CN106257728B - 一种生产3.5价高纯钒电解液的***及方法 - Google Patents

一种生产3.5价高纯钒电解液的***及方法 Download PDF

Info

Publication number
CN106257728B
CN106257728B CN201610060093.6A CN201610060093A CN106257728B CN 106257728 B CN106257728 B CN 106257728B CN 201610060093 A CN201610060093 A CN 201610060093A CN 106257728 B CN106257728 B CN 106257728B
Authority
CN
China
Prior art keywords
pipeline
gas
cyclone
vanadium
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610060093.6A
Other languages
English (en)
Other versions
CN106257728A (zh
Inventor
范川林
朱庆山
杨海涛
牟文恒
刘吉斌
王存虎
班琦勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Beijing Zhongkaihongde Technology Co Ltd
Original Assignee
Institute of Process Engineering of CAS
Beijing Zhongkaihongde Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS, Beijing Zhongkaihongde Technology Co Ltd filed Critical Institute of Process Engineering of CAS
Priority to CN201610060093.6A priority Critical patent/CN106257728B/zh
Publication of CN106257728A publication Critical patent/CN106257728A/zh
Priority to RU2018130745A priority patent/RU2695083C1/ru
Priority to EP17743584.9A priority patent/EP3401991B1/en
Priority to US16/074,075 priority patent/US10673088B2/en
Priority to JP2018539348A priority patent/JP6588652B2/ja
Priority to CA3012273A priority patent/CA3012273A1/en
Priority to PCT/CN2017/071207 priority patent/WO2017128969A1/zh
Priority to NZ744570A priority patent/NZ744570A/en
Priority to AU2017210930A priority patent/AU2017210930B2/en
Application granted granted Critical
Publication of CN106257728B publication Critical patent/CN106257728B/zh
Priority to ZA201805714A priority patent/ZA201805714B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0045Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by means of a rotary device in the flow channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种生产3.5价高纯钒电解液的***及方法。采用流化床气相水解将高纯度的三氯氧钒水解为五氧化二钒,在还原流化床中将五氧化二钒精确控制还原为钒平均价态为3.5的低价钒氧化物,在外加微波场下配加水和硫酸溶液低温溶解得到3.5价高纯钒电解液,可直接用于全钒液流电池新电堆。通过流化床气相水解制备五氧化二钒流程短、效率高,在还原流化床内设置内构件实现还原产物价态的精准调控,通过微波场的特殊化学效应促进钒氧化物的溶解并活化钒离子,在低温区间溶解制备电解液,大幅度提高电解液活性。本发明具有流程短、高效清洁、产品质量稳定等优点,适用于大规模工业化生产,具有良好的经济效益和社会效益。

Description

一种生产3.5价高纯钒电解液的***及方法
技术领域
本发明属于能源、化工领域,特别涉及一种生产3.5价高纯钒电解液的***及方法。
背景技术
传统化石燃料一直是主要的能源来源,由于长期开采和大量使用,面临资源枯竭的问题,同时也带来严重的环境污染。风能、水能、太阳能、潮汐能等清洁的可再生能源的开发与利用逐渐引起人类社会重视。但是可再生能源存在固有的间歇性,现有的能源管理***难以有效利用。
能量储存技术是解决这类问题的方法之一。在各式各样的能量储存***中,全钒液流电池(VRB)是一种引人注目的能量储存装置。VRB最大的优势是它的灵活性——功率和储能容量是独立的。VRB的功率决定于电池单元的数量和电池单元有效电极面积,而储能容量决定于电解液中的活性物质的浓度及电解液体积。每个电池单元由两个极室(正极室和负极室)组成,中间被质子交换膜分开。电解液即钒的硫酸盐溶液用于存储能量。当电解液流经电池单元时,在正负极室分别发生V(IV)/V(V)和V(II)/V(III)氧化还原反应。钒电解液是全钒液流电池至关重要的组成部分。
钒电池新电堆配置时一般采用V(III)和V(IV)浓度比1:1混合的钒电解液,即电解液中钒离子的平均价态为3.5。该种电解液可以直接加入正负极室使用,操作简单。钒电解液纯度对电池性能起着至关重要的作用。当电解液中杂质浓度较高时,会带来以下问题:(1)杂质离子与钒离子存在竞争反应,降低电池效率。(2)在正极室,杂质离子在石墨毡电极上沉积,阻塞石墨毡空隙,降低石墨毡比表面积,进而影响充放电效率。(3)在负极室,杂质离子会响析氢过电位,气体产生影响电池内部的压力平衡。(4)杂质离子降低质子交换膜的寿命。(5)杂质离子影响钒离子的稳定,导致电解液过早老化。
VRB电解液的制备方法有以下几种:(1)VOSO4方法:美国专利US849094公开一种由VOSO4溶于硫酸溶液,再通过电化学调整价态制备V(III)和V(IV)浓度比1:1的混合的钒电解液。该种方法存在的主要问题是VOSO4制作工艺比较复杂,且价格高,不利于在VRB中大规模推广使用;VOSO4难以实现高度纯化,以这种工艺配置的电解液含杂质较多;需要电化学处理以调整V(III)和V(IV)浓度比1:1,使电解液中钒离子平均价态为3.5。(2)化学还原法:中国专利CN101562256公开了一种在V2O5和硫酸溶液混合体系中加入乙二酸、丁醛等还原剂,在50-100℃保温0.5-10小时,化学还原制备出V(III)和V(IV)混合的钒电解液。该种方法主要问题是还原程度不易精确控制;现有工艺制备的V2O5难以实现高度纯化,以这种工艺配置的电解液含杂质较多;添加还原剂会引入新的杂质进入钒电解液体系,影响电解液纯度。(3)电解法:国际PCT专利AKU88/000471介绍了将V2O5活化后加入硫酸溶液,通过恒电流电解制备V(III)和V(IV)浓度比1:1的混合的钒电解液。电解法制备钒电解液适合大规模电解液生产,但是需要进行前期的活化处理,需要额外的电解装置及消耗电能;同样存在电解液杂质较多的问题(4)溶解低价钒氧化物的方法:中国专利CN101728560A公布了以高纯V2O3为原料,在80~150℃温度下,溶于1:1的稀硫酸中,制备V2(SO4)3溶液用于负极电解液。该种工艺主要的问题是在80~150℃温度下操作,V(III)钒离子水合物易形成氧桥键而产生缩聚,导致电解液活性降低,缺少活化步骤;该种方法只能用于制备负极电解液,适用面较窄;专利采用的工业高纯V2O3,全钒含量为67%,相当于98.5%的纯度,仍然含有很多杂质离子。中国专利CN102468509A公开了一种钒电池电解液的制备方法,以偏钒酸铵和碳酸氢铵为原料,经过200~300℃和600~700℃分段煅烧制备出V2O3。在50~120℃,将V2O3溶于稀硫酸中,反应5~20小时,得到V2(SO4)3溶液。在80~110℃,将V2O5溶于V2(SO4)3溶液中,反应1~3小时,得到平均钒离子浓度为3.5价的钒电池电解液。该专利中制备V2(SO4)3溶液用于负极电解液。该种方法主要问题是在较高温度下长时间溶解操作,V(III)钒离子水合物易形成氧桥键而产生缩聚,导致电解液活性降低,缺少活化步骤;电解液纯度不高。中国专利CN103401010A公开了一种全钒液流电池电解液制备方法,将V2O5粉末在氢气中还原制备V2O4粉末和V2O3粉末。将V2O4和V2O3分别溶于浓硫酸中,得到钒电池的正极和负极电解液。该专利存在的主要问题是:没有给出具体的还原工艺,在氢气中还原V2O5制备V2O4粉末,很容易出现过还原或欠还原的情况,需要精确控制才能实现,该专利中没有列出精确控制还原的措施;纯度较低;中国专利CN101880059A和CN102557134A公开了一生产高纯三氧化钒的流态化还原炉及还原方法,通过流化床中加入换热内构件,实现强化换热;采用旋风预热提高能源利用率,实现V2O3的高效制备。这两件专利所述方法只适用于V2O3的制备,不适于其他价态的低价钒氧化物的制备,因为该***不具备精确控制还原的功能。
综上所述,本领域亟需一种能够解决全钒液流电池电解液制备工艺和技术上的不足,以实现简化制备流程、提高电解液纯度、提高电解液配置及使用的简洁性。
发明内容
针对以上问题,本发明提出了一种生产3.5价高纯钒电解液的***及方法,以实现简化制备流程、提高电解液纯度、提高配置电解液的简洁性。为了达到这些目的,本发明采用了如下技术方案:
本发明生产3.5价高纯钒电解液的***,所述***包括三氯氧钒储罐1、气相水解流化床2、五氧化二钒加料装置3、预热除尘装置4、还原流化床5、一级冷却装置6、二级冷却装置7、低价钒氧化物加料装置8、溶解活化装置9、尾气淋洗吸收塔10、引风机11和烟囱12;
所述气相水解流化床2包括三氯氧钒汽化器2-1、洁净水汽化器2-2、氯化物喷枪2-3、气相水解流化床主体2-4、水解流化床排料器2-5、盐酸尾气吸收器2-6;
所述五氧化二钒加料装置3包括五氧化二钒料仓3-1和五氧化二钒螺旋加料器3-2;
所述预热除尘装置4包括文丘里预热器4-1、第一旋风分离器4-2、旋风预热器4-3、布袋除尘器4-4;
所述还原流化床5包括进料器5-1、床体5-2、排料器5-3、气体加热器5-4、气体净化器5-5、旋风除尘器5-6;
所述一级冷却装置6包括文丘里冷却器6-1、第二旋风分离器6-2、旋风冷却器6-3;
所述低价钒氧化物加料装置8包括低价钒氧化物料仓8-1和低价钒氧化物螺旋加料器8-2;
所述溶解活化装置9包括搅拌溶解装置9-1和微波活化装置9-2;
所述三氯氧钒储罐1底部的出料口与所述三氯氧钒汽化器2-1的入口通过管道相连;所述三氯氧钒汽化器2-1的入口通过管道与净化氮气总管相连;所述三氯氧钒汽化器2-1的出气口通过管道与所述氯化物喷枪2-3的进气口相连;所述洁净水汽化器2-2的入口通过管道分别与洁净水总管及净化空气总管相连;所述洁净水汽化器2-2的出气口通过管道与所述气相水解流化床主体2-4底部的进气口相连接;所述气相水解流化床主体2-4扩大段顶部的气体出口通过管道与所述盐酸尾气吸收器2-6的气体入口相连接;所述盐酸尾气吸收器2-6底部设置了盐酸溶液出口;所述盐酸尾气吸收器2-6的气体出口通过管道与所述尾气淋洗吸收器10的气体入口相连接;所述气相水解流化床主体2-4上部的出料口通过管道与所述水解流化床排料器2-5的进料口相连接;所述水解流化床排料器2-5的松动风入气口通过管道与净化氮气总管相连;所述水解流化床排料器2-5的排料口通过管道与所述五氧化二钒料仓3-1进料口相连接;
所述五氧化二钒料仓3-1底部的出料口与所述五氧化二钒螺旋加料器3-2的进料口相连接;所述五氧化二钒螺旋加料器3-2的出料口和与所述文丘里预热器4-1的进料口通过管道相连;
所述文丘里预热器4-1的出料口与所述第一旋风分离器4-2的进料口通过管道相连,所述第一旋风分离器4-2的出气口与所述布袋除尘器4-4的进气口通过管道相连;所述第一旋风分离器4-2的出料口与所述旋风预热器4-3的进气口通过管道相连;所述布袋除尘器4-4的出气口与所述尾气淋洗吸收器10的进气口通过管道相连;所述布袋除尘器4-4的细粉出口与所述旋风预热器4-3的进气口通过管道连接;所述旋风预热器4-3的进气口与所述旋风除尘器5-6的出气口通过管道相连;所述旋风预热器4-3的出气口与所述文丘里预热器4-1的进气口通过管道相连;所述旋风预热器4-3的出料口与所述进料器5-1的进料口通过管道相连;
所述进料器5-1的出料口与所述床体5-2的进料口通过管道相连;所述进料器5-1的松动风入口与净化氮气总管相连;所述床体5-2的进气口与气体加热器5-4的出气口通过管道相连;所述床体5-2中设置竖直挡板;所述床体5-2的出料口与所述排料器5-3的进料口通过管道相连;所述床体5-2的出气口与所述旋风除尘器5-6的进气口通过管道相连;所述旋风除尘器5-6的出气口与所述旋风预热器4-3的进气口通过管道相连;所述旋风除尘器5-6的出料口与所述排料器5-3的进料口通过管道相连;所述排料器5-3的出料口与所述文丘里冷却器6-1的进料口通过管道相连;所述排料器5-3的松动风入口与净化氮气总管相连;所述气体加热器5-4的出气口与所述床体5-2的进气口通过管道相连;所述气体加热器5-4的进气口分别与所述气体净化器5-5的出气口及所述第二旋风分离器6-2的出气口通过管道相连;所述气体加热器5-4的燃料入口与燃料总管通过管道相连;所述气体加热器5-4的助燃风入口与压缩空气总管通过管道相连;所述气体净化器5-5的进气口与还原气体总管通过管道相连;
所述文丘里冷却器6-1的进料口与所述排料器5-3的出料口相连;所述文丘里冷却器6-1的进气口与所述旋风冷却器6-3的出气口通过管道相连;所述文丘里冷却器6-1的出气口与所述第二旋风分离器6-2的进气口通过管道相连;所述第二旋风分离器6-2的出气口与所述气体加热器5-4的进气口通过管道相连;所述第二旋风分离器6-2的出料口与所述旋风冷却器6-3的进气口相连;所述旋风冷却器6-3的进气口与净化氮气总管相连;所述旋风冷却器6-3的出气口与所述文丘里冷却器6-1的进气口通过管道相连;所述旋风冷却器6-3的出料口与所述二级冷却装置7的进料口通过管道相连;
所述二级冷却装置7的进料口与所述旋风冷却器6-3的出料口通过管道相连;所述二级冷却装置7的出料口与所述低价钒氧化物料仓8-1的进料口通过管道相连;所述二级冷却装置7的进水口与工艺水总管通过管道相连;所述二级冷却装置7的出水口与水冷却***的进水口通过管道相连;
所述低价钒氧化物料仓8-1底部的出料口与所述低价钒氧化物螺旋加料器8-2的进料口相连接;所述低价钒氧化物螺旋加料器8-2的出料口和与所述溶解活化装置9的进料口通过管道相连;
所述搅拌溶解装置9-1的洁净水入口与洁净水总管通过管道相连;所述搅拌溶解装置9-1的硫酸溶液入口通过管道与硫酸溶液总管连接;所述搅拌溶解装置9-1的气体出口通过管道与所述尾气淋洗吸收塔10的进气口连接;所述搅拌溶解装置9-1置于所述微波活化装置9-2内部;
所述尾气淋洗吸收塔10的气体出口通过管道与所述引风机11的气体入口相连接;所述引风机11的气体出口通过管道与所述烟囱12底部的气体入口相连接。
本发明的基于上述***的生产3.5价高纯钒电解液的方法,包括以下步骤:
所述三氯氧钒储罐1中的三氯氧钒和来自净化氮气总管的氮气经所述三氯氧钒汽化器2-1汽化预热后通过所述氯化物喷枪2-3进入所述气相水解流化床主体2-4;洁净水和净化空气经所述洁净水汽化器2-2汽化预热后送入所述气相水解流化床主体2-4中,使三氯氧钒发生水解、并维持粉体物料的流态化,形成五氧化二钒粉体和富含氯化氢的水解烟气;五氧化二钒粉体经所述水解流化床床排料器2-5排出送入所述五氧化二钒料仓3-1中;水解烟气经所述气相水解流化床主体2-4扩大段脱除粉尘后,进入所述盐酸尾气吸收器2-6进行吸收处理形成盐酸溶液副产品,吸收尾气进入所述尾气淋洗吸收器10进行处理;
所述五氧化二钒料仓3-1中的五氧化二钒依次进入所述五氧化二钒螺旋加料器3-2、所述文丘里预热器4-1、所述第一旋风分离器4-2、所述旋风预热器4-3之后,与来自于所述布袋除尘器(4-4)回收的细粉颗粒一同经所述进料器5-1进入所述床体5-2中;所述净化氮气依次经所述旋风冷却器6-3、所述文丘里冷却器6-1、所述第二旋风分离器6-2预热后与来自所述气体净化器5-5的净化还原气体混合经所述气体加热器5-4二次预热后进入所述床体5-2中使五氧化二钒粉体物料维持流态化,并使之发生还原,得到低价钒氧化物粉体和还原烟气;低价钒氧化物经所述床体5-2的排料口与所述旋风除尘器5-6回收的细粉一同依次进入所述排料器5-3、所述文丘里冷却器6-1、所述第二旋风分离器6-2、所述旋风冷却器6-3、所述二级冷却器7冷却后,进入所述低价钒氧化物料仓8-1中;所述床体5-2中的还原烟气依次进入所述旋风除尘器5-6、所述旋风预热器4-3、所述文丘里预热器4-1、所述第一旋风分离器4-2、经所述布袋除尘器4-4除尘后进入所述尾气淋洗吸收器10,经碱溶液吸收处理后排出的气体经所述引风机11送入所述烟囱12后排空;
所述低价钒氧化物料仓8-1中的低价钒氧化物通过所述低价钒氧化物螺旋加料器8-2进入所述搅拌溶解装置9-1中,在所述微波活化装置9-2提供微波场的作用下,与来自于洁净水总管的洁净水、硫酸溶液总管的硫酸溶液发生溶解反应,得到高纯钒电解液,产生的酸雾气体送入所述尾气淋洗吸收器10进行处理。
本发明的特征之一在于:所述三氯氧钒原料纯度为99%~99.9999%,即2N~6N。
本发明的特征之二在于:在所述三氯氧钒汽化器2-1内,汽化操作温度为40~600℃,氮气与三氯氧钒摩尔比为0.10~10.00。
本发明的特征之三在于:在所述洁净水汽化器2-2内,汽化操作温度为40~600℃,空气与水的质量比为0.10~10.00。
本发明的特征之四在于:在所述气相水解流化床主体2-4内,通过三氯氧钒气相水解直接制备五氧化二钒粉体,气相水解过程通入水蒸气与三氯氧钒的质量比为0.10~10.00,气相水解操作温度为100~600℃,粉料的平均停留时间为15~300min。
本发明的特征之五在于:在还原流化床主体5-2中,还原的操作温度为400~700℃,还原气体经所述净化器5-5净化后,有机物含量小于1mg/Nm3,固体颗粒总含量小于2mg/Nm3,通入氮气与还原气体的混合气体中还原气体积分数为10%~90%,粉料的平均停留时间为30~90min。
本发明的特征之六在于:所述硫酸溶液是电子级纯度、摩尔浓度为4.0~10.0mol/L的硫酸溶液。
本发明的特征之七在于:所述高纯钒电解液是V(III)和V(IV)钒离子摩尔浓度比为1:1混合的钒电解液,钒离子的平均价态为3.5。所得3.5价高纯钒电解液可以直接用于全钒液流电池新电堆。
本发明的特征之八在于:在所述溶解活化装置9中,采用外加微波场的方式辅助低价钒氧化物溶解及活化钒离子,溶解活化时间为30~300分钟,溶解活化温度为20~45℃,微波功率密度为10~300W/L,微波频率为2450MHz或916MHz,
本发明生产得到的电解液高纯度,高活性,电解液配置及使用便捷,相对于现有技术,本发明具有如下突出的优点:
(1)高纯度:选用易于高度提纯的三氯氧钒为原料,纯度为2N~6N的高纯度的三氯氧钒易于获得。以5N三氯氧钒为例,通过本发明可以制备纯度4N5(即纯度99.995%)的低价钒氧化物,进而配制出高纯钒电解液,除了有效组分,杂质总含量低于5ppm;
(2)流态化气相水解:流程短,产量大,便于工业化运用;
(3)精准控制还原:采用矩形多仓流化床的形式,实现价态精确控制还原;
(4)实现流化床高温尾气与高温还原产物的显热利用:还原流化床排出的高温尾气与冷的含钒物料直接接触,回收高温还原尾气显热的同时加热冷的含钒物料;还原用净化氮气与排出的高温低价钒氧化物产物直接接触,冷却还原产物的同时,净化氮气被预热,回收高温还原产物的显热;
(5)实现超细粉开路:还原流化床尾气经过外置旋风分离器,回收的粉体进入还原流化床排料器,实现了细粉颗粒的开路,避免了细粉颗粒的密闭循环;
(6)高活性:通过微波场的特殊化学效应促进钒氧化物的溶解并活化钒离子,在低温区间(20~45℃)溶解制备电解液,大幅度提高电解液活性;
(7)运输方便:本工艺生产电解液流程短,适用于钒电池现场配置,可以运输低价钒氧化物,大大降低运输成本;
(8)3.5价电解液:适用于钒电池新电堆配置,可以直接加入正负极室使用,操作简单。
本发明具有生产能耗和操作成本低、产品纯度高、质量稳定、电解液配置及装配简洁等优点,适用于全钒液流电池电解液的大规模工业化生产,具有良好的经济效益和社会效益。
附图说明
附图用来提供对本发明的进一步阐释,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的生产3.5价高纯电解液***的配置示意图。
附图标记:
1、三氯氧钒储罐;
2、气相水解流化床;
2-1、三氯氧钒汽化器;2-2、洁净水汽化器;2-3、氯化物喷枪;
2-4、气相水解流化床主体;2-5、水解流化床排料器;2-6、盐酸尾气吸收器;
3、五氧化二钒加料装置;
3-1、五氧化二钒料仓;3-2、五氧化二钒螺旋加料器;
4、预热除尘装置;
4-1、文丘里预热器;4-2、第一旋风分离器;4-3、旋风预热器;4-4、布袋除尘器;
5、还原流化床;
5-1、进料器;5-2、床体;5-3、排料器;
5-4、气体加热器;5-5、气体净化器;5-6、旋风除尘器;
6、一级冷却装置;
6-1、文丘里冷却器;6-2、第二旋风分离器;6-3、旋风冷却器;
8、低价钒氧化物加料装置;
8-1、低价钒氧化物料仓;8-2、低价钒氧化物螺旋加料器;
9、溶解活化装置;
9-1、搅拌溶解装置;9-2、微波活化装置;
10、尾气淋洗吸收塔;
11、引风机;
12、烟囱。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。值得说明的是,实施例仅用以说明本发明的技术方案,而非对其限制。
实施例1
结合图1,本实施例所使用的生产3.5价高纯钒电解液的***,包括三氯氧钒储罐1、气相水解流化床2、五氧化二钒加料装置3、预热除尘装置4、还原流化床5、一级冷却装置6、二级冷却装置7、低价钒氧化物加料装置8、溶解活化装置9、尾气淋洗吸收塔10、引风机11和烟囱12;
所述气相水解流化床2包括三氯氧钒汽化器2-1、洁净水汽化器2-2、氯化物喷枪2-3、气相水解流化床主体2-4、水解流化床排料器2-5、盐酸尾气吸收器2-6;
所述五氧化二钒加料装置3包括五氧化二钒料仓3-1和五氧化二钒螺旋加料器3-2;
所述预热除尘装置4包括文丘里预热器4-1、第一旋风分离器4-2、旋风预热器4-3、布袋除尘器4-4;
所述还原流化床5包括进料器5-1、床体5-2、排料器5-3、气体加热器5-4、气体净化器5-5、旋风除尘器5-6;
所述一级冷却装置6包括文丘里冷却器6-1、第二旋风分离器6-2、旋风冷却器6-3;
所述低价钒氧化物加料装置8包括低价钒氧化物料仓8-1和低价钒氧化物螺旋加料器8-2;
所述溶解活化装置9包括搅拌溶解装置9-1和微波活化装置9-2;
所述三氯氧钒储罐1底部的出料口与所述三氯氧钒汽化器2-1的入口通过管道相连;所述三氯氧钒汽化器2-1的入口通过管道与净化氮气总管相连;所述三氯氧钒汽化器2-1的出气口通过管道与所述氯化物喷枪2-3的进气口相连;所述洁净水汽化器2-2的入口通过管道分别与洁净水总管及净化空气总管相连;所述洁净水汽化器2-2的出气口通过管道与所述气相水解流化床主体2-4底部的进气口相连接;所述气相水解流化床主体2-4扩大段顶部的气体出口通过管道与所述盐酸尾气吸收器2-6的气体入口相连接;所述盐酸尾气吸收器2-6底部设置了盐酸溶液出口;所述盐酸尾气吸收器2-6的气体出口通过管道与所述尾气淋洗吸收器10的气体入口相连接;所述气相水解流化床主体2-4上部的出料口通过管道与所述水解流化床排料器2-5的进料口相连接;所述水解流化床排料器2-5的松动风入气口通过管道与净化氮气总管相连;所述水解流化床排料器2-5的排料口通过管道与所述五氧化二钒料仓3-1进料口相连接;
所述五氧化二钒料仓3-1底部的出料口与所述五氧化二钒螺旋加料器3-2的进料口相连接;所述五氧化二钒螺旋加料器3-2的出料口和与所述文丘里预热器4-1的进料口通过管道相连;
所述文丘里预热器4-1的出料口与所述第一旋风分离器4-2的进料口通过管道相连,所述第一旋风分离器4-2的出气口与所述布袋除尘器4-4的进气口通过管道相连;所述第一旋风分离器4-2的出料口与所述旋风预热器4-3的进气口通过管道相连;所述布袋除尘器4-4的出气口与所述尾气淋洗吸收器10的进气口通过管道相连;所述布袋除尘器4-4的细粉出口与所述旋风预热器4-3的进气口通过管道连接;所述旋风预热器4-3的进气口与所述旋风除尘器5-6的出气口通过管道相连;所述旋风预热器4-3的出气口与所述文丘里预热器4-1的进气口通过管道相连;所述旋风预热器4-3的出料口与所述进料器5-1的进料口通过管道相连;
所述进料器5-1的出料口与所述床体5-2的进料口通过管道相连;所述进料器5-1的松动风入口与净化氮气总管相连;所述床体5-2的进气口与气体加热器5-4的出气口通过管道相连;所述床体5-2中设置竖直挡板;所述床体5-2的出料口与所述排料器5-3的进料口通过管道相连;所述床体5-2的出气口与所述旋风除尘器5-6的进气口通过管道相连;所述旋风除尘器5-6的出气口与所述旋风预热器4-3的进气口通过管道相连;所述旋风除尘器5-6的出料口与所述排料器5-3的进料口通过管道相连;所述排料器5-3的出料口与所述文丘里冷却器6-1的进料口通过管道相连;所述排料器5-3的松动风入口与净化氮气总管相连;所述气体加热器5-4的出气口与所述床体5-2的进气口通过管道相连;所述气体加热器5-4的进气口分别与所述气体净化器5-5的出气口及所述第二旋风分离器6-2的出气口通过管道相连;所述气体加热器5-4的燃料入口与燃料总管通过管道相连;所述气体加热器5-4的助燃风入口与压缩空气总管通过管道相连;所述气体净化器5-5的进气口与还原气体总管通过管道相连;
所述文丘里冷却器6-1的进料口与所述排料器5-3的出料口相连;所述文丘里冷却器6-1的进气口与所述旋风冷却器6-3的出气口通过管道相连;所述文丘里冷却器6-1的出气口与所述第二旋风分离器6-2的进气口通过管道相连;所述第二旋风分离器6-2的出气口与所述气体加热器5-4的进气口通过管道相连;所述第二旋风分离器6-2的出料口与所述旋风冷却器6-3的进气口相连;所述旋风冷却器6-3的进气口与净化氮气总管相连;所述旋风冷却器6-3的出气口与所述文丘里冷却器6-1的进气口通过管道相连;所述旋风冷却器6-3的出料口与所述二级冷却装置7的进料口通过管道相连;
所述二级冷却装置7的进料口与所述旋风冷却器6-3的出料口通过管道相连;所述二级冷却装置7的出料口与所述低价钒氧化物料仓8-1的进料口通过管道相连;所述二级冷却装置7的进水口与工艺水总管通过管道相连;所述二级冷却装置7的出水口与水冷却***的进水口通过管道相连;
所述低价钒氧化物料仓8-1底部的出料口与所述低价钒氧化物螺旋加料器8-2的进料口相连接;所述低价钒氧化物螺旋加料器8-2的出料口和与所述溶解活化装置9的进料口通过管道相连;
所述搅拌溶解装置9-1的洁净水入口与洁净水总管通过管道相连;所述搅拌溶解装置9-1的硫酸溶液入口通过管道与硫酸溶液总管连接;所述搅拌溶解装置9-1的气体出口通过管道与所述尾气淋洗吸收塔10的进气口连接;所述搅拌溶解装置9-1置于所述微波活化装置9-2内部;
所述尾气淋洗吸收塔10的气体出口通过管道与所述引风机11的气体入口相连接;所述引风机11的气体出口通过管道与所述烟囱12底部的气体入口相连接。
实施例2
本实施例利用上述***进行生产3.5价高纯钒电解液,具体方法包括以下步骤:所述三氯氧钒储罐1中的三氯氧钒和来自净化氮气总管的氮气经所述三氯氧钒汽化器2-1汽化预热后通过所述氯化物喷枪2-3进入所述气相水解流化床主体2-4;洁净水和净化空气经所述洁净水汽化器2-2汽化预热后送入所述气相水解流化床主体2-4中,使三氯氧钒发生水解、并维持粉体物料的流态化,形成五氧化二钒粉体和富含氯化氢的水解烟气;五氧化二钒粉体经所述水解流化床床排料器2-5排出送入所述五氧化二钒料仓3-1中;水解烟气经所述气相水解流化床主体2-4扩大段脱除粉尘后,进入所述盐酸尾气吸收器2-6进行吸收处理形成盐酸溶液副产品,吸收尾气进入所述尾气淋洗吸收器10进行处理;
所述五氧化二钒料仓3-1中的五氧化二钒依次进入所述五氧化二钒螺旋加料器3-2、所述文丘里预热器4-1、所述第一旋风分离器4-2、所述旋风预热器4-3之后,与来自于所述布袋除尘器(4-4)回收的细粉颗粒一同经所述进料器5-1进入所述床体5-2中;所述净化氮气依次经所述旋风冷却器6-3、所述文丘里冷却器6-1、所述第二旋风分离器6-2预热后与来自所述气体净化器5-5的净化还原气体混合经所述气体加热器5-4二次预热后进入所述床体5-2中使五氧化二钒粉体物料维持流态化,并使之发生还原,得到低价钒氧化物粉体和还原烟气;低价钒氧化物经所述床体5-2的排料口与所述旋风除尘器5-6回收的细粉一同依次进入所述排料器5-3、所述文丘里冷却器6-1、所述第二旋风分离器6-2、所述旋风冷却器6-3、所述二级冷却器7冷却后,进入所述低价钒氧化物料仓8-1中;所述床体5-2中的还原烟气依次进入所述旋风除尘器5-6、所述旋风预热器4-3、所述文丘里预热器4-1、所述第一旋风分离器4-2、经所述布袋除尘器4-4除尘后进入所述尾气淋洗吸收器10,经碱溶液吸收处理后排出的气体经所述引风机11送入所述烟囱12后排空;
所述低价钒氧化物料仓8-1中的低价钒氧化物通过所述低价钒氧化物螺旋加料器8-2进入所述搅拌溶解装置9-1中,在所述微波活化装置9-2提供微波场的作用下,与来自于洁净水总管的洁净水、硫酸溶液总管的硫酸溶液发生溶解反应,得到高纯钒电解液,产生的酸雾气体送入所述尾气淋洗吸收器10进行处理。
实施例3
本实施例以三氯氧钒(纯度2N以上)为原料,处理量为3kg/h,在三氯氧钒汽化器2-1内,汽化操作温度为40℃,氮气与三氯氧钒摩尔比为10:1;在洁净水汽化器2-2内,汽化操作温度为40℃,空气与水的质量比为10:1;在气相水解流化床主体2-4内,气相水解过程通入水蒸气与三氯氧钒的质量比10:1,气相水解操作温度为100℃,粉料的平均停留时间为300min;得到五氧化二钒;在还原流化床5中,通入床体5-2的还原气体为氢气,通入床体5-2中氮气与氢气的混合气体中氢气体积分数为10%,粉料的平均停留时间为90min,还原流化床操作温度为400℃;得到钒的平均价态为3.5,纯度为98.5%的低价钒氧化物;在微波场条件下,向搅拌溶解装置9-1中加入硫酸溶液(4.0mol/L)和洁净水(电阻15.0MΩ·cm),操作温度为20℃,微波功率密度为10W/L,微波频率为916MHz,活化300分钟后得到钒离子平均价态为3.5的高纯钒电解液,除了有效组分,杂质总含量低于0.5%。
实施例4
本实施例以三氯氧钒(纯度3N以上)为原料,处理量为30kg/h,在三氯氧钒汽化器2-1内,汽化操作温度为600℃,氮气与三氯氧钒摩尔比为1:10;在洁净水汽化器2-2内,汽化操作温度为600℃,空气与水的质量比为1:10;在气相水解流化床主体2-4内,气相水解过程通入水蒸气与三氯氧钒的质量比1:10,气相水解操作温度为600℃,粉料的平均停留时间为15min,得到五氧化二钒;在还原流化床5中,通入床体5-2的还原气体为煤气,煤气与氮气的混合气体中煤气体积分数为90%,粉料的平均停留时间为30min,还原流化床操作温度为700℃,得到钒的平均价态为3.5,纯度为99.5%的低价钒氧化物;在微波场条件下,向搅拌溶解装置9-1中加入硫酸溶液(10.0mol/L)和洁净水(电阻率18.0MΩ·cm),操作温度为45℃,微波功率密度为300W/L,微波频率为2450MHz,活化30分钟后,得到钒离子平均价态为3.5的高纯钒电解液,除了有效组分,杂质总含量低于0.05%。
实施例5
本实施例以三氯氧钒(纯度4N以上)为原料,处理量为300kg/h,在三氯氧钒汽化器2-1内,汽化操作温度为200℃,氮气与三氯氧钒摩尔比为1:5;在洁净水汽化器2-2内,汽化操作温度为200℃,空气与水的质量比为1:5;在气相水解流化床主体2-4内,气相水解过程通入水蒸气与三氯氧钒的质量比1:5,气相水解操作温度为200℃,粉料的平均停留时间为120min,得到五氧化二钒;在还原流化床5中,通入床体5-2的还原气体为煤气,煤气与氮气的混合气体中煤气体积分数为80%,粉料的平均停留时间为45min,还原流化床操作温度为600℃,得到钒的平均价态为3.5,纯度为99.95%的低价钒氧化物;在微波场条件下,向搅拌溶解装置9-1中加入硫酸溶液(8.0mol/L)和洁净水(电阻18.0MΩ·cm),操作温度为40℃,微波功率密度为200W/L,微波频率为2450MHz,活化180分钟后,得到钒离子平均价态3.5的高纯钒电解液,除了有效组分,杂质总含量低于0.005%,可以直接用于钒电池新电堆配置。
实施例6
本实施例以三氯氧钒(纯度5N以上)为原料,处理量为3000kg/h,在三氯氧钒汽化器2-1内,汽化操作温度为200℃,氮气与三氯氧钒摩尔比为1:1;在洁净水汽化器2-2内,汽化操作温度为200℃,空气与水的质量比为1:1;在气相水解流化床主体2-4内,气相水解过程通入水蒸气与三氯氧钒的质量比1:1,气相水解操作温度为200℃,粉料的平均停留时间为60min,得到五氧化二钒;在还原流化床5中,通入床体5-2的还原气体为氢气,氢气与氮气的混合气体中煤气体积分数为50%,粉料的平均停留时间为60min,还原流化床操作温度为500℃,得到钒的平均价态为3.5,纯度为4N5(即纯度99.995%)的低价钒氧化物;在微波场条件下,向搅拌溶解装置9-1中加入硫酸溶液(6.0mol/L)和洁净水(电阻18.0MΩ·cm),操作温度为30℃,微波功率密度为100W/L,微波频率为916MHz,活化120分钟后,得到钒离子平均价态3.5的高纯钒电解液,除了有效组分,杂质总含量低于5ppm,可以直接用于钒电池新电堆配置。
实施例7
本实施例以三氯氧钒(纯度6N以上)为原料,处理量为3000kg/h,在三氯氧钒汽化器2-1内,汽化操作温度为200℃,氮气与三氯氧钒摩尔比为1:1;在洁净水汽化器2-2内,汽化操作温度为200℃,空气与水的质量比为1:1;在气相水解流化床主体2-4内,气相水解过程通入水蒸气与三氯氧钒的质量比1:1,气相水解操作温度为200℃,粉料的平均停留时间为60min,得到五氧化二钒;在还原流化床5中,通入床体5-2的还原气体为氢气,氢气与氮气的混合气体中煤气体积分数为50%,粉料的平均停留时间为60min,还原流化床操作温度为500℃,得到钒的平均价态为3.5,纯度为5N5(即纯度99.9995%)的低价钒氧化物;在微波场条件下,向搅拌溶解装置9-1中加入硫酸溶液(6.0mol/L)和洁净水(电阻18.0MΩ·cm),操作温度为30℃,微波功率密度为100W/L,微波频率为916MHz,活化120分钟后,得到钒离子平均价态3.5的高纯钒电解液,除了有效组分,杂质总含量低于1ppm,可以直接用于钒电池新电堆配置。
本发明未详细阐述部分属于本领域公知技术。
当然,本发明还可以有多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明的公开做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。

Claims (10)

1.一种生产3.5价高纯钒电解液的***,其特征在于,所述***包括三氯氧钒储罐(1)、气相水解流化床(2)、五氧化二钒加料装置(3)、预热除尘装置(4)、还原流化床(5)、一级冷却装置(6)、二级冷却装置(7)、低价钒氧化物加料装置(8)、溶解活化装置(9)、尾气淋洗吸收塔(10)、引风机(11)和烟囱(12);
所述气相水解流化床(2)包括三氯氧钒汽化器(2-1)、洁净水汽化器(2-2)、氯化物喷枪(2-3)、气相水解流化床主体(2-4)、水解流化床排料器(2-5)、盐酸尾气吸收器(2-6);
所述五氧化二钒加料装置(3)包括五氧化二钒料仓(3-1)和五氧化二钒螺旋加料器(3-2);
所述预热除尘装置(4)包括文丘里预热器(4-1)、第一旋风分离器(4-2)、旋风预热器(4-3)、布袋除尘器(4-4);
所述还原流化床(5)包括进料器(5-1)、床体(5-2)、排料器(5-3)、气体加热器(5-4)、气体净化器(5-5)、旋风除尘器(5-6);
所述一级冷却装置(6)包括文丘里冷却器(6-1)、第二旋风分离器(6-2)、旋风冷却器(6-3);
所述低价钒氧化物加料装置(8)包括低价钒氧化物料仓(8-1)和低价钒氧化物螺旋加料器(8-2);
所述溶解活化装置(9)包括搅拌溶解装置(9-1)和微波活化装置(9-2);
所述三氯氧钒储罐(1)底部的出料口与所述三氯氧钒汽化器(2-1)的入口通过管道相连;所述三氯氧钒汽化器(2-1)的入口通过管道与净化氮气总管相连;所述三氯氧钒汽化器(2-1)的出气口通过管道与所述氯化物喷枪(2-3)的进气口相连;所述洁净水汽化器(2-2)的入口通过管道分别与洁净水总管及净化空气总管相连;所述洁净水汽化器(2-2)的出气口通过管道与所述气相水解流化床主体(2-4)底部的进气口相连接;所述气相水解流化床主体(2-4)扩大段顶部的气体出口通过管道与所述盐酸尾气吸收器(2-6)的气体入口相连接;所述盐酸尾气吸收器(2-6)底部设置了盐酸溶液出口;所述盐酸尾气吸收器(2-6)的气体出口通过管道与所述尾气淋洗吸收塔(10)的气体入口相连接;所述气相水解流化床主体(2-4)上部的出料口通过管道与所述水解流化床排料器(2-5)的进料口相连接;所述水解流化床排料器(2-5)的松动风入气口通过管道与净化氮气总管相连;所述水解流化床排料器(2-5) 的排料口通过管道与所述五氧化二钒料仓(3-1)进料口相连接;
所述五氧化二钒料仓(3-1)底部的出料口与所述五氧化二钒螺旋加料器(3-2)的进料口相连接;所述五氧化二钒螺旋加料器(3-2)的出料口与所述文丘里预热器(4-1)的进料口通过管道相连;
所述文丘里预热器(4-1)的出料口与所述第一旋风分离器(4-2)的进料口通过管道相连,所述第一旋风分离器(4-2)的出气口与所述布袋除尘器(4-4)的进气口通过管道相连;所述第一旋风分离器(4-2)的出料口与所述旋风预热器(4-3)的进气口通过管道相连;所述布袋除尘器(4-4)的出气口与所述尾气淋洗吸收塔(10)的进气口通过管道相连;所述布袋除尘器(4-4)的细粉出口与所述旋风预热器(4-3)的进气口通过管道连接;所述旋风预热器(4-3)的进气口与所述旋风除尘器(5-6)的出气口通过管道相连;所述旋风预热器(4-3)的出气口与所述文丘里预热器(4-1)的进气口通过管道相连;所述旋风预热器(4-3)的出料口与所述进料器(5-1)的进料口通过管道相连;
所述进料器(5-1)的出料口与所述床体(5-2)的进料口通过管道相连;所述进料器(5-1)的松动风入口与净化氮气总管相连;所述床体(5-2)的进气口与气体加热器(5-4)的出气口通过管道相连;所述床体(5-2)中设置竖直挡板;所述床体(5-2)的出料口与所述排料器(5-3)的进料口通过管道相连;所述床体(5-2)的出气口与所述旋风除尘器(5-6)的进气口通过管道相连;所述旋风除尘器(5-6)的出气口与所述旋风预热器(4-3)的进气口通过管道相连;所述旋风除尘器(5-6)的出料口与所述排料器(5-3)的进料口通过管道相连;所述排料器(5-3)的出料口与所述文丘里冷却器(6-1)的进料口通过管道相连;所述排料器(5-3)的松动风入口与净化氮气总管相连;所述气体加热器(5-4)的出气口与所述床体(5-2)的进气口通过管道相连;所述气体加热器(5-4)的进气口分别与所述气体净化器(5-5)的出气口及所述第二旋风分离器(6-2)的出气口通过管道相连;所述气体加热器(5-4)的燃料入口与燃料总管通过管道相连;所述气体加热器(5-4)的助燃风入口与压缩空气总管通过管道相连;所述气体净化器(5-5)的进气口与还原气体总管通过管道相连;
所述文丘里冷却器(6-1)的进料口与所述排料器(5-3)的出料口相连;所述文丘里冷却器(6-1)的进气口与所述旋风冷却器(6-3)的出气口通过管道相连;所述文丘里冷却器(6-1)的出气口与所述第二旋风分离器(6-2)的进气口通过管道相连; 所述第二旋风分离器(6-2)的出气口与所述气体加热器(5-4)的进气口通过管道相连;所述第二旋风分离器(6-2)的出料口与所述旋风冷却器(6-3)的进气口相连;所述旋风冷却器(6-3)的进气口与净化氮气总管相连;所述旋风冷却器(6-3)的出气口与所述文丘里冷却器(6-1)的进气口通过管道相连;所述旋风冷却器(6-3)的出料口与所述二级冷却装置(7)的进料口通过管道相连;
所述二级冷却装置(7)的进料口与所述旋风冷却器(6-3)的出料口通过管道相连;所述二级冷却装置(7)的出料口与所述低价钒氧化物料仓(8-1)的进料口通过管道相连;所述二级冷却装置(7)的进水口与工艺水总管通过管道相连;所述二级冷却装置(7)的出水口与水冷却***的进水口通过管道相连;
所述低价钒氧化物料仓(8-1)底部的出料口与所述低价钒氧化物螺旋加料器(8-2)的进料口相连接;所述低价钒氧化物螺旋加料器(8-2)的出料口与所述溶解活化装置(9)的进料口通过管道相连;
所述搅拌溶解装置(9-1)的洁净水入口与洁净水总管通过管道相连;所述搅拌溶解装置(9-1)的硫酸溶液入口通过管道与硫酸溶液总管连接;所述搅拌溶解装置(9-1)的气体出口通过管道与所述尾气淋洗吸收塔(10)的进气口连接;所述搅拌溶解装置(9-1)置于所述微波活化装置(9-2)内部;
所述尾气淋洗吸收塔(10)的气体出口通过管道与所述引风机(11)的气体入口相连接;所述引风机(11)的气体出口通过管道与所述烟囱(12)底部的气体入口相连接。
2.一种基于权利要求1所述***生产3.5价高纯钒电解液的方法,所述方法包括以下步骤:
所述三氯氧钒储罐(1)中的三氯氧钒和来自净化氮气总管的氮气经所述三氯氧钒汽化器(2-1)汽化预热后通过所述氯化物喷枪(2-3)进入所述气相水解流化床主体(2-4);洁净水和净化空气经所述洁净水汽化器(2-2)汽化预热后送入所述气相水解流化床主体(2-4)中,使三氯氧钒发生水解、并维持粉体物料的流态化,形成五氧化二钒粉体和富含氯化氢的水解烟气;五氧化二钒粉体经所述水解流化床排料器(2-5)排出送入所述五氧化二钒料仓(3-1)中;水解烟气经所述气相水解流化床主体(2-4)扩大段脱除粉尘后,进入所述盐酸尾气吸收器(2-6)进行吸收处理形成盐酸溶液副产品,吸收尾气进入所述尾气淋洗吸收塔(10)进行处理;
所述五氧化二钒料仓(3-1)中的五氧化二钒依次进入所述五氧化二钒螺旋加料器(3-2)、所述文丘里预热器(4-1)、所述第一旋风分离器(4-2)、所述旋风预热器(4-3)之后,与来自于所述布袋除尘器(4-4)回收的细粉颗粒一同经所述进料器(5-1)进入所述床体(5-2)中;所述净化氮气依次经所述旋风冷却器(6-3)、所述文丘里冷却器(6-1)、所述第二旋风分离器(6-2)预热后与来自所述气体净化器(5-5)的净化还原气体混合经所述气体加热器(5-4)二次预热后进入所述床体(5-2)中使五氧化二钒粉体物料维持流态化,并使之发生还原,得到低价钒氧化物粉体和还原烟气;低价钒氧化物经所述床体(5-2)的排料口与所述旋风除尘器(5-6)回收的细粉一同依次进入所述排料器(5-3)、所述文丘里冷却器(6-1)、所述第二旋风分离器(6-2)、所述旋风冷却器(6-3)、所述二级冷却装置(7)冷却后,进入所述低价钒氧化物料仓(8-1)中;所述床体(5-2)中的还原烟气依次进入所述旋风除尘器(5-6)、所述旋风预热器(4-3)、所述文丘里预热器(4-1)、所述第一旋风分离器(4-2)、经所述布袋除尘器(4-4)除尘后进入所述尾气淋洗吸收塔(10),经碱溶液吸收处理后排出的气体经所述引风机(11)送入所述烟囱(12)后排空;
所述低价钒氧化物料仓(8-1)中的低价钒氧化物通过所述低价钒氧化物螺旋加料器(8-2)进入所述搅拌溶解装置(9-1)中,在所述微波活化装置(9-2)提供微波场的作用下,与来自于洁净水总管的洁净水、硫酸溶液总管的硫酸溶液发生溶解反应,得到高纯钒电解液,产生的酸雾气体送入所述尾气淋洗吸收塔(10)进行处理。
3.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,所述三氯氧钒原料纯度为99%~99.9999%。
4.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,在所述三氯氧钒汽化器(2-1)内,汽化操作温度为40~600℃,氮气与三氯氧钒摩尔比为0.10~10.00。
5.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,在所述洁净水汽化器(2-2)内,汽化操作温度为40~600℃,空气与水的质量比为0.10~10.00。
6.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,在所述气相水解流化床主体(2-4)内,通过三氯氧钒气相水解直接制备五氧化二钒粉体,气相水解过程通入水蒸气与三氯氧钒的质量比为0.10~10.00,气相水解操作温度为 100~600℃,粉料的平均停留时间为15~300min。
7.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,在床体(5-2)内,还原的操作温度为400~700℃,还原气体经所述净化器(5-5)净化后,有机物含量小于1mg/Nm3,固体颗粒总含量小于2mg/Nm3,通入氮气与还原气体的混合气体中还原气体体积分数为10%~90%,粉料的平均停留时间为30~90min。
8.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,所述硫酸溶液是电子级纯度、摩尔浓度为4.0~10.0mol/L的硫酸溶液。
9.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,所述高纯钒电解液是III价和IV价钒离子摩尔浓度比为1:1混合的钒电解液,钒离子的平均价态为3.5。
10.根据权利要求2所述的生产3.5价高纯钒电解液的方法,其特征在于,在所述溶解活化装置(9)中,采用外加微波场的方式辅助低价钒氧化物溶解及活化钒离子,溶解活化时间为30~300分钟,溶解活化温度为20~45℃,微波功率密度为10~300W/L,微波频率为2450MHz或916MHz。
CN201610060093.6A 2016-01-28 2016-01-28 一种生产3.5价高纯钒电解液的***及方法 Active CN106257728B (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201610060093.6A CN106257728B (zh) 2016-01-28 2016-01-28 一种生产3.5价高纯钒电解液的***及方法
EP17743584.9A EP3401991B1 (en) 2016-01-28 2017-01-16 System and method for producing 3.5-valent highly pure vanadium electrolyte
RU2018130745A RU2695083C1 (ru) 2016-01-28 2017-01-16 Система и способ получения ванадиевого электролита высокой чистоты с валентностью 3,5
US16/074,075 US10673088B2 (en) 2016-01-28 2017-01-16 System and method for producing 3.5-valence high-purity vanadium electrolyte
JP2018539348A JP6588652B2 (ja) 2016-01-28 2017-01-16 3.5原子価高純度バナジウム電解液の製造システム及び方法
CA3012273A CA3012273A1 (en) 2016-01-28 2017-01-16 System and method for producing 3.5-valence high-purity vanadium electrolyte
PCT/CN2017/071207 WO2017128969A1 (zh) 2016-01-28 2017-01-16 一种生产3.5价高纯钒电解液的***及方法
NZ744570A NZ744570A (en) 2016-01-28 2017-01-16 System and method for producing 3.5-valence high-purity vanadium electrolyte
AU2017210930A AU2017210930B2 (en) 2016-01-28 2017-01-16 System and method for producing 3.5-valent highly pure vanadium electrolyte
ZA201805714A ZA201805714B (en) 2016-01-28 2018-08-27 System and method for producing 3.5-valence high-purity vanadium electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610060093.6A CN106257728B (zh) 2016-01-28 2016-01-28 一种生产3.5价高纯钒电解液的***及方法

Publications (2)

Publication Number Publication Date
CN106257728A CN106257728A (zh) 2016-12-28
CN106257728B true CN106257728B (zh) 2018-01-12

Family

ID=57713581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610060093.6A Active CN106257728B (zh) 2016-01-28 2016-01-28 一种生产3.5价高纯钒电解液的***及方法

Country Status (10)

Country Link
US (1) US10673088B2 (zh)
EP (1) EP3401991B1 (zh)
JP (1) JP6588652B2 (zh)
CN (1) CN106257728B (zh)
AU (1) AU2017210930B2 (zh)
CA (1) CA3012273A1 (zh)
NZ (1) NZ744570A (zh)
RU (1) RU2695083C1 (zh)
WO (1) WO2017128969A1 (zh)
ZA (1) ZA201805714B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257728B (zh) * 2016-01-28 2018-01-12 中国科学院过程工程研究所 一种生产3.5价高纯钒电解液的***及方法
CN108622935B (zh) * 2017-03-17 2020-02-18 中国科学院过程工程研究所 一种高效清洁氯化法制备高纯低价钒氧化物的***及方法
CN112582659A (zh) * 2020-12-08 2021-03-30 苏州贝铠能源科技有限公司 一种钒液流电池电解液以及制备方法
KR102474181B1 (ko) * 2021-09-27 2022-12-02 스탠다드에너지(주) 바나듐 레독스 전지용 바나듐 전해액 제조 방법
CN114410967A (zh) * 2022-01-20 2022-04-29 北京普能世纪科技有限公司 一种用于精确控制高纯五氧化二钒还原价态的方法及装置
CN114361549A (zh) * 2022-01-20 2022-04-15 北京普能世纪科技有限公司 一种制备全钒液流电池用钒电解液的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027076A1 (en) * 2011-08-23 2013-02-28 Squirrel Holdings Ltd. "in situ" production of electrolyte solution from vanadium pentoxide for use in a flow redox battery storage system
WO2013054921A1 (ja) * 2011-10-14 2013-04-18 株式会社ギャラキシー バナジウム電解液、その製造方法及びその製造装置
CN103606694A (zh) * 2013-11-15 2014-02-26 河北钢铁股份有限公司承德分公司 一种商用钒电池电解液的制备方法
CN104638288A (zh) * 2013-11-06 2015-05-20 中国人民解放军63971部队 一种3.5价钒电解液的电化学制备方法
CN106257728A (zh) * 2016-01-28 2016-12-28 中国科学院过程工程研究所 一种生产3.5价高纯钒电解液的***及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US849094A (en) 1906-09-05 1907-04-02 Oswald F Zahn Self-righting roller-bearing.
EP0276279A4 (en) 1986-07-21 1990-01-08 Southwest Found Biomed Res PREPARATION AND METHOD FOR IMMUNIZING AGAINST VIRAL AIDS AND ARC PATHOGENS.
WO2002095855A1 (en) * 2001-05-18 2002-11-28 Unisearch Limited Vanadium redox battery electrolyte
JP4894175B2 (ja) * 2005-06-17 2012-03-14 トヨタ自動車株式会社 燃料電池
CN101728560B (zh) 2009-04-10 2012-08-29 承德万利通实业集团有限公司 一种制备钒电池负极电解液的方法
CN101562256B (zh) 2009-05-27 2011-06-22 青岛武晓集团有限公司 一种用于全钒离子氧化还原液流电池的电解液制备方法
CN101880059B (zh) * 2010-06-08 2015-02-18 中国科学院过程工程研究所 一种采用流化床反应器生产三氧化二钒的方法
CN102468509B (zh) 2010-11-16 2015-05-20 中国海洋石油总公司 制备钒电池用电解液的方法
CN102557134B (zh) 2011-12-23 2014-07-02 中国科学院过程工程研究所 一种生产高纯三氧化二钒的流态化还原炉及生产方法
CN103401010B (zh) 2013-08-13 2015-04-29 湖南省银峰新能源有限公司 一种全钒液流电池电解液的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027076A1 (en) * 2011-08-23 2013-02-28 Squirrel Holdings Ltd. "in situ" production of electrolyte solution from vanadium pentoxide for use in a flow redox battery storage system
WO2013054921A1 (ja) * 2011-10-14 2013-04-18 株式会社ギャラキシー バナジウム電解液、その製造方法及びその製造装置
CN104638288A (zh) * 2013-11-06 2015-05-20 中国人民解放军63971部队 一种3.5价钒电解液的电化学制备方法
CN103606694A (zh) * 2013-11-15 2014-02-26 河北钢铁股份有限公司承德分公司 一种商用钒电池电解液的制备方法
CN106257728A (zh) * 2016-01-28 2016-12-28 中国科学院过程工程研究所 一种生产3.5价高纯钒电解液的***及方法

Also Published As

Publication number Publication date
WO2017128969A1 (zh) 2017-08-03
EP3401991B1 (en) 2020-09-23
CN106257728A (zh) 2016-12-28
EP3401991A1 (en) 2018-11-14
ZA201805714B (en) 2019-11-27
JP6588652B2 (ja) 2019-10-09
NZ744570A (en) 2019-03-29
US10673088B2 (en) 2020-06-02
JP2019505073A (ja) 2019-02-21
RU2695083C1 (ru) 2019-07-19
EP3401991A4 (en) 2019-01-09
CA3012273A1 (en) 2017-08-03
US20190044173A1 (en) 2019-02-07
AU2017210930A1 (en) 2018-08-09
AU2017210930B2 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN106257728B (zh) 一种生产3.5价高纯钒电解液的***及方法
CN106257724B (zh) 一种制备高纯钒电解液的***及方法
CN106257725B (zh) 一种制备高活性全钒液流电池特定价态电解液的***及方法
CN106257726B (zh) 一种生产高纯度高活性钒电解液的***及方法
CN106257727B (zh) 一种制备钒电池高纯电解液的***及方法
CN107565153B (zh) 一种制备高活性高纯度特定价态钒电解液的***及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant