CN106219749A - 一种处理中低浓度含氮有机废水的habr技术方法和设备 - Google Patents

一种处理中低浓度含氮有机废水的habr技术方法和设备 Download PDF

Info

Publication number
CN106219749A
CN106219749A CN201610841755.3A CN201610841755A CN106219749A CN 106219749 A CN106219749 A CN 106219749A CN 201610841755 A CN201610841755 A CN 201610841755A CN 106219749 A CN106219749 A CN 106219749A
Authority
CN
China
Prior art keywords
compartment
anaerobism
group
sewage
habr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610841755.3A
Other languages
English (en)
Inventor
王毅力
胡玉祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Forestry University
Original Assignee
Beijing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Forestry University filed Critical Beijing Forestry University
Priority to CN201610841755.3A priority Critical patent/CN106219749A/zh
Publication of CN106219749A publication Critical patent/CN106219749A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/284Anaerobic digestion processes using anaerobic baffled reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明提供一种处理中低浓度含氮有机废水的HABR技术方法和设备,该方法处理污水的步骤为:在HABR各格室中接种污泥进行启动;污水依次流经各格室,大部分溶解性有机物被厌氧生物降解,氨氮被部分亚硝化后发生厌氧氨氧化反应得到去除,或经好氧亚硝化和缺氧反硝化得到去除;对沉淀格室内的污泥或泥水混合液进行回流,从而长期维持亚硝化细菌的活性,进行短程硝化‑厌氧氨氧化脱氮时回流污泥,进行短程硝化‑反硝化脱氮时回流泥水混合液。实现该污水处理方法的设备包括进水***、HABR反应器、回流***、水浴***、曝气***。该方法对中低浓度含氮有机废水中有机物、氨氮及悬浮颗粒物去除效果良好,且装置占地面积小、具有操作灵活等优点。

