CN106202823B - 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法 - Google Patents

一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法 Download PDF

Info

Publication number
CN106202823B
CN106202823B CN201610605803.9A CN201610605803A CN106202823B CN 106202823 B CN106202823 B CN 106202823B CN 201610605803 A CN201610605803 A CN 201610605803A CN 106202823 B CN106202823 B CN 106202823B
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
msup
munderover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610605803.9A
Other languages
English (en)
Other versions
CN106202823A (zh
Inventor
邱志平
朱静静
王晓军
吕�峥
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610605803.9A priority Critical patent/CN106202823B/zh
Publication of CN106202823A publication Critical patent/CN106202823A/zh
Application granted granted Critical
Publication of CN106202823B publication Critical patent/CN106202823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,该方法首先考虑飞行器制造和飞行过程中的不确定性,将不确定参数用区间向量定量化表示,针对二维刚性机翼,利用涡格法建立含区间不确定参数的亚音速定常气动力模型,基于Taylor级数展开和区间扩张理论,可计算得到升力系数的计算表达式,基于Neumann级数展开和高阶摄动理论,可得到升力系数响应区间的中值和半径,根据区间运算法则,可得升力系数的上界和下界。本发明可以获得不确定气动载荷响应的边界,为飞行器的结构气动外形设计和飞行状态控制提供客观有效的数据。

Description

一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界 评估方法
技术领域
本发明涉及飞行器气动载荷预估的技术领域,具体涉及一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法。
背景技术
飞行器设计和使用过程中存在本身参数和使用环境等诸多不确定因素,如来流速度和方向、空气粘性、来流马赫数、结构加工尺寸等,这些不确定因素导致出现飞行器性能波动的现象,这将严重影响飞机的性能稳定性和飞行安全性。因此,在飞行器设计阶段,关注不确定因素对飞行器性能的影响显得尤为重要。数值模拟是指导飞行器设计的重要手段,至今,数值模拟所采用的数学模型大都是确定性的,而在真实物理条件下会存在大量的不确定性因素,比如由于加工工艺、工作环境等引起的几何条件和工作参数的随机变化、边界条件的不确定性及物性参数的不确定性等,这些不确定性的存在,使得流场参数的分布和变化也存在着不确定性,因此,用确定性解与实验数据进行对比是不完全恰当的,若采用这样的方法进行设计,必然存在很大的潜在风险。如果研究对象(如风力机转子、透平机械、飞行器等)的性能参数对某个变量非常敏感,则即使这些不确定性变量的变化范围比较小,也可能对这些基于数值模拟结果进行设计的对象引起灾难性的后果。
不确定性气动力数值模拟技术属于基础方法的研究,目前关于不确定气动力的研究多集中在CFD方法中,也是当前CFD研究领域中最为前沿的课题。不确定性CFD分析通常包括两部分内容。第一部分涉及如何从已有的可靠数据中提取不确定性参数;第二部分关注于模型输入参数的不确定性或者控制参数的不确定性对于***输出参数的影响,即不确定性在流场中的传播。当前的不确定性CFD模拟重点研究第二部分,多采用随机的方法,即将某不确定性物理问题视为不确定性参数的分布函数已知的随机过程。基于随机理论的不确定性CFD方法是随机分析方法和传统CFD方法的有机结合。传统的用于随机分析的方法有采样法、微扰动法、敏感性分析法、模糊逻辑法等。
采用CFD技术对飞行器气动力模型进行分析计算量较大,效率很低,不适用于飞行器的方案设计阶段。目前,针对不同的气动力问题,发展了很多工程估算方法,其中面元法方法简单,计算效率高,精度较好,应用较为广泛。对于低速飞行器气动力特性的分析,涡格法是常用的估算方法。目前不确定性气动力的研究仅限于随机方法,而获得参数的随机分布需要大量的样本数据,这在工程中往往是无法实现的。而区间分析方法仅需要知道不确定参数的上下界,从而计算响应的上下界,这对于实际工程中的不确定分析无疑具有重要的意义。
发明内容
本发明的目的在于提供一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法。本发明主要是适用于不确定气动载荷分析,用以计算考虑飞行器制造过程和飞行环境中不确定性因素的气动载荷响应,并可用于指导飞行器的气动外形设计和优化,以及飞行器的飞行状态控制,从而改善飞行器的飞行性能以及提高飞行安全。
为实现上述目的,本发明采用的技术方案为:一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,其具体实现步骤是:
第一步:考虑飞行器制造过程和飞行环境中的不确定性因素,将不确定参数用区间向量的形式进行定量化表达,,将其表示成区间向量的形式:
式中,βI为不确定变量构成的区间向量,β,分别为区间向量βI的下界和上界,为区间向量βI中的第i个区间变量,β i,表示区间变量的下界和上界,分别称作区间中值和区间半径,参数δ表示标准的区间变量δ=[-1,1],m为不确定参数的个数,βc和Δβ分别表示区间向量βI的中值和半径。
第二步:针对二维刚性机翼,利用涡格法对机翼模型进行离散,用离散的马蹄涡代替真实机翼模拟升力效应。利用Biot-Savart定律,计算每一个马蹄涡对控制点的诱导速度。根据机翼绕流的边界条件,建立以机翼环量为未知量的气动力控制方程,然后利用升力系数与环量之间的关系,得到以升力系数为未知量的线性代数方程组,即亚音速定常气动力模型:
AaicCLc=α
式中,Aaic为空气动力影响系数矩阵,CLc为升力系数列向量,α为总攻角列向量。
由于不确定参数的存在将导致空气动力影响系数矩阵Aaic和总攻角列向量α的区间不确定性,从而可以将气动力方程改写为:
式中,AaicI)表示空气动力影响系数矩阵Aaic为区间变量βI的函数,α(βI)表示总攻角列向量α为区间变量βI的函数。
第三步:将气动力方程中的空气动力影响系数矩阵和总攻角列向量在区间不确定参数中值附近进行一阶Taylor级数展开:
式中:
αc=α(βc)
分别为升力系数列向量的中值和半径,αc和ΔαI分别为总攻角列向量αI的中值和半径。
用中心区间表示方法将升力系数记为:
式中,分别为升力系数列向量的中值和半径。
将空气动力影响系数矩阵AaicI)和总攻角列向量α(βI)的Taylor展开式代入气动力方程中,并在两边同时乘以矩阵逆可得升力系数的计算表达式:
第四步:将升力系数计算式中空气动力影响系数矩阵的逆矩阵进行Neuman级数展开,保留高阶项:
式中,δi=[-1,1]。
将Neuman展开式进行整理并代入升力系数的计算表达式中,忽略高阶小量,利用摄动理论得:
式中:
I为单位矩阵。
显然是关于标准区间变量δi和δj的线性单调函数,易知气动力系数的区间半径为
其中||为绝对值符号。
则CLc的下界和上界分别为:
由上式计算出的C Lc即为二维刚性机翼升力系数的下界和上界。
本发明与现有技术相比的优点在于:
(1)飞行器在加工制造过程中可能因加工误差使得几何尺寸存在一定的不确定性,在飞行过程中,其来流速度、飞行攻角、飞行马赫数也会存在一定的不确定性,在进行气动分析时,将这些不确定性因素看作不确定参数,能够更准确地计算气动系数,从而更准确地评估飞行器的飞行状态;
(2)用区间数对不确定参数进行定量化,可以克服随机参数表示需要大量样本数据的困难,只需要给定不确定参数的变化范围即可;
(3)采用高阶区间摄动理论对气动载荷进行不确定分析,考虑Neuman级数中的高阶项,能够处理参数数量较多,变化范围较大的气动问题,提高区间矩阵求逆运算的精度,从而达到工程***精细化分析的要求。
附图说明
图1是本发明方法实现流程图;
图2是本发明所采用涡格法的气动力模型示意图;
图3是本发明实例中机翼模型示意图;
图4是本发明实例中机翼计算模型网格划分图;
图5是本发明实例中分别用蒙特卡罗方法和高阶区间摄动法计算得到的升力系数上、下界。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1所示,本发明提出了一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,其具体实现步骤是:
(1)考虑飞行器制造过程和飞行环境中的不确定性因素,将不确定参数用区间向量的形式进行定量化表达,将其表示成区间向量的形式:
式中,βI为不确定变量构成的区间向量,β,分别为区间向量βI的下界和上界,为区间向量βI中的第i个区间变量,β i,表示区间变量的下界和上界,分别称作区间中值和区间半径,参数δ表示标准的区间变量δ=[-1,1],m为不确定参数的个数,βc和Δβ分别表示区间向量βI的中值和半径。
(2)针对二维刚性机翼,利用涡格法对机翼模型进行离散,用离散的马蹄涡代替真实机翼模拟升力效应,如图2所示。利用Biot-Savart定律,计算每一个马蹄涡对控制点的诱导速度。根据机翼绕流的边界条件,建立以机翼环量为未知量的气动力控制方程:
式中,为空气动力影响系数矩阵,为无量纲机翼环量列向量,α为总攻角列向量。
升力系数与环量之间的关系:
式中,(ΔCLc)j为第j个网格单元上的升力系数,ls为机翼的展长,为第j个网格单元上的无量纲环量,Δxj为第j个网格单元x轴方向的长度。
利用式(3)可得到以升力系数为未知量的线性代数方程组,即亚音速定常气动力模型:
AaicCLc=α (4)
式中,CLc为升力系数列向量,第j列为Δxj(ΔCLc)j,空气动力影响系数矩阵变为Aaic
由于区间不确定参数的存在将导致空气动力影响系数矩阵Aaic和总攻角列向量α的区间不确定性,从而可以将气动力方程改写为:
AaicI)CLcI)=α(βI) (5)
式中,AaicI)表示空气动力影响系数矩阵Aaic为区间变量βI的函数,CLcI)表示空气动力影响系数矩阵CLc为区间变量βI的函数,α(βI)表示总攻角列向量α为区间变量βI的函数。
理论上,式(5)的解集定义为
Ω={CLc(β)|Aaic(β)CLc(β)=α(β),β∈βI} (6)
一般来说,区间方程组解集Ω的形式会比较复杂。而在区间数学中,通用的处理方式是寻找一个最小的超立方体使其能够完全包含解集Ω。在这个意义下,气动力方程(5)可近似表示为
如此一来,区间问题的求解就转化为寻找未知变量在区间参数影响下的最小值和最大值。
(3)当区间参数的不确定度较小时,将气动力方程中的空气动力影响系数矩阵和总攻角列向量在区间不确定参数中值附近进行一阶Taylor级数展开:
式中
αc=α(βc)
分别为升力系数列向量的中值和半径,αc和ΔαI分别为总攻角列向量αI的中值和半径。
用中心区间表示方法将升力系数列向量记为:
式中,分别为升力系数列向量的中值和半径。
将空气动力影响系数矩阵AaicI)和总攻角列向量α(βI)的Taylor展开式代入气动力方程(7)中,并在两边同时乘以矩阵逆可得升力系数的计算表达式:
(4)如果矩阵的谱半径小于1,那么升力系数计算式中空气动力影响系数矩阵的逆矩阵可表示为Neuman级数,保留高阶项得:
式中,δi=[-1,1]。对上式中r的不同值,求和符号中各项可具体表示为:
式中,表示除i=j=k外的所有组合形式。
将式(12)代入到式(11)中,得:
只保留上式右端的前两类项,那么矩阵逆可以近似表示为:
式中:
I为单位矩阵,分别为区间矩阵的中值和半径。
显然区间矩阵是关于δi的单调函数,因此利用区间运算法则可知中值和半径ΔEi分别为:
将式(13)-(16)代入式(10)中可得:
忽略高阶交叉小量,利用摄动理论可知:
显然是关于标准区间变量δi和δj的线性单调函数,易知气动力系数的区间半径为:
其中||为绝对值符号。
则CLc的下界和上界分别为:
由上式计算出的C Lc即为二维刚性机翼升力系数的下界和上界。
实施例:
为了更充分的了解该发明的特点及其对工程实际的适用性,本发明以图3所示的梯形后掠翼为例进行气动载荷上下界评估验证。机翼采用均匀网格划分,横向和纵向均取20个网格,如图4所示,不确定参数如表1所示。
表1不确定参数的取值
工程中通常将蒙特卡罗模拟的结果作为不确定性问题分析的精确解,所以分别采用本发明所提出的方法和蒙特卡罗方法计算机翼沿展向剖面的升力系数的上下界,结果如图5所示。其中,横坐标为机翼剖面沿翼展方向的相对位置坐标,y为机翼剖面绝对坐标,l为半翼展长,纵坐标为对应机翼剖面的无量纲升力系数,ls为翼展长,实线为蒙特卡罗结果,虚线为本发明所提出的高阶区间摄动方法结果。从图中可以看出,本发明所提出的方法计算得到的升力系数上下界与蒙特卡罗结果偏差较小,精度较高,符合工程设计要求。在飞行器的方案设计阶段,采用基于高阶摄动理论分析飞行器加工过程及飞行环境的不确定因素对气动载荷的影响,对飞行器的载荷设计具有很好的直接应用价值。
以上仅是本发明的具体步骤,对本发明的保护范围不构成任何限制。
本发明未详细阐述部分属于本领域技术人员的公知技术。

Claims (5)

1.一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,其特征在于实现步骤如下:
步骤一:考虑飞行器制造过程和飞行环境中的不确定性因素,将不确定参数用区间向量的形式进行定量化表达;
步骤二:针对二维刚性机翼,利用涡格法对机翼平面模型进行离散,建立含区间不确定参数的亚音速定常气动力模型;
步骤三:分别将气动力方程中的空气动力影响系数矩阵和总攻角列向量在区间不确定参数中值附近进行一阶Taylor级数展开,代入气动力方程中,整理后可得升力系数的计算表达式;
步骤四:将升力系数计算式中空气动力影响系数矩阵的逆矩阵进行Neuman级数展开,保留Neuman级数的高阶项,利用摄动理论,可得升力系数向量的区间中值和区间半径,根据区间运算法则,可得升力系数的上界和下界。
2.根据权利要求1所述的一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,其特征在于:步骤一中对于飞行器在制造过程和飞行环境中存在的不确定性因素,包括飞行马赫数、攻角、侧滑角和机翼几何尺寸,将其表示成区间向量的形式:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mi>&amp;beta;</mi> <mi>I</mi> </msup> <mo>=</mo> <mo>&amp;lsqb;</mo> <munder> <mi>&amp;beta;</mi> <mo>&amp;OverBar;</mo> </munder> <mo>,</mo> <mover> <mi>&amp;beta;</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;rsqb;</mo> <mo>=</mo> <msub> <mrow> <mo>(</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mi>I</mi> </msubsup> <mo>)</mo> </mrow> <mi>m</mi> </msub> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mo>&amp;lsqb;</mo> <msub> <munder> <mi>&amp;beta;</mi> <mo>&amp;OverBar;</mo> </munder> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&amp;beta;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> <mo>)</mo> </mrow> <mi>m</mi> </msub> <mo>=</mo> <msub> <mrow> <mo>(</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>+</mo> <msub> <mi>&amp;Delta;&amp;beta;</mi> <mi>i</mi> </msub> <mi>&amp;delta;</mi> <mo>)</mo> </mrow> <mi>m</mi> </msub> <mo>=</mo> <msup> <mi>&amp;beta;</mi> <mi>c</mi> </msup> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;beta;</mi> <mi>&amp;delta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>m</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
式中,βI为不确定变量构成的区间向量,β,分别为区间向量βI的下界和上界,为区间向量βI中的第i个区间变量,β i,表示区间变量的下界和上界,分别称作区间中值和区间半径,参数δ表示标准的区间变量δ=[-1,1],m为不确定参数的个数,βc和△β分别表示区间向量βI的中值和半径。
3.根据权利要求2所述的一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,其特征在于:步骤二中针对二维刚性机翼,利用涡格法对机翼模型进行离散,利用Biot-Savart定律,计算每一个马蹄涡对控制点的诱导速度,根据机翼绕流的边界条件和升力系数与环量之间的关系,得到以升力系数为未知量的线性代数方程组:
AaicCLc=α
式中,Aaic为空气动力影响系数矩阵,CLc为升力系数列向量,α为总攻角列向量;
由于不确定参数的存在将导致空气动力影响系数矩阵Aaic和总攻角列向量α的区间不确定性,从而可以将气动力方程改写为:
<mrow> <msub> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mi>I</mi> </msup> <mo>)</mo> </mrow> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> <mo>=</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mi>I</mi> </msup> <mo>)</mo> </mrow> </mrow>
式中,AaicI)表示空气动力影响系数矩阵Aaic为区间变量βI的函数,α(βI)表示总攻角列向量α为区间变量βI的函数,为升力系数列向量。
4.根据权利要求3所述的一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,其特征在于:步骤三中将气动力方程中的空气动力影响系数矩阵和总攻角列向量在区间不确定参数向量中值附近进行一阶Taylor级数展开,用中心区间表示方法将升力系数记为:
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> </mrow>
式中,分别为升力系数列向量的中值和半径;
将空气动力影响系数矩阵AaicI)和总攻角列向量α(βI)的Taylor展开式代入气动力方程中,并在两边同时乘以矩阵逆可得升力系数的计算表达式:
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mi>&amp;alpha;</mi> <mi>c</mi> </msup> <mo>+</mo> <msup> <mi>&amp;Delta;&amp;alpha;</mi> <mi>I</mi> </msup> <mo>)</mo> </mrow> </mrow>
式中,分别为升力系数列向量的中值和半径,αc和△αI分别为总攻角列向量αI的中值和半径。
5.根据权利要求4所述的一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法,其特征在于:步骤四中将升力系数计算式中空气动力影响系数矩阵的逆矩阵进行Neuman级数展开,保留高阶项:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mo>-</mo> <msubsup> <mi>&amp;Delta;A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>r</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mi>c</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> </mrow> </mfrac> <msub> <mi>&amp;Delta;&amp;beta;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;delta;</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>r</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>&amp;delta;</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mi>r</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
式中,δi=[-1,1],
将Neuman展开式进行整理并代入升力系数的计算表达式中,忽略高阶小量,利用摄动理论得:
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msubsup> <mi>E</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msup> <mi>&amp;alpha;</mi> <mi>c</mi> </msup> </mrow>
<mrow> <msubsup> <mi>&amp;Delta;C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>I</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&amp;Delta;E</mi> <mi>i</mi> </msub> <msup> <mi>&amp;alpha;</mi> <mi>c</mi> </msup> <msub> <mi>&amp;delta;</mi> <mi>i</mi> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>I</mi> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msubsup> <mi>E</mi> <mi>i</mi> <mi>c</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mi>c</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;beta;</mi> <mi>j</mi> </msub> </mrow> </mfrac> <msub> <mi>&amp;Delta;&amp;beta;</mi> <mi>j</mi> </msub> <msub> <mi>&amp;delta;</mi> <mi>j</mi> </msub> </mrow>
式中:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mi>I</mi> <mo>-</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mi>I</mi> <mo>+</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;Delta;E</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mi>I</mi> <mo>-</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mi>I</mi> <mo>+</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
I为单位矩阵,
气动力系数的区间半径为:
<mrow> <msub> <mi>&amp;Delta;C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mo>|</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&amp;Delta;E</mi> <mi>i</mi> </msub> <msup> <mi>&amp;alpha;</mi> <mi>c</mi> </msup> <mo>|</mo> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mo>|</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>I</mi> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msubsup> <mi>E</mi> <mi>i</mi> <mi>c</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mi>c</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;beta;</mi> <mi>j</mi> </msub> </mrow> </mfrac> <msub> <mi>&amp;Delta;&amp;beta;</mi> <mi>j</mi> </msub> <mo>|</mo> </mrow>
其中||为绝对值符号,
则CLc的下界和上界分别为:
<mrow> <msub> <munder> <mi>C</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>L</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>-</mo> <msub> <mi>&amp;Delta;C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> </msub> </mrow>
<mrow> <msub> <mover> <mi>C</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>L</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>+</mo> <msub> <mi>&amp;Delta;C</mi> <mrow> <mi>L</mi> <mi>c</mi> </mrow> </msub> </mrow>
由上式计算出的C Lc即为二维刚性机翼升力系数的下界和上界。
CN201610605803.9A 2016-07-28 2016-07-28 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法 Active CN106202823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610605803.9A CN106202823B (zh) 2016-07-28 2016-07-28 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610605803.9A CN106202823B (zh) 2016-07-28 2016-07-28 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法

Publications (2)

Publication Number Publication Date
CN106202823A CN106202823A (zh) 2016-12-07
CN106202823B true CN106202823B (zh) 2018-04-03

Family

ID=57496263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610605803.9A Active CN106202823B (zh) 2016-07-28 2016-07-28 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法

Country Status (1)

Country Link
CN (1) CN106202823B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108846149B (zh) * 2018-04-20 2020-02-07 北京航空航天大学 一种基于多源不确定性的结构分布式动态载荷识别的方法
CN111176253B (zh) * 2019-12-18 2022-04-19 中国航空工业集团公司成都飞机设计研究所 一种基于蒙特卡洛的飞行控制律自动评估方法
CN114371677B (zh) * 2022-01-05 2023-04-28 天津大学 基于谱半径-区间主成分分析的工业过程状态监测方法
CN115238528B (zh) * 2022-09-23 2022-12-16 北京科技大学 基于区间相似度的飞行器结构动力学参数敏感性分析方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366065A (zh) * 2013-07-17 2013-10-23 北京航空航天大学 一种基于区间可靠性的飞行器热防护***尺寸优化设计方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366065A (zh) * 2013-07-17 2013-10-23 北京航空航天大学 一种基于区间可靠性的飞行器热防护***尺寸优化设计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis;Zhiping Qiu等;《International Journal of Solids and Structures》;20050328;第4958-4970页 *
基于二阶摄动法求解区间参数结构动力响应;李琦 等;《力学学报》;20150131;第47卷;第147-152页 *
基于改进涡格法的飞翼布局飞机稳定性导数计算;宋磊 等;《南京航空航天大学学报》;20140630;第46卷(第3期);第457-462页 *
结构静力分析的区间摄动有限元法;黄仁 等;《工程力学》;20131231;第30卷(第12期);第36-41页 *

Also Published As

Publication number Publication date
CN106202823A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106202823B (zh) 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法
Qijun et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor
Ekici et al. Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors
Chirico et al. Numerical modelling of the aerodynamic interference between helicopter and ground obstacles
Costes et al. Rotorcraft simulations: a challenge for CFD
Shi et al. An investigation of coupling ship/rotor flowfield using steady and unsteady rotor methods
Shi et al. Rotor wake and flow analysis using a coupled Eulerian–Lagrangian method
Zhu et al. Interval analysis for uncertain aerodynamic loads with uncertain-but-bounded parameters
López et al. Verification and Validation of HiFiLES: a High-Order LES unstructured solver on multi-GPU platforms
Carnevale et al. Fan similarity model for the fan–intake interaction problem
Firouz-Abadi et al. Analysis of non-linear aeroelastic response of a supersonic thick fin with plunging, pinching and flapping free-plays
Linton et al. Simulations of tandem and coaxial rotors using a cfd-coupled rotor model
Li et al. Influence of unsteady and kinematic parameters on aerodynamic characteristics of a pitching airfoil
Wu et al. A low-dimensional model for nonlinear bluff-body aerodynamics: a peeling-an-onion analogy
Nikbay et al. Flutter based aeroelastic optimization of an aircraft wing with analytical approach
Xu et al. Delayed detached eddy simulations of fighter aircraft at high angle of attack
Shahverdi et al. Aeroelastic analysis of helicopter rotor blade in hover using an efficient reduced-order aerodynamic model
Chaurasia et al. A time-spectral hybridizable discontinuous Galerkin method for periodic flow problems
Yang et al. Aerodynamic design optimization of race car rear wing
Bell et al. Survey of computational fluid dynamics software for rotational purposes
Li et al. Efficient Optimization Design of Vortex Generators in a Highly Loaded Compressor Stator
El Maani et al. CFD Analysis of the Transonic Flow over a NACA 0012 Airfoil
Kulkarni et al. Integration of geometric sensitivity and spatial gradient reconstruction for aeroelastic shape optimization
Aglawe et al. Computational Fluid Dynamics Analysis of Delta Wing
Marpu et al. Analysis of the UH-60A Rotor Loads Using Wind Tunnel Data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant