CN106154405B - 一种新型长周期光纤光栅的实现方法 - Google Patents

一种新型长周期光纤光栅的实现方法 Download PDF

Info

Publication number
CN106154405B
CN106154405B CN201610729106.4A CN201610729106A CN106154405B CN 106154405 B CN106154405 B CN 106154405B CN 201610729106 A CN201610729106 A CN 201610729106A CN 106154405 B CN106154405 B CN 106154405B
Authority
CN
China
Prior art keywords
grating
period
long
fiber
fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610729106.4A
Other languages
English (en)
Other versions
CN106154405A (zh
Inventor
戚涛
肖石林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610729106.4A priority Critical patent/CN106154405B/zh
Publication of CN106154405A publication Critical patent/CN106154405A/zh
Application granted granted Critical
Publication of CN106154405B publication Critical patent/CN106154405B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • G02B6/02095Long period gratings, i.e. transmission gratings coupling light between core and cladding modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/02204Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using thermal effects, e.g. heating or cooling of a temperature sensitive mounting body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明提供了一种新型长周期光纤光栅的实现方法,光纤采用纤芯为高热光系数而包层为低热光系数的混合光纤,通过较低的温度变化对纤芯产生足够大的折射率变化,进而实现长周期光纤光栅所需要的折射率调制;配合可编程加热阵列,控制沿波导结构的温度梯度变化,该可控的温度梯度进而控制光波导上的折射率分布,实现可编程长周期光栅。本发明所提供的新的长周期光纤光栅实现方法,可以数字编程、实时根据应用需要改变其特性,且具备低***损耗,低功耗的特点。

Description

一种新型长周期光纤光栅的实现方法
技术领域
本发明涉及一种新的长周期光纤光栅实现方法,且该长周期光纤光栅具备可数字编程的特性。
背景技术
从长周期光纤光栅实现方法的角度检索现有技术,发现有多篇相关的发明专利及论文:利用电弧、高功率激光器导致光纤的周期形变来实现长周期光栅,或使用高功率紫外光或者电子束实现对光纤的周期性折射率调制。从可调节长周期光纤光栅的角度也检索到多篇相关专利。但从可编程长周期光纤光栅的角度,尚未找到类似的现有技术。
传统的长周期光栅一次制备后不能再重新改变结构。而长周期光栅作为一种重要的光子器件,其在光子学各个领域均起到重要作用,譬如光子滤波器,光脉冲信号处理,模式转换等器件。这些应用中,都对器件的可调谐性能有较高的要求。现阶段所涉及的长周期光栅因为其固定结构,调谐性能有限,这使其应用受到限制。
发明内容
本发明目的是提供一种新的长周期光纤光栅实现方法,且可以数字编程,可实时根据应用需要改变其特性,具备低***损耗,低功耗的特点。本发明基于高热光系数为光纤纤芯的混合光纤,通过控制波导结构上沿着光纤的温度分布,在波导上实现可重复写入、且可实时重定义的长周期光纤光栅。结合数字控制电路,可以实现器件的实时功能重复定义和数字编程。
为达到上述目的,本发明所采用的技术方案如下:
一种新型长周期光纤光栅的实现方法,光纤采用纤芯为高热光系数而包层为低热光系数的混合光纤,通过较低的温度变化对纤芯产生足够大的折射率变化,进而实现长周期光纤光栅所需要的折射率调制,配合可编程加热阵列,控制沿着波导结构的温度梯度变化,温度梯度控制光波导的折射率结构,进而实现长周期光栅。
所述高热光系数为TOC(thermo-optics coefficient,TOC)在10e-4/℃量级,所述低热光系数为TOC在10e-6/℃到10e-5/℃量级,所述较低的温度为10℃及以下,所述足够大为10e-3量级。
所述混合光纤为液芯光纤或者塑料芯光纤。
所述包层为二氧化硅或者其他低导光损耗,同时热光系数低的材料。
无涂敷层的混合光纤被固定或包裹在加热阵列上,辅佐以热沉,以提供稳定的封装环境和散热,一电压源为加热阵列提供一个程控电压,一控制单元给出指令调节加热阵列进而控制长周期光纤光栅的特性。
所述加热阵列由微细加热单元纵向排列而成,每个加热单元工作状态能够被单独打开或者关闭,每个加热单元通过电流大小进行单独控制,进而控制纵向均匀或者非均匀的折射率调制,非均匀的折射率调制实现长周期光纤光栅的切趾以提供更少滤波旁瓣的滤波特性。
每个加热单元沿着波导方向的几何尺寸为小于200微米,越小越能够提高加热精度和控制精度。
加热阵列工作状态用数字序列表征,单个加热单元的工作状态用数字‘1’表示,关闭状态用数字‘0’表示;通过改变处于工作状态下的加热单元之间的距离,即数字序列中‘1’之间‘0’的个数,可以实现对光栅周期调节;而数字序列的长度的改变则对应长周期光栅的长度变化,光栅的长度是决定耦合效率的重要参数;加热电压直接决定其在波导结构上带来的温度变化,而温度变化则直接决定对于纤芯折射率的变化,即决定了长周期光纤光栅的调制深度,配合光栅长度编程,可以从电压以及光栅长度两个参数实现光栅耦合效率的程序控制;每个光栅周期内连续处于工作状态下加热单元的个数,能够控制光栅的占空比。
通过控制整体环境温度来实现谐振波长的调节。
通过在形成的长周期光纤光栅内部引入相移,并通过编程改变相移大小以及相移在光栅中的位置,实现光栅内任意位置实现单个或多个可控相移;而控制光纤上光栅的位置,可以实现一对光栅或者多个光栅的级联操作。
本发明所使用的混合光纤中,纤芯的TOC达到10e-4/℃的量级,相比传统光纤材料比如二氧化硅,其TOC高出超过一个数量级;混合光纤的包层则采用低TOC光学材料,譬如二氧化硅。通过较低的温度变化(10℃或者更低)对纤芯产生足够大的(10e-3量级)折射率产生变化,而此时可认为包层折射率不变化,进而实现长周期光纤光栅所需要的折射率调制。配合所设计的高精度可编程加热阵列,可以高精度地控制沿着波导结构的温度梯度变化;该编程控制的温度梯度直接控制光波导的折射率结构,进而实现长周期光栅;在此基础上,通过编程可以实现更为复杂的结构,比如长周期光栅级联,以及相移长周期光栅。
本发明相对于现有技术,能够极大的拓展当前长周期光栅的应用范围。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明一实施例所采用液芯光纤截面图;
图2为加热阵列以及配套数字驱动;
图3为在光纤上形成周期温度分布,形成长周期光纤光栅示意图;
图4为不同光栅周期下的透射谱变化,∧为光栅周期;
图5为通过电压控制谐振波长处耦合效率的变化;
图6为不同光栅长度下的耦合效率变化;
图7为有无相移传输谱特性对比。
1、液芯光纤的液体芯;2、液芯光纤的包层;3、热沉,4、液芯光纤(无涂敷层);5、加热阵列;6、电压源;7、控制单元;8、热沉;9、未激活的加热单元;10、激活处于工作状态下的加热单元。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
本发明实施例中,将以液芯光纤为此类混合光纤的例子,同时搭配所设计的高精度加热阵列,实现一个可编程长周期光纤光栅,并对其编程特性加以描述。该液芯光纤截面结构如图1所示:
在选用合理的液体材料的前提下,液芯光纤是一种优秀的导波结构,本实施例中选用的液体芯1为四氯化碳(CCl4)和三氯溴甲烷(CBrCl3)的混合溶液,混合光纤包层2材料为二氧化硅(SiO2)。这两种液体材料都有很好的导光特性,在承载长周期光纤光栅的传输长度内其吸收可忽略不计。同时为了减少光纤内多模传输的干扰,可以通过合适的溶液配比,使得该光纤在工作波长窗口(本实施例中选取波段为1.1~1.6微米)为单模传输。为了实现与传统光纤***的低损耗连接,我们所使用的光纤的几何结构为:纤芯直径8.6微米,包层直径为125微米。同样,为了适应不同的接入光纤以及对该长周期光纤光栅的对应包层模式做进一步自定义,该参数可以做适当修改。
剥去涂敷层的液芯光纤被固定在该可编程长周期光栅的结构如图2和图3所示,该加热阵列及其与液芯光纤设计如图所示。图2中,热沉3以及加热阵列5将无涂敷层的液芯光纤4固定在中间,以提供稳定的封装环境和散热。电压源6为加热阵列提供一个程控的电压;整个器件的控制核心7给出指令调节加热阵列进而控制长周期光纤光栅的特性。
该加热阵列由微细加热单元纵向排列而成,每个加热单元工作状态可以被单独打开或者关闭;每个加热单元沿着波导方向的几何尺寸为两百微米左右或更小,从而提供很高的加热精度和控制精度;每个加热单元通过电流大小可以单独控制,进而控制纵向均匀或者非均匀的折射率调制,非均匀的折射率调制可以实现长周期光纤光栅的切趾以提供更少滤波旁瓣的滤波特性。
图3所示处于工作状态下的热致长周期光纤光栅原理,程控的热分布决定了光栅的光栅周期、长度等特性。
本实施例中的单个的加热单元大小为125微米×125微米。该阵列工作状态由微控制单元7控制。单个加热单元工作状态可以用一个数字序列表征,‘0’表示被关闭,而处于工作状态则用数字‘1’表示,对应图3中的9和10。序列:‘…000100010001…’中,光栅周期为处于工作状态下的加热单元‘1’之间的距离,即125微米×4=500微米。而光纤光栅内该‘0001’序列的个数,则决定整个长周期光栅的长度。由此可见,若能够进一步减小加热单元的尺寸,可以进一步提高该器件的控制精度。加热电流直接决定其在波导结构上带来的温度变化。而温度变化则直接决定对于液体纤芯折射率的变化,即决定了长周期光纤光栅的调制深度。每个光栅周期内连续处于工作状态下加热单元的个数,可以控制光栅的占空比。如序列‘…000100010001…’和序列‘…001100110011…’对应的光栅周期均为500微米,但是光栅占空比从1/4增加到1/2。该长周期光栅可以调控的参数包括:光栅周期,光栅长度,调制深度,光栅的占空比,以及光栅的切趾。而通过整体环境温度的控制,比如控制整体封装后器件的温度来实现谐振波长的调节。通过控制这些参数,可以实现在工作波长内数字编程控制谐振波长以及对应的耦合效率。在此基础上,通过编程可以实现光栅内可控的相移,以及多个光栅的级联操作。
下面分别对这些功能的实现作出解释,并部分给出对应的调谐结果:
A-光栅周期调节:通过改变处于工作状态下的加热单元之间的距离,如序列‘…000100010001…’改变为‘…000010000100001…’,则可以将周期从125微米×4=500微米,变为125微米×5=625微米;因此其光栅周期能以125微米为步进变化,图4展示了不同光栅周期下的透射谱变化。该光栅周期的调节分辨率由单个加热单元的大小决定。本例中其光栅径向大小为125微米。但是通过改进工艺,可以进一步减小到数十微米乃至更低的量级,从而提升对光栅周期的控制精度。图4展示了通过改变光栅周期实现的对光栅透射谱的调谐:
B-光栅调制深度调节:光栅的调制深度由纤芯折射率的变化率决定,该变化率取决于温度变化即施加的电压大小决定。因此通过改变施加的电压,可以控制光栅的调制深度。其改变效果如图5所示;
C-光栅长度调节:光栅的长度是决定耦合效率除去电压控制之外的又一个重要参数。光栅的长度可以直接改变控制序列的长度,如‘000100010001’改变为‘00010001000100010001’,则光栅长度则由500微米×3=1.5mm,改变为500微米×5=2.5mm。因此在该长周期光纤光栅中,其长度调节精度可以精细到一个光栅周期,光栅长度(周期个数)对传输谱的调控效果如图6所示;
D–光栅内***数控相移:通过在光栅内***数字可控的相移:原光栅对应的数字序列为‘000001000001000001’,那么序列‘000’则对应半个光栅周期,即对应一个π相移。位于光栅中心的π相移可以在光栅的透射谱内形成另一个传输峰。通过对相移的操作(编程改变相移大小,以及相移在光栅中的位置)以及光纤光栅的级联可以实现更为复杂的滤波器设计。图7给出了有无该π相移对于传输谱的影响。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (9)

1.一种新型长周期光纤光栅的实现方法,其特征在于,光纤采用纤芯为高热光系数而包层为低热光系数的混合光纤,通过较低的温度变化对纤芯产生足够大的折射率变化,进而实现长周期光纤光栅所需要的折射率调制;配合可编程加热阵列,控制沿着光纤的温度梯度变化,通过可控的温度梯度控制光纤纤芯的折射率结构,实现可编程长周期光纤光栅,所述高热光系数为10e-4/℃量级,所述低热光系数为10e-6/℃到10e-5/℃量级,所述较低的温度为10℃及以下,所述足够大的折射率为10e-3量级。
2.根据权利要求1所述的新型长周期光纤光栅的实现方法,其特征在于,所述混合光纤为液芯光纤或者塑料芯光纤。
3.根据权利要求1所述的新型长周期光纤光栅的实现方法,其特征在于,所述包层为二氧化硅。
4.根据权利要求1所述的新型长周期光纤光栅的实现方法,其特征在于,无涂敷层的混合光纤被加热阵列固定或环绕,同时通过热沉以提供稳定的封装环境和散热,一电压源为加热阵列提供一个程控电压,一控制单元给出指令调节加热阵列进而控制长周期光纤光栅的特性。
5.根据权利要求1所述的新型长周期光纤光栅的实现方法,其特征在于,所述加热阵列由微细加热单元纵向排列而成,每个加热单元工作状态能够被单独打开或者关闭,每个加热单元通过电流大小能够被单独控制,进而控制光纤纵向均匀或者非均匀的折射率调制,以及实现长周期光纤光栅的切趾以提供更少滤波旁瓣的滤波特性。
6.根据权利要求5所述的新型长周期光纤光栅的实现方法,其特征在于,每个加热单元沿着光纤方向的几何尺寸小于200微米,并且尺寸越小越有利于提高加热精度和控制精度。
7.根据权利要求6所述的新型长周期光纤光栅的实现方法,其特征在于,加热阵列工作状态用数字序列表征,单个加热单元的工作状态用数字‘1’表示,关闭状态用数字‘0’表示;通过改变处于工作状态下的加热单元之间的距离,即数字序列中‘1’之间‘0’的个数,能够实现对光栅周期调节;而数字序列的长度的改变则对应长周期光栅的长度变化,光栅的长度是决定耦合效率的重要参数;加热电压直接决定其在光纤上带来的温度变化,而温度变化则直接决定对于纤芯折射率的变化,即决定了长周期光纤光栅的调制深度,配合光栅长度编程,能够从电压以及光栅长度两个参数实现光栅耦合效率的程序控制;每个光栅周期内连续处于工作状态下加热单元的个数,能够控制光栅的占空比。
8.根据权利要求7所述的新型长周期光纤光栅的实现方法,其特征在于,通过控制整体环境温度也能够实现谐振波长的调节。
9.根据权利要求7所述的新型长周期光纤光栅的实现方法,其特征在于,能够通过在形成的长周期光纤光栅内部引入相移,并通过编程改变相移大小以及相移在光栅中的位置,实现光栅内任意位置实现单个或多个可控相移;而控制光纤上光栅的位置,以实现多个光栅的级联操作。
CN201610729106.4A 2016-08-25 2016-08-25 一种新型长周期光纤光栅的实现方法 Expired - Fee Related CN106154405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610729106.4A CN106154405B (zh) 2016-08-25 2016-08-25 一种新型长周期光纤光栅的实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610729106.4A CN106154405B (zh) 2016-08-25 2016-08-25 一种新型长周期光纤光栅的实现方法

Publications (2)

Publication Number Publication Date
CN106154405A CN106154405A (zh) 2016-11-23
CN106154405B true CN106154405B (zh) 2019-09-03

Family

ID=57342060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610729106.4A Expired - Fee Related CN106154405B (zh) 2016-08-25 2016-08-25 一种新型长周期光纤光栅的实现方法

Country Status (1)

Country Link
CN (1) CN106154405B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11209878B2 (en) * 2018-07-31 2021-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Discrete time loop based thermal control

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096297A2 (en) * 1999-10-26 2001-05-02 Blooming Technologies, Inc. Wavelength selective variable reflector
US6285812B1 (en) * 1998-07-17 2001-09-04 Lucent Technologies Inc. Switchable and reconfigurable optical grating devices and methods for making them
CN101520555A (zh) * 2009-04-17 2009-09-02 南开大学 基于功能材料填充微结构光纤的可调谐双通道光栅滤波器
CN101943766A (zh) * 2009-07-09 2011-01-12 电子科技大学 可重构的长周期光纤光栅耦合器
CN102243113A (zh) * 2011-06-22 2011-11-16 天津大学 波长可调谐的光子晶体光纤光栅温度传感器
CN102564639A (zh) * 2011-12-29 2012-07-11 满文庆 基于液体填充光子晶体光纤光栅的温度传感器及制造方法
CN103247933A (zh) * 2013-04-18 2013-08-14 江苏金迪电子科技有限公司 一种可编程多波长可调光纤激光器及其多波长滤波方法
CN104914507A (zh) * 2015-06-02 2015-09-16 哈尔滨工程大学 一种微纳光纤滤波器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285812B1 (en) * 1998-07-17 2001-09-04 Lucent Technologies Inc. Switchable and reconfigurable optical grating devices and methods for making them
EP1096297A2 (en) * 1999-10-26 2001-05-02 Blooming Technologies, Inc. Wavelength selective variable reflector
CN101520555A (zh) * 2009-04-17 2009-09-02 南开大学 基于功能材料填充微结构光纤的可调谐双通道光栅滤波器
CN101943766A (zh) * 2009-07-09 2011-01-12 电子科技大学 可重构的长周期光纤光栅耦合器
CN102243113A (zh) * 2011-06-22 2011-11-16 天津大学 波长可调谐的光子晶体光纤光栅温度传感器
CN102564639A (zh) * 2011-12-29 2012-07-11 满文庆 基于液体填充光子晶体光纤光栅的温度传感器及制造方法
CN103247933A (zh) * 2013-04-18 2013-08-14 江苏金迪电子科技有限公司 一种可编程多波长可调光纤激光器及其多波长滤波方法
CN104914507A (zh) * 2015-06-02 2015-09-16 哈尔滨工程大学 一种微纳光纤滤波器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
可编程带宽波长独立可调光纤光栅滤波器;张海亮等;《光学学报》;20130710;第33卷(第7期);58-64
基于材料填充的可调光子晶体光纤器件;温福正等;《光电子技术》;20060630;第26卷(第2期);133-137

Also Published As

Publication number Publication date
CN106154405A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
Rahman et al. Gold-coated photonic crystal fiber based polarization filter for dual communication windows
JP4358837B2 (ja) 螺旋状導波管低速波共振器構造
US20080193085A1 (en) Multimode long period fiber bragg grating machined by ultrafast direct writing
CN103885267B (zh) 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法
JP2006317933A (ja) 偏光を与える共振導波管を備える光学マイクロ波共振器
JP2006309235A (ja) 結合導波管光学マイクロ波共振器
EP2082195A2 (en) Method of filtering optical signals with a capillary waveguide tunable optical device
Cai et al. Hybrid dual-core photonic crystal fiber for spatial mode conversion
Wan et al. Hyperuniform disordered solids with morphology engineering
CN103969851A (zh) 基于倾斜微结构光纤光栅的磁控可调谐滤波器
JP2006309234A (ja) 光学マイクロ波共振器を形成するための装置及び方法
CN106154405B (zh) 一种新型长周期光纤光栅的实现方法
CN101738686B (zh) 一种波长和输出光强度可控的延迟器及其制作方法
CN103457142A (zh) 一种横模-波长相关可调全光纤激光器
JP2006310855A (ja) 微小円筒及び共振導波管を形成する円周塗膜を備える光学マイクロ波共振器
WO2008042950A2 (en) Capillary waveguide tunable optical device
JP2006309236A (ja) 光方向を変更するための結合素子を備えるマイクロ波共振器
Liu et al. Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser
CN103091773A (zh) 1.31微米和1.55微米双波段可调谐光子晶体光纤滤波器
Wang et al. Study on fabrication, spectrum and torsion sensing characteristics of microtapered long-period fiber gratings
Li et al. Tuning of whispering gallery modes in a magnetic-fluid-infiltrated silica capillary based on lateral pumping scheme
CN113131318B (zh) 基于螺旋机构的可调谐锁模光纤激光器、制备、输出方法
CN104765164A (zh) 一种带宽可调的带通型光学滤波器
EP2726922B1 (en) Methods and systems for trimming photonic devices
CN203339466U (zh) 一种横模-波长相关可调全光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190903

Termination date: 20210825

CF01 Termination of patent right due to non-payment of annual fee