Description

一种处理中低浓度含氮有机废水的HABR技术方法和设备
技术领域
本发明属于环境保护、污水治理领域,具体涉及一种处理中低浓度含氮有机废水的HABR技术方法和设备。
背景技术
传统生物脱氮工艺为硝化-反硝化工艺,以其为核心的工艺如A/O工艺、A2/O工艺、氧化沟工艺、SBR工艺、BAF工艺等,已经在水处理工程中广泛应用。硝化-反硝化脱氮工艺具有一些缺点,如硝化菌群生长较慢,反应器内难以维持较高的生物浓度,造成***水力停留时间长,容积负荷率低,基建投资大;硝化过程要在有氧的条件下进行,需要大量能耗;反硝化反应需要电子供体,特别是对于低 C/N 比废水,常需额外投加碳源,增加运行费用等。
短程硝化-反硝化工艺在硝化-反硝化工艺基础上进行改进,将硝化过程控制在亚硝化阶段而终止,随后进行反硝化。同硝化-反硝化相比,短程硝化-反硝化能够节省25%的硝化曝气量、40%的反硝化碳源、50%的污泥生成量,并且缩短反应时间,相应减少反应器容积,已成为废水生物脱氮技术的一个研究热点。
短程硝化-厌氧氨氧化是一种新型的生物脱氮工艺,通过控制溶解氧、pH 值、温度、水力停留时间等条件,将硝化过程控制在亚硝化阶段,随后经厌氧氨氧化菌作用将废水中的NH4 +-N和NO2 --N转化为氮气,从而实现脱氮目的。同传统生物脱氮工艺相比,短程硝化-厌氧氨氧化工艺减少曝气量,节约能耗,并且缩短硝化反应的时间,从而减少反应器容积;厌氧氨氧化阶段不需要外加碳源,且氨氧化的能耗大为下降;污泥具有良好的沉降性能和较高的生物相浓度,避免了污泥膨胀。目前针对短程硝化-厌氧氨氧化工艺的研究表明,将氨氧化控制在亚硝化阶段对工艺操作条件要求严苛,并且长时间维持亚硝化体系的稳定运行较为困难;大多数研究将亚硝化和厌氧氨氧化分为独立的两部分装置,工艺较为复杂,并且加大了基建成本。
公开号为CN105293702A的中国专利申请公开了一种通过控制不同的缺好氧体积比启动并稳定维持短程硝化反硝化的方法与装置。该工艺是通过以下的技术路线实现的:通过控制好氧区溶解氧浓度以及调节缺氧区和好氧区的体积比为5:3~6:2实现短程硝化反硝化***的启动;根据进水水质变化以及日常监测情况,通过调节好氧区溶解氧浓度以及改变缺氧区和好氧区的体积比实现短程硝化反硝化***的稳定维持。该方法与装置未设置控温***,较难维持亚硝化的持续稳定进行;污泥回流和消化液回流分开进行,***运行方式较复杂,不易操作。
公开号为CN202379808U的中国专利申请公开了一种晚期垃圾渗滤液短程硝化与厌氧氨氧化组合脱氮装置。该工艺是通过以下的技术路线实现的:该装置设有渗滤液原水箱、A/O短程硝化反应器、沉淀池、厌氧氨氧化反应器;渗滤液原水箱与A/O短程硝化反应器缺氧区首格室相连通,沉淀池与厌氧氨氧化反应器连通;厌氧氨氧化反应器设有自循环管路以及出水回流管回流至A/O短程硝化反应器;方法包括以下步骤:启动A/O短程硝化反应器、启动厌氧氨氧化反应器、A/O短程硝化反应器与厌氧氨氧化反应器***串联运行,通过厌氧氨氧化反应器出水循环对原液进行稀释。该装置及方法中,短程硝化和厌氧氨氧化分别在两个反应器中进行,装置较复杂且占地面积大;需要用原水对短程硝化单元出水进行稀释后再进行厌氧氨氧化,操作较繁琐。
公开号为CN105254006A的中国专利申请公开了一种一体化半亚硝化厌氧氨氧化装置及其工作方法。该工艺是通过以下的技术路线实现的:应用HABR反应器,在第一格室进行半硝化反应,去除大部分COD以及吸收磷;再将第二格室混合液回流入第一格室,使厌氧环境下聚磷菌释放的磷被吸收,第二格室采用氮气吹脱氧气,顶部的三相分离器将气液固分离后,混合气体再通过碳分子筛截留氧气,形成氮气循环,为第三格室提供厌氧环境;最后通过第三格室的厌氧氨氧化反应同时去除水中的NH4 +-N 和NO2 --N。该装置及方法实现了一体化的半亚硝化厌氧氨氧化过程,然而未进行亚硝化污泥的回流或排泥,较难在长期运行的情况下维持亚硝化细菌的活性。
据此,本发明旨在针对现有污水生物脱氮技术存在的问题,提供一种处理中低浓度含氮有机废水的技术方法和设备,能够一体化运行短程硝化-反硝化工艺或短程硝化-厌氧氨氧化工艺,并且效果优良、经济成本低。
发明内容
1、发明目的:本发明目的在于提出一种能够一体化运行短程硝化-反硝化工艺或短程硝化-厌氧氨氧化工艺的技术和设备,同时可去除污水中溶解性有机物。
2、技术方案
本发明提供的处理中低浓度含氮有机废水的复合式厌氧折流板反应器(HABR,HybridAnaerobic Baffled Reactor)技术方法,包括如下运行步骤:
1)将一定体积的污泥装入HABR各单元格室中进行7-15天控温培养;
2)污水进入进水水箱,以NaHCO3调节pH值为7.5~8.0;
3)污水依次流过第一组厌氧格室、缺氧格室、好氧格室、沉淀格室、第二组厌氧格室,通过水浴槽保持装置内污水温度为28-32oC,污水在装置内的停留时间为10-48 h;
4)对沉淀格室内的污泥或泥水混合液进行回流,包括两种回流方案,分别为短程硝化-厌氧氨氧化方案和短程硝化-反硝化方案。
其中,短程硝化-厌氧氨氧化方案的回流操作为:将沉淀格室内的污泥回流至缺氧格室,并且使污泥在缺氧格室、好氧格室、沉淀格室之间循环流动,形成在缺氧/好氧、高游离氨/低游离氨区域间的污泥循环,从而抑制硝化细菌的活性,促进亚硝化细菌的生长。污泥回流为间歇回流,每2 h回流5 min,5 min内的回流流量是进水流量的1-3倍。由于回流泵的抽吸作用使沉淀格室污泥内部形成较大空隙,不利于后续污泥回流,故回流结束后搅拌0.5-1 min,转速为100-200 rpm,使泥水混合均匀后再次沉淀。
特别是,在短程硝化-厌氧氨氧化方案中,第一组厌氧格室内,污水中的大部分溶解性有机物被厌氧生物降解;好氧格室中,污水中的一部分NH4 +-N被氧化为NO2 --N,通过控制水力停留时间使生成的NO2 --N与剩余NH4 +-N摩尔比为1.3:1;第二组厌氧格室中,污水中的NO2 --N与剩余NH4 +-N发生厌氧氨氧化反应完成脱氮。
其中,短程硝化-亚硝化方案的回流操作为:将沉淀格室内的泥水混合液回流至缺氧格室,并且使污泥在缺氧格室、好氧格室、沉淀格室之间循环流动,从而促进亚硝化细菌的生长,同时回流硝化液;泥水混合液回流为连续回流,回流比为50%-200%;沉淀格室内设置搅拌桨,每30 min搅拌0.5-1 min,转速为100-200 rpm。
特别是,在短程硝化-亚硝化方案中,第一组厌氧格室内,污水中的大部分溶解性有机物被厌氧生物降解;缺氧格室中,NO2 --N发生反硝化得到去除;好氧格室中,NH4 +-N发生短程硝化产生NO2 --N;第二组厌氧格室中,污水中的有机物进一步得到去除,悬浮颗粒物被污泥吸附。
其中,步骤1)中好氧、缺氧格室内接种好氧活性污泥,厌氧格室内接种厌氧消化污泥,各格室内污泥接种体积占格室有效体积的1/3至2/3,污泥浓度为3-10 g/L。沉淀格室不接种污泥。
其中,步骤3)中所述缺氧格室内通过搅拌桨的搅拌作用使泥水均匀混合,转速为100-200 rpm,好氧格室内通过曝气作用使泥水均匀混合。
特别是,好氧格室内,控制溶解氧为0.7-1.5mg/L,曝气方式为间歇曝气,曝气循环周期为:曝气1-5 min,停止曝气2-8 min。曝气流量为0.1-1 L/(min•L)。格室内可填充填料,填充体积占格室有效体积的1/2至3/4。
本发明另一方面提供一种处理中低浓度含氮有机废水的HABR设备,包括进水***、HABR反应器、回流***、水浴***、曝气***。
进水***,包括进水水箱(1)和进水泵(2),通过进水泵调节进水流量大小。
HABR反应器包括串联的第一组厌氧格室(3)、缺氧格室(4)、好氧格室(5)、沉淀格室(6)和第二组厌氧格室(7),以及水浴槽(8)。
其中,第一组厌氧格室、第二组厌氧格室分别包括一个或多个厌氧格室,设有折流板;好氧格室包括两个等体积的串联格室;缺氧格室、沉淀格室内设有折流板、搅拌桨(9),沉淀格室底部通过污泥回流管(26)同缺氧格室底部相连,沉淀格室下部设置污泥斗(11);选用短程硝化-厌氧氨氧化方案时,第二组厌氧格室由不透光材料制作;水浴槽包裹在反应器***。
特别是,各厌氧格室、缺氧格室体积相等,好氧格室的体积为厌氧格室的1-1.5倍,沉淀格室体积为厌氧格室的0.5-0.8倍。
尤其是,进水COD<1000 mg/L时第一组厌氧格室数至少设置为1,进水COD>1000mg/L时第一组厌氧格室数至少设置为2;运行短程硝化-厌氧氨氧化方案时第二组厌氧格室数至少设置为2,运行短程硝化-厌氧氨氧化方案且进水NH4 +-N>200 mg/L时第二组厌氧格室数至少设置为3,运行短程硝化-反硝化方案时第二组厌氧格室至少设置为1。
水浴***,包括水浴水箱(19)、加热棒(20)和蠕动泵(21)。
曝气***,包括微孔曝气头(10)、空气压缩机(22)和流量计(23)。
3、本发明的污水处理方法和处理设备具有如下优点:
(1) 本发明在单一反应器内实现了中低浓度含氮有机废水的处理,处理效果良好,具有优良的有机负荷、氮素负荷适应能力。
(2) 本发明好氧格室溶解氧含量低,所需曝气量低,节约曝气成本。
(3) 本发明在单一反应器内实现了短程硝化-厌氧氨氧化反应,工艺流程简单,节约建设成本。
(4) 本发明通过改变水力停留时间控制短程硝化出水中NO2 --N与NH4 +-N的含量,可直接进行后续厌氧氨氧化反应,操作简便。
(5) 本发明在单一反应器内实现了短程硝化-厌氧氨氧化与短程硝化-反硝化两种运行方式,可根据实际运行条件、水质情况调整脱氮模式,操作方式灵活。
(6) 本发明的设备结构紧凑、占地面积小、运行成本低、操作简便,提高了中低浓度含氮有机废水的处理效率。
附图说明
图1 为处理中低浓度含氮有机废水HABR设备的结构图。
附图标记说明:
1.进水水箱;2.进水泵;3. 第一组厌氧格室;4. 缺氧格室;5. 好氧格室;6.沉淀格室;7. 第二组厌氧格室;8.水浴槽;9.搅拌桨;10.微孔曝气头;11.污泥斗;12.污泥回流泵;13.回流污泥出口;14.回流污泥入口;15.反应器进水口;16.反应器出水口;17.水浴槽进水口;18.水浴槽出水口;19.水浴水箱;20.加热棒;21.蠕动泵;22.空气压缩机;23.流量计;24.进水管;25.水浴管;26.污泥回流管。
具体实施方式
下面结合附图和具体实施案例对本发明作进一步的说明。
实施实例1
待处理中低浓度含氮有机废水选用某农村生活污水,其中污水的化学需氧量(CODCr)为100-500 mg/L,总氮(TN)浓度为20-60 mg/L,悬浮颗粒物(SS)浓度为100-300 mg/L,总磷(TP)浓度为2-8 mg/L。农村生活污水的CODCr的平均值为314 mg/L,SS浓度的平均值为225mg/L,TP浓度的平均值为4.6 mg/L,TN浓度的平均值为37 mg/L。
1)制作HABR设备。HABR反应器长×宽×高(mm)= 580×100×255,有效高度为220mm,有效容积为12.4 L。反应器第一组厌氧格室数设置为1,第二组厌氧格室数设置为2。好氧格室的体积为厌氧格室的1.3倍,沉淀格室体积为厌氧格室的0.6倍。各缺氧格室、厌氧格室被折流板分成1∶3 的下、上流室,每个上流室和好氧格室的顶部设有污水取样口,下部设有污泥取样口。反应器由有机玻璃制成,第二组厌氧格室使用锡箔纸遮光。
2)将葡萄糖、氯化铵、磷酸二氢钾、碳酸氢钠及其他微量营养物质及缓冲溶液混合,制成人工废水,其中葡萄糖作为碳源,氯化铵作为唯一氮源,磷酸二氢钾作为唯一磷源,作为反应器启动进水。
3)选用短程硝化-厌氧氨氧化方案处理污水。于HABR反应器内接种污泥并驯化。实验室中采用高碑店污水处理厂反应池中的活性污泥与厌氧消化池中的消化污泥进行接种,反应器各缺氧格室、好氧格室中放入1/2体积的好氧活性污泥,厌氧格室中放入1/2体积的厌氧消化污泥,各格室内污泥浓度为4 g/L-8 g/L。接种污泥后,好氧格室中曝气量控制在0.1-1L/min·L,曝气循环为曝气1 min,停止曝气3 min,控制好氧格室溶解氧浓度为0.7-1.5 mg/L。于水箱内调节进水pH值至7.5-8,反应器采用连续进水的方式,污水水力停留时间为48 h。沉淀格室内污泥采用间歇回流方式回流至缺氧格室,每2 h回流5 min。
4)启动HABR反应器。保持污水水力停留时间为48 h一周后,逐步缩短水力停留时间,待CODCr、TN去除率达到指定值,出水污染物浓度趋于稳定后,启动完毕。
5)在检测阶段,将试验用中低浓度含氮有机废水作为进水泵入连续运行的反应器内进行处理,控制HABR反应器温度30±1℃,水力停留时间24小时。
按照HJ/T 399-2007《水质 化学需氧量的测定 快速消解分光光度法》检测水中的化学需氧量(CODCr);
按照GB 11893-89《水质 总磷的测定 钼酸铵分光光度法》检测水中总磷(TP);
按照GB 11894-89《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》检测水中总氮(TN)。
测定结果如表1所示。
实施实例2
待处理中低浓度含氮有机废水选用某农村生活污水,其中污水的CODCr为100-500 mg/L, TN浓度为20-60 mg/L,SS浓度为100-300 mg/L,TP浓度为2-8 mg/L。农村生活污水的CODCr的平均值为279 mg/L、SS浓度的平均值为168 mg/L、TP浓度的平均值为5.4 mg/L、TN浓度的平均值为43 mg/L。
制作HABR设备。HABR反应器长×宽×高(mm)= 500×100×255,有效高度为220mm,有效容积为10.6 L。反应器第一组厌氧格室数和第二组厌氧格室数都设置为1。好氧格室的体积为厌氧格室的1.3倍,沉淀格室体积为厌氧格室的0.6倍。各缺氧格室、厌氧格室被折流板分成1∶3 的下、上流室,每个上流室和好氧格室的顶部设有污水取样口,下部设有污泥取样口。反应器由有机玻璃制成。
选用短程硝化-反硝化方案处理污水。除污泥回流方式外,反应器启动步骤与实例1相同。其中,沉淀格室内泥水混合液采用连续回流方式,回流比为100%。反应器启动成功后,将试验用中低浓度含氮有机废水作为进水泵入连续运行的反应器内进行处理,控制耦合反应器温度30±1℃,水力停留时间24小时。
测定结果如表1所示。
实施实例3
待处理中低浓度含氮有机废水选用畜禽养殖废水经厌氧处理后的出水,其中污水的CODCr为800-1200 mg/L,TN浓度为150-300 mg/L,SS浓度为200-400 mg/L, TP浓度为20-60mg/L。畜禽养殖废水经厌氧处理后出水的CODCr的平均值为964 mg/L、SS浓度的平均值为315mg/L、TP浓度的平均值为46 mg/L、TN浓度的平均值为247 mg/L。
制作HABR设备。HABR反应器长×宽×高(mm)= 740×100×255,有效高度为220mm,有效容积为16.0 L。反应器第一组厌氧格室数设置为2,,第二组厌氧格室数都设置为3。好氧格室的体积为厌氧格室的1.3倍,沉淀格室体积为厌氧格室的0.6倍。各缺氧格室、厌氧格室被折流板分成1∶3 的下、上流室,每个上流室和好氧格室的顶部设有污水取样口,下部设有污泥取样口。反应器由有机玻璃制成,第二组厌氧格室使用锡箔纸遮光。
选用方短程硝化-厌氧氨氧化方案处理污水。反应器启动步骤与实例1相同。反应器启动成功后,将试验用中低浓度含氮有机废水作为进水泵入连续运行的反应器内进行处理,控制耦合反应器温度30±1℃,水力停留时间36小时。
测定结果如表1所示。
实施实例4
待处理中低浓度含氮有机废水选用畜禽养殖废水经厌氧处理后的出水,其中污水的CODCr为800-1200 mg/L, TN浓度为150-300 mg/L,SS浓度为200-400 mg/L, TP浓度为20-60mg/L。畜禽养殖废水经厌氧处理后出水的CODCr的平均值为1078 mg/L、SS浓度的平均值为279 mg/L、TP浓度的平均值为38 mg/L、TN浓度的平均值为314 mg/L。
制作HABR设备。HABR反应器长×宽×高(mm)= 580×100×255,有效高度为220mm,有效容积为12.4 L。反应器第一组厌氧格室数设置为2,第二组厌氧格室数都设置为1。好氧格室的体积为厌氧格室的1.3倍,沉淀格室体积为厌氧格室的0.6倍。各缺氧格室、厌氧格室被折流板分成1∶3 的下、上流室,每个上流室和好氧格室的顶部设有污水取样口,下部设有污泥取样口。反应器由有机玻璃制成。
选用短程硝化-亚硝化方案处理污水。反应器启动步骤与实例2相同。反应器启动成功后,将试验用中低浓度含氮有机废水作为进水泵入连续运行的反应器内进行处理,控制耦合反应器温度30±1℃,水力停留时间28小时。
测定结果如表1所示。
表1 本发明进水、出水的水质检测结果
检测结果表明:
1、多种中低浓度含氮有机废水经HABR设备处理后,有机污染物含量显著降低,CODCr的去除率达90%以上。氮素污染也得到降低,总氮的去除率达80%以上。悬浮颗粒物含量下降,去除率达90%以上。
2、短程硝化-厌氧氨氧化工艺对总磷的去除率很低,约为10%-20%,短程硝化-反硝化工艺有良好的除磷能力,总磷的去除率达75%以上。
3、通过调整第一组和第二组厌氧格室的格室数,可以处理不同有机负荷、氮素负荷的污水。
4、本发明的HABR设备能够承受住进水水量和水质的变化,适用于处理被各种中低浓度含氮有机废水,处理效果明显。

Claims (9)

1.一种处理中低浓度含氮有机废水的复合式厌氧折流板反应器(HABR,HybridAnaerobic Baffled Reactor)技术方法,其特征是包括如下运行步骤:
1)将一定体积的污泥装入HABR各单元格室中进行控温培养;
2)污水进入进水水箱,以NaHCO3调节pH值为7.5~8.0;
3)污水依次流过第一组厌氧格室、缺氧格室、好氧格室、沉淀格室、第二组厌氧格室,通过水浴槽保持装置内污水温度为28-32oC,污水在装置内的停留时间为10-48 h;
4)对沉淀格室内的污泥或泥水混合液进行回流,包括两种回流方案,分别为短程硝化-厌氧氨氧化方案和短程硝化-反硝化方案。
2.如权利要求1中所述的方法,其特征是步骤4)所述短程硝化-厌氧氨氧化方案为将沉淀格室内的污泥回流至缺氧格室,并且使污泥在缺氧格室、好氧格室、沉淀格室之间循环流动,形成在缺氧/好氧、高游离氨/低游离氨区域间的污泥循环,从而抑制硝化细菌的活性,促进亚硝化细菌的生长;污泥回流为间歇回流,每2 h回流5 min,5 min内的回流流量是进水流量的1-3倍;第一组厌氧格室中,污水中的大部分溶解性有机物被厌氧生物降解;好氧格室中,污水中的一部分NH4 +-N被氧化为NO2 --N,通过控制水力停留时间使生成的NO2 --N与剩余NH4 +-N摩尔比为1.3:1;第二组厌氧格室中,污水中的NO2 --N与剩余NH4 +-N发生厌氧氨氧化反应完成脱氮。
3.如权利要求1中所述的方法,其特征是步骤4)所述短程硝化-反硝化方案为将沉淀格室内的泥水混合液回流至缺氧格室,并且使污泥在缺氧格室、好氧格室、沉淀格室之间循环流动,从而促进亚硝化细菌的生长,同时回流硝化液;泥水混合液回流为连续回流,回流比为50%-200%;第一组厌氧格室中,污水中的大部分溶解性有机物被厌氧生物降解;缺氧格室中,NO2 --N发生反硝化得到去除;好氧格室中,NH4 +-N发生短程硝化产生NO2 --N;第二组厌氧格室中,污水中的有机物进一步得到去除,悬浮颗粒物被污泥吸附。
4.如权利要求1所述的方法,其特征是步骤3)所述好氧格室内,控制溶解氧浓度为0.7-1.5 mg/L,曝气方式为间歇曝气,曝气循环周期为:曝气1-5 min,停止曝气2-8 min,曝气流量为0.1-1 L/(min•L)。
5.一种处理中低浓度含氮有机废水的HABR设备,其特征是包括进水***、HABR反应器、回流***、水浴***、曝气***。
6.如权利要求5所述设备,其特征是HABR反应器包括串联的第一组厌氧格室、缺氧格室、好氧格室、沉淀格室和第二组厌氧格室,以及水浴槽。
7.如权利要求6所述HABR反应器,其特征是第一组厌氧格室、第二组厌氧格室分别包括一个或多个厌氧格室,好氧格室包括两个等体积的串联格室;各厌氧格室、缺氧格室体积相等,好氧格室的体积为厌氧格室的1-1.5倍,沉淀格室体积为厌氧格室的0.5-0.8倍。
8.如权利要求7所述厌氧格室,其特征是,进水COD<1000 mg/L时第一组厌氧格室数至少设置为1,进水COD>1000 mg/L时第一组厌氧格室数至少设置为2;运行短程硝化-厌氧氨氧化方案时第二组厌氧格室数至少设置为2,运行短程硝化-厌氧氨氧化方案且进水NH4 +-N>200 mg/L时第二组厌氧格室数至少设置为3,运行短程硝化-反硝化方案时第二组厌氧格室数至少设置为1。
9.如权利要求1所述的方法,其特征在于HABR技术处理中低浓度含氮有机废水的CODCr去除率为80%以上,总氮去除率在70%以上。
CN201610841755.3A 2016-09-23 2016-09-23 一种处理中低浓度含氮有机废水的habr技术方法和设备 Pending CN106219749A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610841755.3A CN106219749A (zh) 2016-09-23 2016-09-23 一种处理中低浓度含氮有机废水的habr技术方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610841755.3A CN106219749A (zh) 2016-09-23 2016-09-23 一种处理中低浓度含氮有机废水的habr技术方法和设备

Publications (1)

Publication Number Publication Date
CN106219749A true CN106219749A (zh) 2016-12-14

Family

ID=58075880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610841755.3A Pending CN106219749A (zh) 2016-09-23 2016-09-23 一种处理中低浓度含氮有机废水的habr技术方法和设备

Country Status (1)

Country Link
CN (1) CN106219749A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745737A (zh) * 2016-12-17 2017-05-31 杭州师范大学 一种短程硝化‑厌氧氨氧化耦合式脱氮反应器
CN108439588A (zh) * 2018-02-01 2018-08-24 哈尔滨工业大学 亚硝化-厌氧氨氧化工艺稳定运行的推流式反应装置和方法
CN110304726A (zh) * 2019-08-02 2019-10-08 海南省水利水电勘测设计研究院 一种农村生活污水的处理装置及使用方法
CN111807513A (zh) * 2020-06-04 2020-10-23 广东工业大学 一种低浓度氨氮污水处理装置及处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205099A (zh) * 2006-12-20 2008-06-25 天津理工大学 亚硝化菌-厌氧氨氧化菌固定化与中温污水处理工艺
CN104609558A (zh) * 2015-01-30 2015-05-13 广西师范大学 一种短程硝化反硝化一体化abr反应器
CN105859040A (zh) * 2016-05-17 2016-08-17 广州市市政工程设计研究总院 一种城市污水脱氮除磷方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205099A (zh) * 2006-12-20 2008-06-25 天津理工大学 亚硝化菌-厌氧氨氧化菌固定化与中温污水处理工艺
CN104609558A (zh) * 2015-01-30 2015-05-13 广西师范大学 一种短程硝化反硝化一体化abr反应器
CN105859040A (zh) * 2016-05-17 2016-08-17 广州市市政工程设计研究总院 一种城市污水脱氮除磷方法及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745737A (zh) * 2016-12-17 2017-05-31 杭州师范大学 一种短程硝化‑厌氧氨氧化耦合式脱氮反应器
CN108439588A (zh) * 2018-02-01 2018-08-24 哈尔滨工业大学 亚硝化-厌氧氨氧化工艺稳定运行的推流式反应装置和方法
CN108439588B (zh) * 2018-02-01 2021-02-02 哈尔滨工业大学 亚硝化-厌氧氨氧化工艺稳定运行的推流式反应装置和方法
CN110304726A (zh) * 2019-08-02 2019-10-08 海南省水利水电勘测设计研究院 一种农村生活污水的处理装置及使用方法
CN111807513A (zh) * 2020-06-04 2020-10-23 广东工业大学 一种低浓度氨氮污水处理装置及处理方法

Similar Documents

Publication Publication Date Title
CN106976975A (zh) 一种后置缺氧强化氮磷去除的污水深度处理工艺
CN108217950A (zh) Fna强化污泥发酵及实现污水短程脱氮除磷的装置和方法
CN105217786B (zh) 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法
CN106673192A (zh) 厌氧氨氧化去除垃圾渗滤液中总氮的工艺及专用装置
CN106219749A (zh) 一种处理中低浓度含氮有机废水的habr技术方法和设备
CN101774729B (zh) 基于短程同步脱氮的一体化生物反应器及其应用
CN106006956A (zh) 一种同步处理高浓度no3--n废水、污泥消化液和城市污水的装置与方法
CN104926046A (zh) 一种处理腈纶废水的微电解处理工艺
CN108383320A (zh) 一种畜禽养殖废水的集成处理方法
CN110240273A (zh) 交替饥饿培养诱导短程硝化反硝化的装置及其控制方法
CN109264859A (zh) A2o2污水处理***及其处理方法
CN113233592A (zh) 一种实现晚期垃圾渗滤液与生活污水同步深度脱氮除碳的处理装置与方法
CN109354168B (zh) 一种mbbr全程自养脱氮***的快速启动方法
CN110171904A (zh) 基于连续流aao除磷及部分脱氮串联复合式固定生物膜活性污泥自养脱氮装置和方法
CN106007171A (zh) 一体式污泥减量资源化及n2o减排污水处理装置及其运行方法
CN102276106B (zh) 一种畜禽粪废水处理方法
CN104098221A (zh) 一种己内酰胺污水的处理方法
CN106396105A (zh) 一种用于污水处理的多模式反应池
CN100460341C (zh) 一种污水生物处理方法
CN211644776U (zh) 基于mbbr的pn/a一体化自养脱氮***
CN109354174A (zh) 基于canon_mbbr的强化脱氮***的快速启动方法
CN104986920A (zh) 一种处理腈纶废水的微电解处理***
CN205556234U (zh) 同步硝化反硝化生物脱氮及去除有机废水cod的装置
CN213771494U (zh) 升流式污水强化生物除磷耦合厌氧氨氧化脱氮一体化***
CN111115822B (zh) 基于mbbr的pn/a一体化自养脱氮***及快速启动方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161214

WD01 Invention patent application deemed withdrawn after publication