CN106192050B - 抗静电聚合物复合纤维 - Google Patents

抗静电聚合物复合纤维 Download PDF

Info

Publication number
CN106192050B
CN106192050B CN201610715053.0A CN201610715053A CN106192050B CN 106192050 B CN106192050 B CN 106192050B CN 201610715053 A CN201610715053 A CN 201610715053A CN 106192050 B CN106192050 B CN 106192050B
Authority
CN
China
Prior art keywords
composite fibre
content
alloy
carbon nanotube
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610715053.0A
Other languages
English (en)
Other versions
CN106192050A (zh
Inventor
王海桦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Hamming Industry Co., Ltd.
Original Assignee
Zhejiang Hamming Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Hamming Industry Co Ltd filed Critical Zhejiang Hamming Industry Co Ltd
Priority to CN201610715053.0A priority Critical patent/CN106192050B/zh
Publication of CN106192050A publication Critical patent/CN106192050A/zh
Application granted granted Critical
Publication of CN106192050B publication Critical patent/CN106192050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本申请涉及抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料;所述复合纤维中,碳纳米管含量为0.1~5vol%,碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm。

Description

抗静电聚合物复合纤维
技术领域
本申请涉及抗静电纤维领域,尤其涉及一种抗静电聚合物复合纤维。
背景技术
静电是由于摩擦产生,随着电子工业的发展,静电给人类带来的危害越来越大,比如,静电可以干扰飞机上无线电设备的正常运转,影响安全;静电容易吸附尘埃,造成制药厂等环境洁净度要求高的地方污染;对于人体,静电在人体积累可能影响各种疾病,等等。在产品表面涂上抗静电涂料,通过提高表面电导率来消除静电以使其性能更稳定寿命更长是非常必要的。
目前,对于聚合物导电纤维遇到问题主要有:纤维拉伸工艺导致导电填料间距增大、导电网络破坏,造成导电阈值增大,纤维力学性能较差;单一的导电填料由于纳米粒子团聚,导致纳米导电填料导电网络效率较低,导电阈值高。
发明内容
本发明旨在提供一种抗静电聚合物复合纤维,以解决上述提出的问题。
本发明的实施例中提供了一种抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料;所述复合纤维中,碳纳米管含量为0.1~5vol%,碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm。
本发明的实施例提供的技术方案可以包括以下有益效果:
本发明的抗静电聚合物复合纤维,该复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料,使得其具有良好的导电性,抗静电性较强,从而解决上述提出问题。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明所述复合纤维的制作流程图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
静电是由于摩擦产生,随着电子工业的发展,静电给人类带来的危害越来越大,比如,静电可以干扰飞机上无线电设备的正常运转,影响安全;静电容易吸附尘埃,造成制药厂等环境洁净度要求高的地方污染;对于人体,静电在人体积累可能影响各种疾病,等等。在产品表面涂上抗静电涂料,通过提高表面电导率来消除静电以使其性能更稳定寿命更长是非常必要的。
导电聚合物复合材料是以聚合物材料为基底添加具有高导电性能的有机、无机、金属等导电填料,经过各种手段使其在基体中分散从而形成具有导电性的复合材料。目前对导电复合材料的研究主要集中在导电填料的选择、导电网络的形成等方面;聚合物纤维具备价格低廉、质地轻、比强度大、导热系数小、化学性质稳定等优点,从而被广泛应用于生产生活各个领域,但是,大多数聚合物是良好的电绝缘体,其容易产生静电,限制其应用。
目前,对于聚合物导电纤维遇到问题主要有:纤维拉伸工艺导致导电填料间距增大、导电网络破坏,造成导电阈值增大,纤维力学性能较差;单一的导电填料由于纳米粒子团聚,导致纳米导电填料导电网络效率较低,导电阈值高。
应用场景一:
本申请的实施例涉及抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料,使得其具有良好的导电性,抗静电性较强。
本发明实施例的复合纤维中,采用碳纳米管、低熔点金属为填料,所述碳纳米管为多壁碳纳米管,具备良好的导电性,力学性能优异,退火处理过程中,碳纳米管可以回复到卷曲或缠绕状态,碳纳米管相互搭界形成第一重导电网络,并且碳纳米管优异的力学性能可以保证原丝经过拉伸后,复合纤维中导电网络不被破坏。
优选地,所述复合纤维中,碳纳米管含量为0.1~5vol%,碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm。
本发明实施例的复合纤维中,碳纳米管经过铂颗粒悬浮液处理,其表面嵌有铂颗粒,在退火处理过程中,呈熔融态的低熔点金属与碳纳米管表面的铂颗粒共混,进而与碳纳米管镶嵌在一起,拉伸过程后,熔融态低熔点金属被拉伸,形成第二重导电网络,进一步增加了复合纤维的导电率;并且,退火处理后,复合纤维内金属颗粒相互融合,接触点减少、接触电阻减小。
优选地,所述复合纤维中还含有碳酸钙,所述碳酸钙含量为0.6w%。
本申请的复合纤维中,进一步增加了无机粉体碳酸钙,由于碳酸钙的体积排出效应,可以有效降低复合纤维的逾渗值,同时有助于碳纳米管的分散,提高导电网络的组网效率。
更进一步优选的,如图1,所述复合纤维的制作步骤如下:
步骤一,碳纳米管处理:
首先,配制浓度为10-4M氯铂酸和浓度为10-5M聚乙烯吡咯烷酮的反应溶液,向反应溶液中通入高纯氩气鼓泡30min,除去液体中的氧气,然后同样通入氢气10min进行还原,随后将反应溶液密封避光静置12h,在反应体系中,5nm左右的铂颗粒生长,得到铂颗粒悬浮液;
取购买的多壁碳纳米管,长度为50~500μm,将其浸泡到上述悬浮液中1h以上,由于铂颗粒为5nm左右,粒径较小,铂颗粒会嵌在多壁碳纳米管的表面或缺陷处;
步骤二,制备混合物:
将锡铋合金、铅锡合金、碳纳米管、抗氧化剂1010、抗氧化剂168、硬脂酸锌、碳酸钙和聚丙烯粒料按配比在高速搅拌机中均匀混合,然后用挤出机挤出造粒,得到混合物颗粒;
(其中,锡铋合金、铅锡合金粒径为20~30μm,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,碳纳米管含量为0.1~5vol%,抗氧化剂1010含量为0.1w%,抗氧化剂168含量为0.1w%,硬脂酸锌含量为0.25w%,碳酸钙含量为0.6w%);
步骤三,制备原丝:
将上述混合物颗粒在80℃下烘干4h,然后利用毛细管流变仪将其纺丝为原丝;
步骤四,制备抗静电聚合物复合材料:
将上步得到原丝在180℃退火处理5h,然后均匀拉伸,以10mm/min速度拉伸伸长5~20倍,得到抗静电聚合物复合纤维。
应用场景二:
本申请的实施例涉及抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料,使得其具有良好的导电性,抗静电性较强。
本发明实施例的复合纤维中,采用碳纳米管、低熔点金属为填料,所述碳纳米管为多壁碳纳米管,具备良好的导电性,力学性能优异,退火处理过程中,碳纳米管可以回复到卷曲或缠绕状态,碳纳米管相互搭界形成第一重导电网络,并且碳纳米管优异的力学性能可以保证原丝经过拉伸后,复合纤维中导电网络不被破坏。
优选地,所述复合纤维中,碳纳米管含量为0.1vol%,碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm。
本发明实施例的复合纤维中,碳纳米管经过铂颗粒悬浮液处理,其表面嵌有铂颗粒,在退火处理过程中,呈熔融态的低熔点金属与碳纳米管表面的铂颗粒共混,进而与碳纳米管镶嵌在一起,拉伸过程后,熔融态低熔点金属被拉伸,形成第二重导电网络,进一步增加了复合纤维的导电率;并且,退火处理后,复合纤维内金属颗粒相互融合,接触点减少、接触电阻减小。
优选地,所述复合纤维中还含有碳酸钙,所述碳酸钙含量为0.6w%。
本申请的复合纤维中,进一步增加了无机粉体碳酸钙,由于碳酸钙的体积排出效应,可以有效降低复合纤维的逾渗值,同时有助于碳纳米管的分散,提高导电网络的组网效率。
更进一步优选的,如图1,所述复合纤维的制作步骤如下:
步骤一,碳纳米管处理:
首先,配制浓度为10-4M氯铂酸和浓度为10-5M聚乙烯吡咯烷酮的反应溶液,向反应溶液中通入高纯氩气鼓泡30min,除去液体中的氧气,然后同样通入氢气10min进行还原,随后将反应溶液密封避光静置12h,在反应体系中,5nm左右的铂颗粒生长,得到铂颗粒悬浮液;
取购买的多壁碳纳米管,长度为50~500μm,将其浸泡到上述悬浮液中1h以上,由于铂颗粒为5nm左右,粒径较小,铂颗粒会嵌在多壁碳纳米管的表面或缺陷处;
步骤二,制备混合物:
将锡铋合金、铅锡合金、碳纳米管、抗氧化剂1010、抗氧化剂168、硬脂酸锌、碳酸钙和聚丙烯粒料按配比在高速搅拌机中均匀混合,然后用挤出机挤出造粒,得到混合物颗粒;
步骤三,制备原丝:
将上述混合物颗粒在80℃下烘干4h,然后利用毛细管流变仪将其纺丝为原丝;
步骤四,制备抗静电聚合物复合纤维:
将上步得到原丝在180℃退火处理5h,然后均匀拉伸,以10mm/min速度拉伸伸长5~20倍,得到抗静电聚合物复合纤维。
应用场景三:
本申请的实施例涉及抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料,使得其具有良好的导电性,抗静电性较强。
本发明实施例的复合纤维中,采用碳纳米管、低熔点金属为填料,所述碳纳米管为多壁碳纳米管,具备良好的导电性,力学性能优异,退火处理过程中,碳纳米管可以回复到卷曲或缠绕状态,碳纳米管相互搭界形成第一重导电网络,并且碳纳米管优异的力学性能可以保证原丝经过拉伸后,复合纤维中导电网络不被破坏。
优选地,所述复合纤维中,碳纳米管含量为1vol%,碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm。
本发明实施例的复合纤维中,碳纳米管经过铂颗粒悬浮液处理,其表面嵌有铂颗粒,在退火处理过程中,呈熔融态的低熔点金属与碳纳米管表面的铂颗粒共混,进而与碳纳米管镶嵌在一起,拉伸过程后,熔融态低熔点金属被拉伸,形成第二重导电网络,进一步增加了复合纤维的导电率;并且,退火处理后,复合纤维内金属颗粒相互融合,接触点减少、接触电阻减小。
优选地,所述复合纤维中还含有碳酸钙,所述碳酸钙含量为0.6w%。
本申请的复合纤维中,进一步增加了无机粉体碳酸钙,由于碳酸钙的体积排出效应,可以有效降低复合纤维的逾渗值,同时有助于碳纳米管的分散,提高导电网络的组网效率。
更进一步优选的,如图1,所述复合纤维的制作步骤如下:
步骤一,碳纳米管处理:
首先,配制浓度为10-4M氯铂酸和浓度为10-5M聚乙烯吡咯烷酮的反应溶液,向反应溶液中通入高纯氩气鼓泡30min,除去液体中的氧气,然后同样通入氢气10min进行还原,随后将反应溶液密封避光静置12h,在反应体系中,5nm左右的铂颗粒生长,得到铂颗粒悬浮液;
取购买的多壁碳纳米管,长度为50~500μm,将其浸泡到上述悬浮液中1h以上,由于铂颗粒为5nm左右,粒径较小,铂颗粒会嵌在多壁碳纳米管的表面或缺陷处;
步骤二,制备混合物:
将锡铋合金、铅锡合金、碳纳米管、抗氧化剂1010、抗氧化剂168、硬脂酸锌、碳酸钙和聚丙烯粒料按配比在高速搅拌机中均匀混合,然后用挤出机挤出造粒,得到混合物颗粒;
步骤三,制备原丝:
将上述混合物颗粒在80℃下烘干4h,然后利用毛细管流变仪将其纺丝为原丝;
步骤四,制备抗静电聚合物复合纤维:
将上步得到原丝在180℃退火处理5h,然后均匀拉伸,以10mm/min速度拉伸伸长5~20倍,得到抗静电聚合物复合纤维。
应用场景四:
本申请的实施例涉及抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料,使得其具有良好的导电性,抗静电性较强。
本发明实施例的复合纤维中,采用碳纳米管、低熔点金属为填料,所述碳纳米管为多壁碳纳米管,具备良好的导电性,力学性能优异,退火处理过程中,碳纳米管可以回复到卷曲或缠绕状态,碳纳米管相互搭界形成第一重导电网络,并且碳纳米管优异的力学性能可以保证原丝经过拉伸后,复合纤维中导电网络不被破坏。
优选地,所述复合纤维中,碳纳米管含量为2vol%,碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm。
本发明实施例的复合纤维中,碳纳米管经过铂颗粒悬浮液处理,其表面嵌有铂颗粒,在退火处理过程中,呈熔融态的低熔点金属与碳纳米管表面的铂颗粒共混,进而与碳纳米管镶嵌在一起,拉伸过程后,熔融态低熔点金属被拉伸,形成第二重导电网络,进一步增加了复合纤维的导电率;并且,退火处理后,复合纤维内金属颗粒相互融合,接触点减少、接触电阻减小。
优选地,所述复合纤维中还含有碳酸钙,所述碳酸钙含量为0.6w%。
本申请的复合纤维中,进一步增加了无机粉体碳酸钙,由于碳酸钙的体积排出效应,可以有效降低复合纤维的逾渗值,同时有助于碳纳米管的分散,提高导电网络的组网效率。
更进一步优选的,如图1,所述复合纤维的制作步骤如下:
步骤一,碳纳米管处理:
首先,配制浓度为10-4M氯铂酸和浓度为10-5M聚乙烯吡咯烷酮的反应溶液,向反应溶液中通入高纯氩气鼓泡30min,除去液体中的氧气,然后同样通入氢气10min进行还原,随后将反应溶液密封避光静置12h,在反应体系中,5nm左右的铂颗粒生长,得到铂颗粒悬浮液;
取购买的多壁碳纳米管,长度为50~500μm,将其浸泡到上述悬浮液中1h以上,由于铂颗粒为5nm左右,粒径较小,铂颗粒会嵌在多壁碳纳米管的表面或缺陷处;
步骤二,制备混合物:
将锡铋合金、铅锡合金、碳纳米管、抗氧化剂1010、抗氧化剂168、硬脂酸锌、碳酸钙和聚丙烯粒料按配比在高速搅拌机中均匀混合,然后用挤出机挤出造粒,得到混合物颗粒;
步骤三,制备原丝:
将上述混合物颗粒在80℃下烘干4h,然后利用毛细管流变仪将其纺丝为原丝;
步骤四,制备抗静电聚合物复合纤维:
将上步得到原丝在180℃退火处理5h,然后均匀拉伸,以10mm/min速度拉伸伸长5~20倍,得到抗静电聚合物复合纤维。
应用场景五:
本申请的实施例涉及抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,碳纳米管和低熔点金属为填料,使得其具有良好的导电性,抗静电性较强。
本发明实施例的复合纤维中,采用碳纳米管、低熔点金属为填料,所述碳纳米管为多壁碳纳米管,具备良好的导电性,力学性能优异,退火处理过程中,碳纳米管可以回复到卷曲或缠绕状态,碳纳米管相互搭界形成第一重导电网络,并且碳纳米管优异的力学性能可以保证原丝经过拉伸后,复合纤维中导电网络不被破坏。
优选地,所述复合纤维中,碳纳米管含量为5vol%,碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm。
本发明实施例的复合纤维中,碳纳米管经过铂颗粒悬浮液处理,其表面嵌有铂颗粒,在退火处理过程中,呈熔融态的低熔点金属与碳纳米管表面的铂颗粒共混,进而与碳纳米管镶嵌在一起,拉伸过程后,熔融态低熔点金属被拉伸,形成第二重导电网络,进一步增加了复合纤维的导电率;并且,退火处理后,复合纤维内金属颗粒相互融合,接触点减少、接触电阻减小。
优选地,所述复合纤维中还含有碳酸钙,所述碳酸钙含量为0.6w%。
本申请的复合纤维中,进一步增加了无机粉体碳酸钙,由于碳酸钙的体积排出效应,可以有效降低复合纤维的逾渗值,同时有助于碳纳米管的分散,提高导电网络的组网效率。
更进一步优选的,如图1,所述复合纤维的制作步骤如下:
步骤一,碳纳米管处理:
首先,配制浓度为10-4M氯铂酸和浓度为10-5M聚乙烯吡咯烷酮的反应溶液,向反应溶液中通入高纯氩气鼓泡30min,除去液体中的氧气,然后同样通入氢气10min进行还原,随后将反应溶液密封避光静置12h,在反应体系中,5nm左右的铂颗粒生长,得到铂颗粒悬浮液;
取购买的多壁碳纳米管,长度为50~500μm,将其浸泡到上述悬浮液中1h以上,由于铂颗粒为5nm左右,粒径较小,铂颗粒会嵌在多壁碳纳米管的表面或缺陷处;
步骤二,制备混合物:
将锡铋合金、铅锡合金、碳纳米管、抗氧化剂1010、抗氧化剂168、硬脂酸锌、碳酸钙和聚丙烯粒料按配比在高速搅拌机中均匀混合,然后用挤出机挤出造粒,得到混合物颗粒;
步骤三,制备原丝:
将上述混合物颗粒在80℃下烘干4h,然后利用毛细管流变仪将其纺丝为原丝;
步骤四,制备抗静电聚合物复合纤维:
将上步得到原丝在180℃退火处理5h,然后均匀拉伸,以10mm/min速度拉伸伸长5~20倍,得到抗静电聚合物复合纤维。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (1)

1.一种抗静电聚合物复合纤维,所述复合纤维以聚丙烯为基体,多壁碳纳米管和低熔点金属为填料;
所述复合纤维中,多壁碳纳米管含量为0.1~5vol%,多壁碳纳米管经过铂颗粒悬浮液处理;所述低熔点金属为锡铋合金、铅锡合金,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,所述锡铋合金、铅锡合金粒径为20~30μm;所述复合纤维中还含有碳酸钙,所述碳酸钙含量为0.6wt%;
所述复合纤维的制作步骤如下:
步骤一,多壁碳纳米管处理:
首先,配制浓度为10-4M氯铂酸和浓度为10-5M聚乙烯吡咯烷酮的反应溶液,向反应溶液中通入高纯氩气鼓泡30min,除去液体中的氧气,然后同样通入氢气10min进行还原,随后将反应溶液密封避光静置12h,在反应体系中,5nm左右的铂颗粒生长,得到铂颗粒悬浮液;
取购买的多壁碳纳米管,长度为50~500μm,将其浸泡到上述悬浮液中1h以上,由于铂颗粒为5nm左右,粒径较小,铂颗粒会嵌在多壁碳纳米管的表面或缺陷处;
步骤二,制备混合物:
将锡铋合金、铅锡合金、碳纳米管、抗氧化剂1010、抗氧化剂168、硬脂酸锌、碳酸钙和聚丙烯粒料按配比在高速搅拌机中均匀混合,然后用挤出机挤出造粒,得到混合物颗粒;
其中,锡铋合金、铅锡合金粒径为20~30μm,锡铋合金含量为0.1~1.5%,铅锡合金含量为0.1~2%,多壁碳纳米管含量为0.1~5vol%,抗氧化剂1010含量为0.1wt%,抗氧化剂168含量为0.1wt%,硬脂酸锌含量为0.25wt%,碳酸钙含量为0.6wt%;
步骤三,制备原丝:
将上述混合物颗粒在80℃下烘干4h,然后利用毛细管流变仪将其纺丝为原丝;
步骤四,制备抗静电聚合物复合材料:
将上步得到原丝在180℃退火处理5h,然后均匀拉伸,以10mm/min速度拉伸伸长5~20倍,得到抗静电聚合物复合纤维。
CN201610715053.0A 2016-08-23 2016-08-23 抗静电聚合物复合纤维 Active CN106192050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610715053.0A CN106192050B (zh) 2016-08-23 2016-08-23 抗静电聚合物复合纤维

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610715053.0A CN106192050B (zh) 2016-08-23 2016-08-23 抗静电聚合物复合纤维

Publications (2)

Publication Number Publication Date
CN106192050A CN106192050A (zh) 2016-12-07
CN106192050B true CN106192050B (zh) 2018-03-23

Family

ID=57524332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610715053.0A Active CN106192050B (zh) 2016-08-23 2016-08-23 抗静电聚合物复合纤维

Country Status (1)

Country Link
CN (1) CN106192050B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842270A (zh) * 2018-08-30 2018-11-20 佛山市南海区佳妍内衣有限公司 能对温度微调节的三维立体结构面料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020136859A1 (en) * 1999-06-03 2002-09-26 Solutia Inc. Antistatic Yarn, Fabric, Carpet and Fiber Blend Formed From Conductive or Quasi-Conductive Staple Fiber
JP2004143276A (ja) * 2002-10-24 2004-05-20 Masaru Matsuo カーボンナノチューブを含む導電性および帯電性防止高分子フィルム、繊維ならびにその製造法
JP2004316029A (ja) * 2003-04-17 2004-11-11 Kanebo Ltd 導電性繊維の製法およびそれによって得られる導電性繊維、並びにそれを用いた導電性繊維構造体
FR2933426B1 (fr) * 2008-07-03 2010-07-30 Arkema France Procede de fabrication de fibres conductrices composites, fibres obtenues par le procede et utilisation de telles fibres
CN102534860B (zh) * 2011-12-19 2013-09-18 中国人民解放军总后勤部军需装备研究所 一种抗菌导电高聚物复合纤维及其制备方法
CN102936357B (zh) * 2012-10-31 2014-04-02 北京化工大学 一种银纳米线官能化碳纳米管抗静电剂及制备方法
CN104098834B (zh) * 2013-04-12 2016-12-28 中国石油化工股份有限公司 一种导电聚合物复合材料及其制备方法
CN104098813B (zh) * 2013-04-12 2016-05-25 中国石油化工股份有限公司 一种导电塑料及其制备方法
CN104099680B (zh) * 2013-04-12 2016-03-30 中国石油化工股份有限公司 一种聚合物/非导电填料/金属复合纤维及其制备方法

Also Published As

Publication number Publication date
CN106192050A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
EP1805355B1 (fr) Fibres composites comprenant au moins des nanotubes de carbone, leur procede d'obtention et leurs applications
US7943065B2 (en) Conductive carbon nanotube-polymer composite
JP6789129B2 (ja) 導電性ポリマーコンポジット
Mercader et al. Scalable process for the spinning of PVA–carbon nanotube composite fibers
JP4786711B2 (ja) 導電性長繊維複合材の製造方法
KR101917257B1 (ko) 폴리머/충전제/금속 복합 섬유 및 이의 제조 방법
Strååt et al. Melt spinning of conducting polymeric composites containing carbonaceous fillers
Nilsson et al. Melt spinning of conductive textile fibers with hybridized graphite nanoplatelets and carbon black filler
CN104099683B (zh) 一种聚合物/导电填料/金属复合纤维及其制备方法
Li et al. Remarkable improvement in interfacial shear strength of carbon fiber/epoxy composite by large‐scare sizing with epoxy sizing agent containing amine‐treated MWCNTs
Strååt et al. Conducting bicomponent fibers obtained by melt spinning of PA6 and polyolefins containing high amounts of carbonaceous fillers
Wang et al. Surface-conductive UHMWPE fibres via in situ reduction and deposition of graphene oxide
CN106192050B (zh) 抗静电聚合物复合纤维
Zanjanijam et al. Poly (vinyl chloride)/single wall carbon nanotubes composites: investigation of mechanical and thermal characteristics
CN106144400B (zh) 一种安全传送带
Satoungar et al. Electrospinning of polylactic acid/silver nanowire biocomposites: Antibacterial and electrical resistivity studies
CN106310560A (zh) 防静电安全带
CN106315111B (zh) 一种生产线用颗粒输送带
CN106347424B (zh) 一种防静电周转车
CN106345053A (zh) 一种静电释放器
CN106343636B (zh) 一种用于电力设备检修的手套
CN106272280A (zh) 一种静电消除工作台
CN106253088A (zh) 一种防止静电干扰的电力柜
Santos et al. Novel electrical conductive hybrid nanostructures based on PA 6/MWCNTCOOH electrospun nanofibers and anchored MWCNTCOOH
CN104099682B (zh) 一种聚合物/碳纳米管/金属复合纤维及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Haihua

Inventor before: The inventor has waived the right to be mentioned

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180118

Address after: 310019, Zhejiang, Jianggan District, nine Ring Road, No. 12, 1, 3, Hangzhou

Applicant after: Zhejiang Hamming Industry Co., Ltd.

Address before: Tunnel road, Zhenhai District 315200 Zhejiang city of Ningbo province No. 555

Applicant before: Meng Ling

GR01 Patent grant
GR01 Patent grant