CN106198543B - 一种验证动态负压射孔孔道清理程度的实验装置 - Google Patents

一种验证动态负压射孔孔道清理程度的实验装置 Download PDF

Info

Publication number
CN106198543B
CN106198543B CN201610523169.4A CN201610523169A CN106198543B CN 106198543 B CN106198543 B CN 106198543B CN 201610523169 A CN201610523169 A CN 201610523169A CN 106198543 B CN106198543 B CN 106198543B
Authority
CN
China
Prior art keywords
pressure
chamber
confining
rock
releasing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610523169.4A
Other languages
English (en)
Other versions
CN106198543A (zh
Inventor
咸玉席
卢德唐
温杰雄
刘建武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201610523169.4A priority Critical patent/CN106198543B/zh
Publication of CN106198543A publication Critical patent/CN106198543A/zh
Application granted granted Critical
Publication of CN106198543B publication Critical patent/CN106198543B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/14Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force of explosions; for measuring the energy of projectiles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种验证动态负压射孔孔道清理程度的实验装置,该装置将泄压腔与岩样靶体通过连接管相连,设置一定的负压值,将射孔孔道内的金属碎屑和破碎岩石通过连通管进入到泄压腔,解决现有装置无法直接准确预测射孔孔道内不同清理程度的负压差问题。本发明保证了岩石射孔孔道清理干净的可靠性;可以实现研究石油套管与油管间隙对***压力峰值的影响以及对射孔孔道的清理程度的影响;负压差引起的涌流携带金属碎屑和破碎岩石通过贯穿后的封堵金属板,可以通过高速摄影仪观察到金属碎屑和破碎岩石冲进泄压腔的过程,确定到引起涌流的介质是气体还是液体,可进一步为射孔孔道内的流动机理提供科学依据。

Description

一种验证动态负压射孔孔道清理程度的实验装置
技术领域
本发明涉及提高油气采收率进行动态负压射孔装置,特别是一种验证动态负压射孔孔道清理程度的实验装置。
背景技术
动态负压射孔技术是一种能够清理射孔孔道碎屑、提高油气采收率的完井手段。其特点在射孔枪邻近装有一个泄压腔,在射孔枪引爆时,同时引爆泄压腔实现通孔。泄压腔通孔后引起的负压使射孔孔道内的金属射流碎屑和破碎岩石随压力波动引起的涌流进入到套管内,减小射孔孔道内压实带的厚度,减小由于射孔作业对地层渗透率的降低。但是利用压力传感器测到的井底的压力峰值和负压值并不是真实的产生负压差的两个数值。现有的单发射孔实验装置都是在射孔弹引爆后,产生强烈的冲击波会使流体与套管和油管发生壁面反射,使测量***压力传感器测得压力峰值是真实液体压力的2~8倍,不能真实反映出射孔孔道清理程度的真实动态负压差数值,同时不能判断携带金属碎屑和破碎岩石的介质是气体还是液体。现有的单发射孔实验装置不能反映出***腔引起的空腔效应以及套管与油管间隙对***压力的影响。
由此可知,利用单发射孔实验装置进行试验时,仅仅得到的是金属射流侵彻岩样靶体的侵彻深度。由于实验数据的增加,现有的经验公式已经能够预测金属射流侵彻靶体的深度。现有的实验装置不能设置负压值,形成负压差使金属碎屑和破碎的岩石从射孔孔道内移除。更无法准确确定靶体射孔孔道内在不同清理程度情况下所需要真实的压力差,不能科学真实的为动态负压射孔作业方设计提供设计依据。
发明内容
本发明的目的是:克服现有技术的不足,提供了一种验证动态负压射孔孔道清理程度的实验装置,该装置将泄压腔与岩样靶体通过连通管相连,设置一定的负压值,将射孔孔道内的金属碎屑和破碎岩石通过连通管进入到泄压腔,解决现有装置无法直接准确预测射孔孔道内不同清理程度的负压差问题。
本发明采用的技术方案是:一种验证动态负压射孔孔道清理程度的实验装置,包括围压腔、泄压腔、加压水池和***腔;围压腔包括注油加压器、岩样靶体、岩样靶体圆筒支架、围压腔壳体、封堵金属板和测油压压力计,围压腔用于对岩样靶体施加围压,模拟岩样处于原位的应力状态;泄压腔包括真空泵、混凝土块体、测量气体压力传感器和泄压腔壳体,泄压腔用于设置一定的负压值,模拟由泄压枪引起的负压值;加压水池包括加压泵、测量准静态液体压力传感器和加压水池容器,加压水池模拟由井筒内水静夜柱形成的压力;***腔包括测量***压力传感器、圆筒、射孔弹和减压筒体,***腔用于射孔弹引爆后引起压力峰值,模拟套管内的***压力,加压泵对连接加压水池进行加压,测量液体压力传感器置于加压水池的压力,加压水池与***腔通过套管和油管相连,油管设置通孔,射孔弹置于油管内,并有套有圆柱形套筒,射孔弹引爆后高压气体可以通过通孔进入油管与套管的间隙,测量***压力传感器置于***腔,可以测量***腔内的压力,***腔与围压腔相连,岩样靶体与射孔弹之间置有与套管相同厚度的金属板和混凝土板,围压腔与注油加压泵相连,围压腔的压力通过测侧油压压力计测量岩样靶体围压,围压腔与泄压腔由圆形链接筒相连,并有封堵金属板进行封堵,圆形连接筒与岩样靶体接触处进行密封处理,真空泵与泄压腔相连,并在泄压腔上部置有测量气体压力传感器,在泄压腔内部设置有混凝土块,并与射孔弹和岩样靶体处于同一轴线上,避免金属射流以及金属碎屑和破碎岩石对泄压腔的冲击破坏,利用高速摄影仪通过泄压腔壳体的透明窗口记录金属碎屑和破碎岩石冲击泄压腔时的过程,整个过程结束后,利用微型成像探头观察岩样靶体孔道内破碎岩石的清理程度。
该实验装置的实验过程包括以下几个步骤:
(1)将套管和油管接入***腔,使***腔与加压水池相通,加压水池注入水后,进行加压,压力值不超过35MPa;
(2)将围压腔进行注油加压,一般高于模拟地层压力的压力,然后压力会逐渐下降,观察压力变化处于水平,并接近于地层压力即可;
(3)利用真空泵将泄压腔的压力设置预定值;
(4)引***孔弹,利用高速摄影仪观察开始进入泄压腔内物质是否是由流体携带的的金属碎屑和破碎的岩石;
(5)显示加压水池、***腔、围压腔和泄压腔的压力值,直至压力值稳定;
(6)利用微型成像探头观察孔道内清理程度,确定压力差与清理程度之间的关系。
本发明实验装置与现有实验装置相比具有的优势在于:
本发明实现了准确确定动态负压射孔的负压差,避免了由于壁面反射引起的较高***压力峰值以及压力计处于泄压腔底端不能反映形成负压差的问题,保证了岩石射孔孔道清理干净的可靠性;可以实现研究石油套管与油管间隙对***压力峰值的影响以及对射孔孔道的清理程度的影响;负压差引起的涌流携带属碎屑和破碎岩石能够通过贯穿后的封堵金属板,可以通过高速摄影仪观察到金属碎屑和破碎岩石冲进泄压腔的过程,同时可以观察到引起涌流的介质是气体还是液体,可进一步为射孔孔道内的流动机理提供科学依据。
附图说明
图1为本发明验证动态负压射孔孔道清理程度的实验装置示意图;
图中:Ⅰ为围压腔,Ⅱ为泄压腔,Ⅲ为加压水池,Ⅳ为***腔,1为注油加压泵,2为岩样靶体,3为岩样靶体圆筒支架,4为围压腔壳体,5为真空泵,6为混凝土块,7为测量气体压力传感器,8为泄压腔壳体,9为连接筒,10为封堵金属板,11为测油压压力计,12为加压泵,13为测量准静态液体压力传感器,14为加压水池容器,15为测量***压力传感器,16为圆筒,17为射孔弹,18为减压筒体、19为油管,20为套管,21为金属板,22为混凝土板,23为***腔壳体。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1所示,本发明装置主要由围压腔Ⅰ、泄压腔Ⅱ、加压水池Ⅲ和***腔Ⅳ四个部分组成。围压腔壳体4内形成围压腔,泄压腔壳体8内形成泄压腔,***腔壳体23内形成***腔,加压水池容器14内形成加压水池。加压水池的水位线不能超过加压泵12向其加压的入口处,测量准静态液体压力传感器13测量加压水池的压力,套管20和油管19与加压水池相通,油管19内不含有水,油管19和套管20伸入到***腔内,在油管19与射孔弹17相近处设置通孔便于射孔弹17***产生的高压气体进入到套管20和油管19之间的环空区域。油管19内设有一个圆筒16,其内水平放置射孔弹17。在套管20和油管19外设置一具有一定刚度的圆柱形减压筒体18,***腔壳体上方设置有测量***压力传感器15。金属板21与射孔弹17之间存有一定间距,并与混凝土板22紧密结合,两者固定在围压腔壳体4上,在接触处进行密封。围压腔内岩样靶体2水平放置岩样靶体圆筒支架3上,在岩样靶体2末端将连接筒9侵入岩样一段距离并且与封堵金属板10紧密相连,注油加压泵1与围压腔通,并对围压腔注油加压,测油压压力计11可以显示围压腔的实时压力。真空泵5与泄压腔相通,将泄压腔内的压力降低到一定值,测量气体压力传感器7置于泄压腔的右上角,实时显示泄压腔的压力变化。在泄压腔内放置一块正对于连接筒的混凝土块6,该混凝土块与射孔弹17、岩样靶体2和连接筒9处于同一轴线上。金属碎屑和破碎的岩石会以一定的速度进入到泄压腔,并可能冲击到混凝土块,以避免泄压腔壳体8受到冲击破坏。利用高速摄影仪通过泄压腔透明窗口记录金属碎屑和破碎岩石冲击泄压腔时的过程。整个过程结束后,利用微型成像探头观察岩样靶体2孔道内破碎岩石的清理程度。
本发明实验装置的实验过程有以下几个步骤:
(1)将套管20和油管19接入***腔,使***腔与加压水池相通,加压水池注入水后,进行加压,压力值不超过35MPa。
(2)将围压腔进行注油加压,一般高于模拟地层压力的压力,然后压力会逐渐下降,观察压力变化处于水平,并接近于地层压力即可。
(3)利用真空泵5将泄压腔的压力设置预定值(一般小于加压水池的压力20MPa即可)
(4)引***孔弹17,利用高速摄影仪观察开始进入泄压腔内物质是否是由流体携带的的金属碎屑和破碎的岩石。
(5)显示加压水池、***腔、围压腔和泄压腔的压力值,直至压力值稳定。
(6)利用微型成像探头观察孔道内清理程度,确定压力差与清理程度之间的关系。

Claims (2)

1.一种验证动态负压射孔孔道清理程度的实验装置,其特征在于:包括围压腔(Ⅰ)、泄压腔(Ⅱ)、加压水池(Ⅲ)和***腔(Ⅳ);围压腔包括注油加压器(1)、岩样靶体(2)、岩样靶体圆筒支架(3)、围压腔壳体(4)、封堵金属板(10)和测油压压力计(11),围压腔用于对岩样靶体施加围压,模拟岩样处于原位的应力状态;泄压腔包括真空泵(5)、混凝土块体(6)、测量气体压力传感器(7)和泄压腔壳体(8),泄压腔用于设置一定的负压值,模拟由泄压枪引起的负压值;加压水池包括加压泵(12)、测量准静态液体压力传感器(13)和加压水池容器(14),加压水池模拟由井筒内水静夜柱形成的压力;***腔包括测量***压力传感器(15)、圆筒(16)、射孔弹(17)和减压筒体(18),***腔用于射孔弹引爆后引起压力峰值,模拟套管内的***压力,加压泵(12)对连接加压水池进行加压,测量液体压力传感器置(13)于加压水池(Ⅲ)的压力,加压水池(Ⅲ)与***腔(Ⅳ)通过套管(20)和油管(19)相连,油管设置通孔,射孔弹置于油管内,并有套有圆柱形套筒,射孔弹引爆后高压气体可以通过通孔进入油管与套管的间隙,测量***压力传感器(15)置于***腔,可以测量***腔内的压力,***腔(Ⅳ)与围压腔(Ⅰ)相连,岩样靶体(2)与射孔弹(17)之间置有与套管相同厚度的金属板(21)和混凝土板(22),围压腔(Ⅰ)与注油加压泵(1)相连,围压腔(Ⅰ)的压力通过测侧油压压力计(11)测量岩样靶体(2)围压,围压腔(Ⅰ)与泄压腔(Ⅱ)由圆形链接筒(9)相连,并有封堵金属板(10)进行封堵,圆形连接筒(9)与岩样靶体(2)接触处进行密封处理,真空泵(5)与泄压腔(Ⅱ)相连,并在泄压腔(Ⅱ)上部置有测量气体压力传感器(7),在泄压腔(Ⅱ)内部设置有混凝土块(6),并与射孔弹(17)和岩样靶体(2)处于同一轴线上,避免金属射流以及金属碎屑和破碎岩石对泄压腔的冲击破坏,利用高速摄影仪通过泄压腔壳体(8)的透明窗口记录金属碎屑和破碎岩石冲击泄压腔时的过程,整个过程结束后,利用微型成像探头观察岩样靶体(2)孔道内破碎岩石的清理程度。
2.根据权利要求1所述的一种验证动态负压射孔孔道清理程度的实验装置,其特征在于:该实验装置的实验过程包括以下几个步骤:
(1)将套管(20)和油管(19)接入***腔,使***腔与加压水池相通,加压水池注入水后,进行加压,压力值不超过35MPa;
(2)将围压腔进行注油加压,一般高于模拟地层压力的压力,然后压力会逐渐下降,观察压力变化处于水平,并接近于地层压力即可;
(3)利用真空泵(5)将泄压腔的压力设置预定值;
(4)引***孔弹(17),利用高速摄影仪观察开始进入泄压腔内物质是否是由流体携带的的金属碎屑和破碎的岩石;
(5)显示加压水池、***腔、围压腔和泄压腔的压力值,直至压力值稳定;
(6)利用微型成像探头观察孔道内清理程度,确定压力差与清理程度之间的关系。
CN201610523169.4A 2016-07-04 2016-07-04 一种验证动态负压射孔孔道清理程度的实验装置 Active CN106198543B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610523169.4A CN106198543B (zh) 2016-07-04 2016-07-04 一种验证动态负压射孔孔道清理程度的实验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610523169.4A CN106198543B (zh) 2016-07-04 2016-07-04 一种验证动态负压射孔孔道清理程度的实验装置

Publications (2)

Publication Number Publication Date
CN106198543A CN106198543A (zh) 2016-12-07
CN106198543B true CN106198543B (zh) 2018-08-21

Family

ID=57464792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610523169.4A Active CN106198543B (zh) 2016-07-04 2016-07-04 一种验证动态负压射孔孔道清理程度的实验装置

Country Status (1)

Country Link
CN (1) CN106198543B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658149C1 (ru) * 2017-05-29 2018-06-19 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Имитатор порохового аккумулятора давления
CN109357807B (zh) * 2018-09-17 2020-11-13 北京理工大学 一种超高速侵彻条件下混凝土靶中压力测试***及方法
CN110656913B (zh) * 2019-10-29 2022-05-17 大庆金祥寓科技有限公司 一种射孔工艺完井效果对比试验的方法
CN110905492A (zh) * 2019-11-06 2020-03-24 大庆油田有限责任公司 一种超高压水力射孔地面综合模实验装置
CN114233269A (zh) * 2021-12-02 2022-03-25 川南航天能源科技有限公司 基于砂岩耐压射孔测试的负压值优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817718A (en) * 1987-09-08 1989-04-04 Baker Oil Tools, Inc. Hydraulically activated firing head for well perforating guns
CN102301089A (zh) * 2008-12-01 2011-12-28 地球动力学公司 增强动态负压***和优化枪重量的方法
CN102748007A (zh) * 2012-07-25 2012-10-24 中国科学技术大学 一种试井分析方法及装置
CN202970656U (zh) * 2012-12-05 2013-06-05 西安物华巨能***器材有限责任公司 动态负压射孔装置
CN105335600A (zh) * 2014-08-08 2016-02-17 中国科学技术大学 一种获得地层中聚合物溶液剪切变稀特性的方法及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817718A (en) * 1987-09-08 1989-04-04 Baker Oil Tools, Inc. Hydraulically activated firing head for well perforating guns
CN102301089A (zh) * 2008-12-01 2011-12-28 地球动力学公司 增强动态负压***和优化枪重量的方法
CN102748007A (zh) * 2012-07-25 2012-10-24 中国科学技术大学 一种试井分析方法及装置
CN202970656U (zh) * 2012-12-05 2013-06-05 西安物华巨能***器材有限责任公司 动态负压射孔装置
CN105335600A (zh) * 2014-08-08 2016-02-17 中国科学技术大学 一种获得地层中聚合物溶液剪切变稀特性的方法及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Comparison of Balanced and Underbalanced Perforating;Karen Bybee et al.;《Journal of Petroleum Technology》;19991031;第51卷(第10期);第64,66页 *
动态负压射孔孔道压实带碎屑清洗输送;曲忠仁等;《固体力学学报》;20131031;第33卷;第327-330页 *

Also Published As

Publication number Publication date
CN106198543A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106198543B (zh) 一种验证动态负压射孔孔道清理程度的实验装置
CN105716747B (zh) 矿井下岩层地应力快速测量装备及方法
CN108362584B (zh) 一种水中冲击***复合加载的激波管实验装置
WO2019140874A1 (zh) 动态载荷下固井一、二胶结面破坏强度的评价方法
CN103513272B (zh) 一种微地震模拟监测方法
CN110865012B (zh) 一种基于霍普金森杆的岩石材料原位渗流测量***及方法
CN103513280B (zh) 一种微地震监测模拟***
CN103217131B (zh) 一种围岩松动圈的测试方法及测试设备
CN104949868A (zh) 一种***损伤岩样制备及宏细观结合的损伤程度测定方法
CN104535727B (zh) 一种水力加砂压裂***
CN201794583U (zh) 煤层气洞穴完井评价实验装置
CN110646294B (zh) 模拟水岸边坡岩石单侧浸水弱化的岩石力学试验设备及其使用方法
CN110306964B (zh) 一种水力压裂煤层裂纹可视化及增透效果评价方法
CN204461880U (zh) 岩芯突破压力测试装置
CN109724867A (zh) 脉冲动水压下岩石裂隙响应可视化模拟实验***及方法
CN105043891A (zh) 一种用于盾构隧道的泥水劈裂压力测试装置及方法
CN104005747B (zh) 一种围压水力压裂实验装置及其使用方法
CN105716953B (zh) 循环变压力压裂室内模拟试验方法
US11828733B2 (en) Device for testing strength and sealing performance of cement sheath after perforation and using method thereof
CN203822282U (zh) 一种围压水力压裂实验装置
CN108442913B (zh) 煤岩煤样包覆型水泥靶多脉冲压裂地面模拟实验方法
CN107179391A (zh) 一种用于超浅埋下穿隧道浅层注浆的试验装置
CN211318054U (zh) 用于研究围岩***应力波作用机理的实验***
CN208282698U (zh) 一种射孔弹性能测试装置
CN205243480U (zh) 一种射孔弹壳体破片收集装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant