定的直流电压信号;
将所述直流电压信号转换为对应的电导率显示。
本发明的另一目的是提供一种电导率测量电路,所述电路包括:
激励产生单元,用于生成交流方波信号作为激励;
放大单元,用于放大所述交流方波信号,所述放大单元的输入端与所述激励产生单元的激励输出端连接;
缓冲单元,用于提高带载能力,所述缓冲单元的输入端与所述放大单元的输出端连接,所述缓冲单元的输出端通过导线连接电极的一端,在电解质溶液里产生一个交变电场;
I/V转换单元,用于通过电极的另一端检测电解质溶液在交变电场中产生于电极两端的交流电流信号,并将微弱的交流电流信号转变成交流电压信号,所述I/V转换单元的输入端通过导线与电极的另一端连接;
整流滤波单元,用于对所述交流电压信号进行整流、滤波,生成稳定的直流电压信号,所述整流滤波单元的输入端与所述I/V转换单元的输出端连接;
电导率转换单元,用于将所述直流电压信号转换为对应的电导率,所述电导率转换单元的输入端与所述整流滤波单元的输出端连接;
显示单元,用于显示电导率,所述显示单元的输入端与所述电导率转换单元的输出端连接。
本发明的另一目的是提供一种采用上述电导率测量电路的电导率测量仪。
本发明实施例通过PLC对检测到的信号进行判断,从而控制继电器切换输入方波信号的频率、振幅及检测量程,达到对仪器的软件成本、硬件成本的控制,得到的数据无论是线性度还是精度,或者是在自动切换及不切换的情况下,都达到了工业级别的要求,并且延长了电极使用寿命。
附图说明
图1为现有的未自动切换量程的散点图;
图2为经本发明实施例自动切换量程后的散点图;
图3为本发明实施例提供的电导率测量方法的流程结构图;
图4为本发明实施例提供的电导率测量电路的结构图;
图5为本发明实施例提供的电导率测量电路的示例电路结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例通过PLC对检测到的信号进行判断,从而控制继电器切换输入方波信号的频率、振幅及检测量程,达到对仪器的软件成本、硬件成本的控制,延长了电极使用寿命。
图3示出了本发明实施例提供的电导率测量方法的流程结构,为了便于说明,仅示出了与本发明相关的部分。
作为本发明一实施例,该方法包括下述步骤:
在步骤S101中,生成交流方波信号;
在本发明实施例中,该交流方波信号作为激励通过PLC(Programmable LogicController,可编程逻辑控制器)产生,其占空比为50%,频率为800Hz—4000Hz。
在步骤S102中,放大交流方波信号,以提高带载能力;
在步骤S103中,将放大后的方波信号通过导线连接电极的一端,在电解质溶液里产生一个交变电场;
在步骤S104中,通过电极的另一端检测电解质溶液在交变电场中产生于电导率仪电极两端的微弱的交流电流信号;
在步骤S105中,通过I/V转换电路,将微弱的交流电流信号转变成交流电压信号;
在步骤S106中,通过整流电路、滤波电路进行整流、滤波,得到稳定的直流电压信号;
在步骤S107中,将直流电压信号转换为对应的电导率显示。
作为本发明一实施例,在步骤S105之后还可以包括:
步骤S108,将直流电压信号通过PLC进行比对判断,若超出仪器量程,则自动选择更高的量程。
在未自动切换量程时数据如下,其散点图参见图1:
在经过本发明实施例自动切换量程时的数据如下,其散点图参见图2:
本发明实施例通过PLC对检测到的信号进行判断,从而控制继电器切换输入方波信号的频率、振幅及检测量程,达到对仪器的软件成本、硬件成本的控制,得到的数据无论是线性度还是精度,或者是在自动切换及不切换的情况下,都达到了工业级别的要求,并且延长了电极使用寿命。
图4示出了本发明实施例提供的电导率测量电路的结构,为了便于说明,仅示出了与本发明相关的部分。
作为本发明一实施例,该电导率测量电路包括:
激励产生单元11,用于生成交流方波信号作为激励;
放大单元12,用于放大交流方波信号,放大单元12的输入端与激励产生单元11的激励输出端连接;
缓冲单元13,用于提高带载能力,缓冲单元13的输入端与放大单元12的输出端连接,缓冲单元13的输出端通过导线连接电极的一端T101A-IN,在电解质溶液里产生一个交变电场;
I/V(电流/电压)转换单元14,用于通过电极的另一端T102A+IN检测电解质溶液在交变电场中产生于电极两端的交流电流信号,并将微弱的交流电流信号转变成交流电压信号,I/V转换单元14的输入端通过导线与电极的另一端T102A+IN连接;
整流滤波单元15,用于通过整流电路、滤波电路,将交流电压信号转换为稳定的直流电压信号,整流滤波单元15的输入端与I/V转换单元14的输出端连接;
电导率转换单元16,用于将直流电压信号转换为对应的电导率,电导率转换单元16的输入端与整流滤波单元15的输出端连接;
显示单元17,用于显示电导率,显示单元17的输入端与电导率转换单元16的输出端连接。
作为本发明一实施例,可以采用可编程逻辑控制器(PLC)作为激励产生单元和电导率转换单元,参见图5,此时,PLC的激励输出端为激励产生单元11的激励输出端与放大单元12的输入端连接,PLC的输入端为电导率转换单元16的输入端与整流滤波单元15的输出端连接,PLC的显示输出端为电导率转换单元16的输出端与显示单元17连接。
本发明实施例通过PLC对检测到的信号进行判断,从而控制继电器切换输入方波信号的频率、振幅及检测量程,达到对仪器的软件成本、硬件成本的控制,得到的数据无论是线性度还是精度,或者是在自动切换及不切换的情况下,都达到了工业级别的要求,并且延长了电极使用寿命。
图5示出了本发明实施例提供的电导率测量电路的示例电路结构,为了便于说明,仅示出了与本发明相关的部分。
作为本发明一实施例,放大单元12包括:
电阻R109、电阻R110、电阻R111和第一运算放大器U103-B;
电阻R111的一端为放大单元12的输入端,电阻R111的另一端与第一运算放大器U103-B的反向输入端连接,第一运算放大器U103-B的反向输入端还同时与电阻R109和电阻R110的一端连接,电阻R109和电阻R110的另一端分别为放大单元12的第一、第二反馈端,第一运算放大器U103-B的正向输入端接地,第一运算放大器U103-B的输出端为放大单元12的输出端。
缓冲单元13可以采用第二运算放大器U103-A实现,其中第二运算放大器U103-A的正向输入端为缓冲单元13的输入端,第二运算放大器U103-A的反向输入端与第二运算放大器U103-A的输出端连接,第二运算放大器U103-A的输出端为缓冲单元13的输出端。
I/V转换单元14包括:
电阻R101、电阻R102、电阻R104和第三运算放大器U101;
第三运算放大器U101的反向输入端为I/V转换单元14的输入端同时与电阻R101和电阻R102的一端连接,电阻R101和电阻R102的另一端分别为I/V转换单元14的第一、第二反馈端,第三运算放大器U101的正向输入端通过电阻R104接地,第三运算放大器U101的输出端为I/V转换单元14的输出端。
作为本发明一优选实施例,该电导率测量电路还可以包括:
量程切换单元18,用于对直流电压信号进行比对判断,若超出仪器量程,则自动选择更高的量程,量程切换单元18的输入端与整流滤波单元15的输出端连接,量程切换单元18的第一组切换端与放大单元12的输出端和反馈端连接,量程切换单元18的第二组切换端与I/V转换单元14的输出端和反馈端连接。
优选地,量程切换单元18可以进一步包括:
切换控制模块181和PLC;
值得说明的是,此处的PLC可以复用上述实施例中的PLC;
PLC的输入端为量程切换单元的输入端,PLC的切换输出端与切换控制模块181的输入端连接,切换控制模块181的多个输出端分别为量程切换单元的两组切换端。
优选地,切换控制模块181包括:
电阻R126、电阻R127、二极管D106、开关管Q101、继电器K101和单片机U1;
单片机U1的输入端为切换控制模块181的输入端与PLC的切换输出端连接,单片机U1的输出端与电阻R126的一端连接,电阻R126的另一端与开关管Q101的控制端连接,开关管Q101的控制端还通过电阻R127接地,开关管Q101的输出端接地,开关管Q101的输入端与二极管D106的阳极连接,二极管D106的阴极连接+5V电源电压,继电器K101的1脚和8脚分别连接二极管D106的阴极和阳极,继电器K101的2脚、3脚、4脚为量程切换单元18的第一组切换端,继电器K101的5脚、6脚、7脚为量程切换单元18的第二组切换端,且(继电器K101的2-7脚)均为切换控制模块181的多个输出端,其中,继电器K101的2脚和4脚分别与放大单元12的第一反馈端和第二反馈端连接,继电器K101的3脚与放大单元12的输出端连接,继电器K101的5脚和7脚分别与I/V转换单元14的第一反馈端和第二反馈端连接,继电器K101的6脚与I/V转换单元14的输出端连接。
在本发明实施例中,继电器K101的1脚和8脚为控制端,控制端为低电平时2脚与3脚闭合、7脚与6脚闭合,控制端为高电平时4脚与3脚闭合、5脚与6脚闭合。
在本发明实施例中,PLC产生的交流方波信号(其占空比为50%,频率为800Hz—4000Hz)经电阻R111、第一运算放大器U103-B,以及反馈电阻R110或者R109组成的放大电路,放大方波信号,再经过第二运算放大器U103-A以提高带载能力,此时,方波信号通过导线连接电极的一端,在电解质溶液里产生一个交变电场,电极的另一端检测电解质溶液在交变电场中产生于电导率仪电极两端的微弱的交流电流信号,通过由第三运算放大器U101、电阻R104以及反馈电阻R101或者R102组成的I/V转换电路,将微弱的交流电流信号转变成电压信号经过滤波整流后输入到PLC,PLC将直流电压信号转换为对应的电导率后输出给显示单元显示。
值得一提的是,PLC还可以对滤波整流单元输出的直流电压信号进行判断,在直流电压信号大于阈值时通过单片机U1控制开关管Q101导通,进而控制继电器K101导通吸合,改变放大单元12和I/V转换单元14中反馈电阻的选取,从而实现检测量程的切换。
这里电阻R109的阻值可以设置为电阻R110的10倍,电阻R101的阻值可以设置为电阻R1102的10倍,从而实现量程的调节、切换,当然,反馈电阻的阻值比例并不限定为10倍,可以根据实际应用设置。
本发明实施例通过PLC对检测到的信号进行判断,从而控制继电器切换输入方波信号的频率、振幅及检测量程,达到对仪器的软件成本、硬件成本的控制,得到的数据无论是线性度还是精度,或者是在自动切换及不切换的情况下,都达到了工业级别的要求,并且延长了电极使用寿命。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种电导率测量电路,其特征在于,所述电路包括:
激励产生单元,用于生成交流方波信号作为激励;
放大单元,用于放大所述交流方波信号,所述放大单元的输入端与所述激励产生单元的激励输出端连接;
缓冲单元,用于提高带载能力,所述缓冲单元的输入端与所述放大单元的输出端连接,所述缓冲单元的输出端通过导线连接电极的一端,在电解质溶液里产生一个交变电场;
I/V转换单元,用于通过电极的另一端检测电解质溶液在交变电场中产生于电极两端的交流电流信号,并将微弱的交流电流信号转变成交流电压信号,所述I/V转换单元的输入端通过导线与电极的另一端连接;
整流滤波单元,用于通过整流电路、滤波电路对所述交流电压信号进行整流、滤波,生成稳定的直流电压信号,所述整流滤波单元的输入端与所述I/V转换单元的输出端连接;
电导率转换单元,用于将所述直流电压信号转换为对应的电导率,所述电导率转换单元的输入端与所述整流滤波单元的输出端连接;
显示单元,用于显示电导率,所述显示单元的输入端与所述电导率转换单元的输出端连接;
量程切换单元,用于对直流电压信号进行比对判断,若超出仪器量程,则自动选择更高的量程,所述量程切换单元的输入端与所述整流滤波单元的输出端连接,所述量程切换单元的第一组切换端与所述放大单元的输出端和反馈端连接,所述量程切换单元的第二组切换端与所述I/V转换单元的输出端和反馈端连接;
所述量程切换单元包括切换控制模块和PLC;
所述PLC的输入端为所述量程切换单元的输入端,所述PLC的切换输出端与所述切换控制模块的输入端连接,所述切换控制模块的多个输出端分别为所述量程切换单元的两组切换端;
所述切换控制模块包括:
电阻R126、电阻R127、二极管D106、开关管Q101、继电器K101和单片机U1;
所述单片机U1的输入端为所述切换控制模块的输入端与所述PLC的切换输出端连接,所述单片机U1的输出端与所述电阻R126的一端连接,所述电阻R126的另一端与所述开关管Q101的控制端连接,所述开关管Q101的控制端还通过所述电阻R127接地,所述开关管Q101的输出端接地,所述开关管Q101的输入端与所述二极管D106的阳极连接,所述二极管D106的阴极连接+5V电源电压,所述继电器K101的1脚和8脚分别连接所述二极管D106的阴极和阳极,所述继电器K101的2脚、3脚、4脚为所述量程切换单元的第一组切换端,所述继电器K101的5脚、6脚、7脚为所述量程切换单元的第二组切换端,且所述继电器K101的2-7脚均为所述切换控制模块的多个输出端,其中,所述继电器K101的2脚和4脚分别与所述放大单元的第一反馈端和第二反馈端连接,所述继电器K101的3脚与所述放大单元的输出端连接,所述继电器K101的5脚和7脚分别与所述I/V转换单元的第一反馈端和第二反馈端连接,所述继电器K101的6脚与所述I/V转换单元的输出端连接。
2.如权利要求1所述的电路,其特征在于,所述放大单元包括:
电阻R109、电阻R110、电阻R111和第一运算放大器;
所述电阻R111的一端为所述放大单元的输入端,所述电阻R111的另一端与所述第一运算放大器的反向输入端连接,所述第一运算放大器的反向输入端还同时与所述电阻R109和所述电阻R110的一端连接,所述电阻R109和所述电阻R110的另一端分别为所述放大单元的第一、第二反馈端,所述第一运算放大器的正向输入端接地,所述第一运算放大器的输出端为所述放大单元的输出端。
3.如权利要求1所述的电路,其特征在于,所述I/V转换单元包括:
电阻R101、电阻R102、电阻R104和第三运算放大器;
所述第三运算放大器的反向输入端为所述I/V转换单元的输入端同时与所述电阻R101和所述电阻R102的一端连接,所述电阻R101和所述电阻R102的另一端分别为所述I/V转换单元的第一、第二反馈端,所述第三运算放大器的正向输入端通过所述电阻R104接地,所述第三运算放大器的输出端为所述I/V转换单元的输出端。
4.如权利要求1所述的电路,其特征在于,所述激励产生单元、所述电导率转换单元复用所述量程切换单元中的PLC,所述PLC的激励输出端为所述激励产生单元的激励输出端,所述PLC的输入端同时为所述电导率转换单元的输入端,所述PLC的显示输出端为所述电导率转换单元的输出端。
5.一种电导率测量仪,其特征在于,所述电导率测量仪包括如权利要求1所述的电导率测量电路。
CN201610583932.2A 2016-07-22 2016-07-22 一种电导率测量方法、电路及电导率测量仪 Active CN106291119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610583932.2A CN106291119B (zh) 2016-07-22 2016-07-22 一种电导率测量方法、电路及电导率测量仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610583932.2A CN106291119B (zh) 2016-07-22 2016-07-22 一种电导率测量方法、电路及电导率测量仪

Publications (2)

Publication Number Publication Date
CN106291119A CN106291119A (zh) 2017-01-04
CN106291119B true CN106291119B (zh) 2019-06-28

Family

ID=57652422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610583932.2A Active CN106291119B (zh) 2016-07-22 2016-07-22 一种电导率测量方法、电路及电导率测量仪

Country Status (1)

Country Link
CN (1) CN106291119B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228886B (zh) * 2017-04-24 2019-09-10 费尔德(北京)科学仪器有限公司 水的电导率电阻率检测的测量装置和方法
CN109212319B (zh) * 2018-08-27 2020-12-18 古之恒信息科技(苏州)有限公司 一种燃油电导率测量电路及测量仪
CN109142463A (zh) * 2018-10-09 2019-01-04 李晨天 暂态直流电导测量方法及装置
CN112014434A (zh) * 2020-07-29 2020-12-01 桂林优利特医疗电子有限公司 一种生化免疫分析仪用水水质实时检测方法和检测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2195761Y (zh) * 1994-04-15 1995-04-26 核工业第四研究设计院 智能电导仪
JPH11281687A (ja) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd 導電率センサ
CN201322773Y (zh) * 2008-12-16 2009-10-07 河南省日立信电子有限公司 电导率测试仪
CN102426296B (zh) * 2011-09-30 2014-01-29 浙江大学 地表水电导率非接触测量装置及方法
CN105652092A (zh) * 2014-11-14 2016-06-08 佛山市顺德区美的电热电器制造有限公司 电导率的测试装置和用电设备

Also Published As

Publication number Publication date
CN106291119A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106291119B (zh) 一种电导率测量方法、电路及电导率测量仪
CN104863581B (zh) 用于水平井动态全水值测量的周向电导探针传感器及***
CN101655523B (zh) 一种动力电池组对地绝缘电阻检测电路
CN105301281A (zh) 变压器油流流速的监测方法及监测装置
CN103018285A (zh) 一种非接触式电导气液两相流相含率测量装置及方法
CN103675023A (zh) Tds的检测电路和检测方法
CN103675460A (zh) 基于相敏解调的电容耦合式非接触电导的测量装置及方法
MX2007002194A (es) Circuito de monitoreo de conductividad de agua para uso con un generador de vapor.
Alahi et al. Practical nitrate sensor based on electrochemical impedance measurement
CN1114092C (zh) 电磁式流量测量***
CN100371687C (zh) 一种测量装置的操作方法
CN102162805A (zh) 探测能够电分解的液体存在及其浓度的方法与装置
KR101818072B1 (ko) 물속 총용존고형물 측정장치
CN105699740A (zh) 一种测量全量程范围电流的方法
CN105371906B (zh) 具有变频式液体导电度测量功能的电磁式流量计
CN203758949U (zh) 双路传感器湿度报警器
CN104535630A (zh) 饮水设备的水质测量***
CN101937049A (zh) 紫外法电力电缆在线状态监测评估仪
CN107560686A (zh) 一种原油液位测量装置
CN103267792B (zh) 一种用于弱电解质样品区分检测的智能化学分析***及方法
US20140260663A1 (en) Electromagnetic flow meter
CN213779951U (zh) 一种tds检测电路及装置
CN108761209A (zh) 一种液体电导率测量方法及装置
CN204203360U (zh) 电导率的测试装置和用电设备
CN104635037A (zh) 一种全桥整流负载功率和交流功率的高精度检测电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant