CN106282241A - 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法 - Google Patents

通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法 Download PDF

Info

Publication number
CN106282241A
CN106282241A CN201610637401.7A CN201610637401A CN106282241A CN 106282241 A CN106282241 A CN 106282241A CN 201610637401 A CN201610637401 A CN 201610637401A CN 106282241 A CN106282241 A CN 106282241A
Authority
CN
China
Prior art keywords
brachydanio rerio
grna
cas9
sudden change
bmp2a
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610637401.7A
Other languages
English (en)
Inventor
姜宇
朱国兴
仲兆民
杨健
易利华
徐又佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi No 2 Peoples Hospital
Original Assignee
Wuxi No 2 Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi No 2 Peoples Hospital filed Critical Wuxi No 2 Peoples Hospital
Priority to CN201610637401.7A priority Critical patent/CN106282241A/zh
Publication of CN106282241A publication Critical patent/CN106282241A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Environmental Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法,设计了新的gRNA序列,设计在BMP2a第一个外显子和内含子之间,gRNA序列为GGAGCCCATCACTAGACTCTTGG,酶切为HinfI。与传统敲除基因的技术相比,CRISPR/Cas9技术具有毒性小,准确性高,效率高,成功周期短等特点;所以理论上,使得BMP2a基因更快得被敲除。

Description

通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法
技术领域
本发明涉及通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法。
背景技术
CRISPR/Cas9是细菌和古细菌在长期演化过程中形成的一种适应性免疫防御,可用来对抗入侵的病毒及外源DNA。CRISPR/Cas9***通过将入侵噬菌体和质粒 DNA 的片段整合到CRISPR中,并利用相应CRISPR RNAs(crRNAs)来指导同源序列的降解,从而提供免疫性。此***的工作原理是crRNA(CRISPR-derived RNA)通过碱基配对与tracrRNA(trans-activating RNA)结合形成tracrRNA/crRNA 复合物,此复合物引导核酸酶Cas9蛋白在与crRNA 配对的序列靶位点剪切双链DNA。而通过人工设计这两种RNA,可以改造形成具有引导作用的sgRNA(short guide RNA),足以引导Cas9对DNA的定点切割。 作为一种RNA导向的dsDNA结合蛋白,Cas9效应物核酸酶是已知的第一个统一因子(unifying factor),能够共定位RNA、DNA和蛋白,从而拥有巨大的改造潜力。将蛋白与无核酸酶的Cas9(Cas9nuclease-null)融合,并表达适当的 sgRNA ,可靶定任何 dsDNA 序列,而RNA可连接到sgRNA 的末端,不影响Cas9的结合。因此,Cas9能在任何dsDNA序列处带来任何融合蛋白及RNA,这为生物体的研究和改造带来巨大潜力。相比于传统的Talens等敲基因技术,CRISPR/Cas9具有更高效率,更方便操作,优点如下:
1,只需要合成一个sgRNA就能实现对基因的特异性修饰,Cas蛋白不具有特异性。
2,编码sgRNA的序列不超过100bp,因此比构建TALENs和ZFNs更简单方便。
3,较短的sgRNA序列也避免了超长、高度重复的TALENs编码载体带来的并发症。
中国专利201510582860.5公开了一种通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法。那么能否利用CRISPR/Cas9技术,设计独特的一段PAM区,使得斑马鱼中的BMP2a基因被完美敲除,又不“误伤”其他基因,形成世界上首例BMP2a敲除的斑马鱼?
作为首例BMP2a敲除转基因的模式动物斑马鱼的意义重大,BMP2a是调控铁的主要因素,一旦被敲除,即成功动物模成铁过载的模式动物,可以排除人为因素干预,对于研究铁的表达研究意义重大。
发明内容
本发明要解决的技术问题是提供通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼。
为了解决上述的技术问题,本发明提供如下技术方案。
通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法,包括如下步骤:
(1)设计了新的gRNA序列,设计在BMP2a第一个外显子和内含子之间,gRNA序列为GGAGCCCATCACTAGACTCTTGG,酶切为HinfI;
(2)设计并合成gRNA引物,引物见表1:
表1——CAS9BMP2a的引物序列为设计的P3:
Forward sequence (5’to3’):CCTCTTCAACCTGACCTCCA;
Reverse sequence (5’to 3’):GTCCGTCTGTGGTCCACTTT;
P3:GATCACTAATACGACTCACTATAGGAGCCCATCACTAGACTCTGTTTTAGAGCTAGAAAT;
p4:AAAAGCACCGACTCGGTGCC;
gRNA序列GGAGCCCATCACTAGACTCTTGG;
(3)将设计的引物进行PCR,PCR体系如下:
gRNA- plasmid 10 ng;
P3 1 ul(10 pmol);
P4 1 ul(10 pmol);
Buffer 10;
dNTP 8;
KOD 0.5;
ddH2O Up to 100 ul;
PCR反应条件为:95℃预变性3min,进入三步循环(95℃-20s、58℃-20s、72℃-20s共30个循环),然后72℃-10min,最后保温在16℃;电泳检测PCR产物后,进行纯化;
(4) RNA-Free条件下,将gRNA进行体外转录,体系为:
2.5mmol/L NTP 4ul;
10× Reaction Buffer 2ul;
Template DNA 1 1ug(<6ul);
T7 Enzyme Mix 2ul;
DEPC Water up to 20ul ;
gRNA 12.5(ng/ul);
Cas9 300(ng/ul);
Tris-Hcl 0.2ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul ;
以上体系37°C ,1 hour反应完毕,然后进行纯化;
(5) 将前述纯化的mRNA 注射到单细胞的斑马鱼胚胎中,4天后提取RNA,转录DNA进行测序检测;注射体系如下:
gRNA 12.5(ng/ul);
Cas9 300(ng/ul);
Tris-Hcl 0.2ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul;
(6)三个月后性成熟后,将突变的斑马鱼与野生型的斑马鱼杂交,得到一定概率的杂合子,将胚胎后进行RNA提取并转录成DNA送测序查看是否有突变,这时候的DNA还是双链的;然后将测序后发现突变的斑马鱼的cDNA和19T载体相连接后,将其在培养基中滚珠图板,经过12-14小时后,已经连接的质粒会以斑点形式成长,将其挑斑后,得到的是单链的DNA,再次送测序,最终得到单链的突变,然后将其培养长大三个月后性成熟后,将突变的斑马鱼与野生型的斑马鱼杂交,得到胚胎后查看是否有突变,将突变的斑马鱼挑单克隆测序后养起来;
(7) 经过三个月后性成熟后,第二代的突变成年的雄鱼与雌鱼再次切除尾巴,进行鉴定,详见步骤(6),得到相同突变(缺失几个碱基)的斑马鱼再次交配,从而得到纯合BMP2a敲除的斑马鱼。
作为本发明一优选技术方案,步骤(3)和步骤(4)中的纯化方法包括如下步骤:
(A) 加入体积为1:2-3的水和苯酚/氯仿/异丙醇, 混匀后10,000-15,000 rpm离心5min. 上层移入新的管子,重复该步骤一次;
(B)上层移入新的管子,加入150ul氯仿,离心5 min;
(C)加入1/10体积2.5 M醋酸钠以及2.5体积乙醇,-70C冷冻30min;
(D)离心10,000-15,000rpm在4C 15min;
(E)弃掉溶液留沉淀,加入 200ul 80%乙醇,离心5 min,弃掉溶液,干燥后用10-20µlDEPC H2O溶解。
与传统敲除基因的技术相比,CRISPR/Cas9技术具有毒性小,准确性高,效率高,成功周期短等特点;所以理论上,使得BMP2a基因更快得被敲除。
附图说明
图1为本发明方法的培育杂交图系。
具体实施方式
具体实施方式
此次实施例中所用的引物均为苏州金唯智公司合成。野生型斑马鱼AB品系,苏州大学生物钟研究中心。
具体实验过程:
设计gRNA位点-PCR-纯化-体外转录-纯化-显微注射-鉴定活性-饲养至成年-与野生型交配-检测下一代胚胎是否携带突变位点-饲养-成年后剪尾鉴定出杂合突变体-两杂合体交配得到纯合突变体。
通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法,包括如下步骤:
(1)设计了新的gRNA序列,设计在BMP2a第一个外显子和内含子之间,gRNA序列为GGAGCCCATCACTAGACTCTTGG,酶切为HinfI;
(2)设计并合成gRNA引物,引物见表1:
表1——CAS9BMP2a的引物序列为设计的P3:
Forward sequence (5’to3’):CCTCTTCAACCTGACCTCCA;
Reverse sequence (5’to 3’):GTCCGTCTGTGGTCCACTTT;
P3:GATCACTAATACGACTCACTATAGGAGCCCATCACTAGACTCTGTTTTAGAGCTAGAAAT;
p4:AAAAGCACCGACTCGGTGCC;
gRNA序列GGAGCCCATCACTAGACTCTTGG;
(3)将设计的引物进行PCR,PCR体系如下:
gRNA- plasmid 10 ng;
P3 1 ul(10 pmol);
P4 1 ul(10 pmol);
Buffer 10;
dNTP 8;
KOD 0.5;
ddH2O Up to 100 ul;
PCR反应条件为:95℃预变性3min,进入三步循环(95℃-20s、58℃-20s、72℃-20s共30个循环),然后72℃-10min,最后保温在16℃;电泳检测PCR产物后,进行纯化;
(4) RNA-Free条件下,将gRNA进行体外转录,体系为:
2.5mmol/L NTP 4ul;
10× Reaction Buffer 2ul;
Template DNA 1 1ug(<6ul);
T7 Enzyme Mix 2ul;
DEPC Water up to 20ul ;
gRNA 12.5(ng/ul);
Cas9 300(ng/ul);
Tris-Hcl 0.2ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul ;
以上体系37°C ,1 hour反应完毕,然后进行纯化;
(5) 将前述纯化的mRNA 注射到单细胞的斑马鱼胚胎中,4天后提取RNA,转录DNA进行测序检测;注射体系如下:
gRNA 12.5(ng/ul);
Cas9 300(ng/ul);
Tris-Hcl 0.2ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul;
(6)三个月后性成熟后,将突变的斑马鱼与野生型的斑马鱼杂交,得到一定概率的杂合子,将胚胎后进行RNA提取并转录成DNA送测序查看是否有突变,这时候的DNA还是双链的;然后将测序后发现突变的斑马鱼的cDNA和19T载体相连接后,将其在培养基中滚珠图板,经过12-14小时后,已经连接的质粒会以斑点形式成长,将其挑斑后,得到的是单链的DNA,再次送测序,最终得到单链的突变,然后将其培养长大三个月后性成熟后,将突变的斑马鱼与野生型的斑马鱼杂交,得到胚胎后查看是否有突变,将突变的斑马鱼挑单克隆测序后养起来;
(7) 经过三个月后性成熟后,第二代的突变成年的雄鱼与雌鱼再次切除尾巴,进行鉴定,详见步骤(6),得到相同突变(缺失几个碱基)的斑马鱼再次交配,从而得到纯合BMP2a敲除的斑马鱼。
作为本发明一优选技术方案,步骤(3)和步骤(4)中的纯化方法包括如下步骤:
(A) 加入体积为1:2-3的水和苯酚/氯仿/异丙醇, 混匀后10,000-15,000 rpm离心5min. 上层移入新的管子,重复该步骤一次;
(B)上层移入新的管子,加入150ul氯仿,离心5 min;
(C)加入1/10体积2.5 M醋酸钠以及2.5体积乙醇,-70C冷冻30min;
(D)离心10,000-15,000rpm在4C 15min;
(E)弃掉溶液留沉淀,加入 200ul 80%乙醇,离心5 min,弃掉溶液,干燥后用10-20µlDEPC H2O溶解。

Claims (2)

1.通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法,包括如下步骤:
(1)设计了新的gRNA序列,设计在BMP2a第一个外显子和内含子之间,gRNA序列为GGAGCCCATCACTAGACTCTTGG,酶切为HinfI;
(2)设计并合成gRNA引物,引物见表1:
表1——CAS9BMP2a的引物序列为设计的P3:
Forward sequence (5’to3’):CCTCTTCAACCTGACCTCCA;
Reverse sequence (5’to 3’):GTCCGTCTGTGGTCCACTTT;
P3:GATCACTAATACGACTCACTATAGGAGCCCATCACTAGACTCTGTTTTAGAGCTAGAAAT;
p4:AAAAGCACCGACTCGGTGCC;
gRNA序列GGAGCCCATCACTAGACTCTTGG;
(3)将设计的引物进行PCR,PCR体系如下:
gRNA- plasmid 10 ng;
P3 1 ul(10 pmol);
P4 1 ul(10 pmol);
Buffer 10;
dNTP 8;
KOD 0.5;
ddH2O Up to 100 ul;
PCR反应条件为:95℃预变性3min,进入三步循环(95℃-20s、58℃-20s、72℃-20s共30个循环),然后72℃-10min,最后保温在16℃;电泳检测PCR产物后,进行纯化;
(4) RNA-Free条件下,将gRNA进行体外转录,体系为:
2.5mmol/L NTP 4ul;
10× Reaction Buffer 2ul;
Template DNA 1 1ug(<6ul);
T7 Enzyme Mix 2ul;
DEPC Water up to 20ul ;
gRNA 12.5(ng/ul);
Cas9 300(ng/ul);
Tris-Hcl 0.2ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul ;
以上体系37°C ,1 hour反应完毕,然后进行纯化;
(5) 将前述纯化的mRNA 注射到单细胞的斑马鱼胚胎中,4天后提取RNA,转录DNA进行测序检测;注射体系如下:
gRNA 12.5(ng/ul);
Cas9 300(ng/ul);
Tris-Hcl 0.2ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul;
(6)三个月后性成熟后,将突变的斑马鱼与野生型的斑马鱼杂交,得到一定概率的杂合子,将胚胎后进行RNA提取并转录成DNA送测序查看是否有突变,这时候的DNA还是双链的;然后将测序后发现突变的斑马鱼的cDNA和19T载体相连接后,将其在培养基中滚珠图板,经过12-14小时后,已经连接的质粒会以斑点形式成长,将其挑斑后,得到的是单链的DNA,再次送测序,最终得到单链的突变,然后将其培养长大三个月后性成熟后,将突变的斑马鱼与野生型的斑马鱼杂交,得到胚胎后查看是否有突变,将突变的斑马鱼挑单克隆测序后养起来;
(7) 经过三个月后性成熟后,第二代的突变成年的雄鱼与雌鱼再次切除尾巴,进行鉴定,详见步骤(6),得到相同突变(缺失几个碱基)的斑马鱼再次交配,从而得到纯合BMP2a敲除的斑马鱼。
2.如权利要求1所述的通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法,其特征为;步骤(3)和步骤(4)中的纯化方法包括如下步骤:
(A) 加入体积为1:2-3的水和苯酚/氯仿/异丙醇, 混匀后10,000-15,000 rpm离心5min. 上层移入新的管子,重复该步骤一次;
(B)上层移入新的管子,加入150ul氯仿,离心5 min;
(C)加入1/10体积2.5 M醋酸钠以及2.5体积乙醇,-70C冷冻30min;
(D)离心10,000-15,000rpm在4C 15min;
(E)弃掉溶液留沉淀,加入 200ul 80%乙醇,离心5 min,弃掉溶液,干燥后用10-20µlDEPC H2O溶解。
CN201610637401.7A 2016-08-05 2016-08-05 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法 Pending CN106282241A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610637401.7A CN106282241A (zh) 2016-08-05 2016-08-05 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610637401.7A CN106282241A (zh) 2016-08-05 2016-08-05 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法

Publications (1)

Publication Number Publication Date
CN106282241A true CN106282241A (zh) 2017-01-04

Family

ID=57665155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610637401.7A Pending CN106282241A (zh) 2016-08-05 2016-08-05 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法

Country Status (1)

Country Link
CN (1) CN106282241A (zh)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217075A (zh) * 2017-06-28 2017-09-29 西安交通大学医学院第附属医院 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
CN108707628A (zh) * 2018-05-28 2018-10-26 上海海洋大学 斑马鱼notch2基因突变体的制备方法
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN108753834A (zh) * 2018-05-28 2018-11-06 上海海洋大学 ddx27基因缺失斑马鱼突变体的制备方法
CN108753833A (zh) * 2018-05-28 2018-11-06 上海海洋大学 斑马鱼notch3基因突变体的制备方法
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
CN109207523A (zh) * 2017-06-29 2019-01-15 南京尧顺禹生物科技有限公司 基于ucp1基因的人类肥胖症斑马鱼模型的建立与应用
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041857A2 (en) * 2003-10-07 2005-05-12 Quark Biotech, Inc. Bone morphogenetic protein (bmp) 2a and uses thereof
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041857A2 (en) * 2003-10-07 2005-05-12 Quark Biotech, Inc. Bone morphogenetic protein (bmp) 2a and uses thereof
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAOMIN ZHONG ET AL: "Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp", 《SCIENTIFIC REPORTS》 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
CN107217075A (zh) * 2017-06-28 2017-09-29 西安交通大学医学院第附属医院 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法
CN107217075B (zh) * 2017-06-28 2021-07-02 西安交通大学医学院第一附属医院 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法
CN109207523A (zh) * 2017-06-29 2019-01-15 南京尧顺禹生物科技有限公司 基于ucp1基因的人类肥胖症斑马鱼模型的建立与应用
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
CN108753834B (zh) * 2018-05-28 2021-11-23 上海海洋大学 ddx27基因缺失斑马鱼突变体的制备方法
CN108707628B (zh) * 2018-05-28 2021-11-23 上海海洋大学 斑马鱼notch2基因突变体的制备方法
CN108753834A (zh) * 2018-05-28 2018-11-06 上海海洋大学 ddx27基因缺失斑马鱼突变体的制备方法
CN108707628A (zh) * 2018-05-28 2018-10-26 上海海洋大学 斑马鱼notch2基因突变体的制备方法
CN108753833A (zh) * 2018-05-28 2018-11-06 上海海洋大学 斑马鱼notch3基因突变体的制备方法
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN106282241A (zh) 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法
CN105274144A (zh) 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
CN107475300B (zh) Ifit3-eKO1基因敲除小鼠动物模型的构建方法和应用
CN106916820B (zh) 能有效编辑猪ROSA26基因的sgRNA及其应用
CN107287245B (zh) 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法
CN105132427B (zh) 一种以RNA介导的特异性敲除双基因获得基因编辑绵羊的方法及其专用sgRNA
CN107326046A (zh) 一种提高外源基因同源重组效率的方法
CN103343120A (zh) 一种小麦基因组定点改造方法
CN108546716A (zh) 一种基因组编辑方法
CN104342457A (zh) 一种将外源基因定点整合到靶标基因的方法
CN105821075A (zh) 一种茶树咖啡因合成酶CRISPR/Cas9基因组编辑载体的构建方法
CN104531705A (zh) 利用CRISPR-Cas9***敲除动物myostatin基因的方法
CN105985943A (zh) 一种利用非遗传物质对植物基因组进行定点改造的方法
CN104531704A (zh) 利用CRISPR-Cas9***敲除动物FGF5基因的方法
AU2017101108A4 (en) Construction method of animal model of mucopolysaccharidosis type II and use thereof
CN110257435B (zh) 一种prom1-ko小鼠模型的构建方法及其应用
CN103667338A (zh) 一种玉米基因组定点改造方法
CN102653756B (zh) 一种定向改造动物基因组特定基因的方法及其应用
CN105274141A (zh) 一种用于原始生殖细胞靶向突变的转基因载体及制备方法和用途
CN105505879A (zh) 一种培养转基因动物胚胎细胞或转基因动物的方法及培养基
CN110066805A (zh) 基因敲除选育adgrf3b基因缺失型斑马鱼的方法
CN109652457A (zh) 一种基因敲除选育alpk2基因缺失型斑马鱼的方法
CN110468132B (zh) 一种sgRNA及转基因表达载体、表达品系、筛选方法
CN104212837B (zh) 表达人血清白蛋白的慢病毒载体及其构建方法
CN105132426B (zh) 一种以RNA介导的特异性敲除FGF5基因获得基因编辑绵羊的方法及其专用sgRNA

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104

RJ01 Rejection of invention patent application after publication