CN106145101B - A kind of bigger serface nitrogen-doped graphene and preparation method thereof - Google Patents

A kind of bigger serface nitrogen-doped graphene and preparation method thereof Download PDF

Info

Publication number
CN106145101B
CN106145101B CN201610528330.7A CN201610528330A CN106145101B CN 106145101 B CN106145101 B CN 106145101B CN 201610528330 A CN201610528330 A CN 201610528330A CN 106145101 B CN106145101 B CN 106145101B
Authority
CN
China
Prior art keywords
preparation
graphite
temperature
graphene
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610528330.7A
Other languages
Chinese (zh)
Other versions
CN106145101A (en
Inventor
田陆
黄郁君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING GUANGKEBOYE SCIENCE & TECHNOLOGY Co Ltd
Original Assignee
BEIJING GUANGKEBOYE SCIENCE & TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING GUANGKEBOYE SCIENCE & TECHNOLOGY Co Ltd filed Critical BEIJING GUANGKEBOYE SCIENCE & TECHNOLOGY Co Ltd
Priority to CN201610528330.7A priority Critical patent/CN106145101B/en
Publication of CN106145101A publication Critical patent/CN106145101A/en
Application granted granted Critical
Publication of CN106145101B publication Critical patent/CN106145101B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The present invention provides a kind of preparation method of bigger serface nitrogen-doped graphene, including following two steps using microwave vacuum high-temperature heater:(1) Hummers methods prepare microwave treatment, thermal reduction and chemical vapor deposition (CVD) doping that graphene oxide (2) carries out graphene oxide in situ.Method proposed by the present invention, it is on the basis of voluntarily improved to equipment, chemical vapor deposition adulterates the manipulation in situ of three steps after microwave prestripping, thermal reduction and thermal reduction before realization graphene oxide thermal reduction, improves combined coefficient, reduces synthesis energy consumption, is suitable for the production of big batch metaplasia.Synthesis gained doped graphene can be used for the fields such as electrochemical catalysis, ultracapacitor.

Description

A kind of bigger serface nitrogen-doped graphene and preparation method thereof
Technical field
The invention belongs to technical field of inorganic material, and in particular to a kind of bigger serface nitrogen-doped graphene and its preparation side Method.
Background technology
With continuous exhausted and environmental pollution the getting worse of the non-renewable resources such as coal, oil, natural gas, grind Renewable, green, clean energy resource novel energy storage device can be provided for the mankind and seem particularly urgently and again by studying carefully and developing It wants.In numerous energy substitution schemes, ultracapacitor suffers from huge potentiality and market with novel battery.
However, these energy substitution schemes still have respective deficiency at this stage.Anode material for lithium-ion batteries, super capacitor The capacity of device electrode material is not high, and fuel cell is fast to the dependence of expensive noble metal electrode catalyst, Cathodic oxygen reduction Rate is all bottleneck problem far below anode evolving hydrogen reaction rate.The excellent property of graphene provides very to solve these problems Big possibility.Therefore, graphene rapidly becomes one of research topic most popular in material science in recent years.
For lithium ion battery and electrode of super capacitor, shown by the bigger serface graphene of N doping Better capacity.For fuel cell, nitrogen doped with the adsorption activation conducive to oxygen, and then promote oxygen also Original becomes the contenders for substituting platinum catalyst.
Invention content
The purpose of the present invention is to propose to a kind of bigger serface nitrogen-doped graphenes and preparation method thereof.
Realize that the technical solution of the object of the invention is:
A kind of preparation method of bigger serface graphene, includes the following steps:
A.Hummers methods prepare graphene oxide:
(1) it aoxidizes:Graphite raw material and potassium permanganate are weighed, the concentrated sulfuric acid is then added to graphite raw material mixes with potassium permanganate It closes and is stirred evenly in object, temperature is maintained at 0-2 DEG C when stirring, and after stirring 60-120 minutes, temperature is adjusted to 30-40 DEG C, then Insulated and stirred 60-120 minutes;Deionized water is added for the first time, stirs evenly, raises the temperature to 90-95 DEG C, Heat preservation 5-15 Minute, hydrogen peroxide is added, deionized water dilution is added again, obtains graphite oxide dilution;
(2) ultrasonic:The graphite oxide dilution of gained is ultrasonically treated, suspension is obtained;
(3) washing and drying:The suspension is settled, removes supernatant;Use hydrochloric acid, ethyl alcohol pair successively respectively again Suspension is washed, is settled, removing supernatant operation;Reusability deionized water carries out washing and depositing to suspension, goes again Except supernatant operates, final until suspension is in neutrality, then to suspension progress freeze-drying process, acquisition is pale brown Color powder, i.e. graphene oxide powder;
B. the microwave treatment of graphene oxide, thermal reduction and chemical vapor deposition doping:
(1) microwave treatment:Under vacuum, microwave treatment, the graphene oxide powder are carried out to the graphene oxide powder 2-3 times of volume expansion after last microwave treatment, 40-60% before weight is expansion;
(2) it heat-treats:In-situ annealing is carried out to the graphene oxide powder after microwave treatment:4-8 DEG C/minute of heating rate, Temperature keeps the temperature 20-60 minutes after rising to 800 DEG C;
(3) chemical vapor deposition:After 800 DEG C keep the temperature 20-60 minutes, starts to be passed through ammonia, keep the flow of 1-30torr Ventilation 30-180 minutes, subsequent vacuum cooled to room temperature, you can obtain bigger serface nitrogen-doped graphene, tail gas uses Water is collected.
Using above-mentioned preparation method, the high graphene of large specific surface area, nitrogen content can be obtained.
Preferably, in the A (1) graphite raw material be natural flake graphite, graphous graphite powder, one kind in expanded graphite or Arbitrary combination;The natural flake graphite and the graphous graphite powder it is cheap, it is at low cost;The price of the expanded graphite It is slightly higher, but the speed settled during subsequent A (3) washing and drying is fast, saves the time to reduce time cost.When Right above-mentioned three kinds of raw materials can meet the needs of preparation.
Preferably, the mass ratio of graphite raw material and potassium permanganate is 3 in the A (1):5.57-7, and every gram of graphite raw material Corresponding concentrated sulfuric acid dosage is 20-30mL;The corresponding dioxygen water consumption of every gram of graphite raw material is 2-3mL.
Preferably, for the A (1) after insulated and stirred 60-120 minutes, the temperature that deionized water is added for the first time is 0-2 DEG C, first Secondary addition deionized water is 2 with the concentrated sulfuric acid volume ratio:1.
Preferably, after deionized water dilution is added in the A (1) again, graphite oxide concentration in graphite oxide dilution For 6-10mg/mL.
Preferably, the graphite oxide dilution is ultrasonically treated in the A (2), ultrasonic acc power is 100- 1000W, frequency 10-5000Hz, ultrasonic time are 5-120 minutes.And the time of ultrasound is longer, the bigger serface nitrogen The character of doped graphene is better, but since it is considered that the relationship of energy consumption, lengthening time that cannot be simply, technique parameter It is selected as taking into account for the two.
Preferably, finally washing to solution is in gel form to suspension described in the A (3).
Preferably, microwave treatment power is 600-850W in the B (1), and the microwave time is 5-60 seconds.
Preferably, B (1) microwave treatment, B (2) thermal reductions carry out in situ with B (3) chemical vapor deposition.
Above-mentioned preferred technical parameter is for ensureing more stable preparation result unless otherwise instructed.
The present invention also provides a kind of graphene, the graphene is prepared by above-mentioned preparation method.
The beneficial effects of the present invention are:
1, high using graphene specific surface area prepared by the preparation method in the present invention, it can reach 500-1000m2/ g, N contain Amount can meet capacity requirement completely in 5-8% for electrode material.
2, the present invention in preparation method in microwave treatment, thermal reduction and and chemical vapor deposition adulterate three steps in situ It carries out, time and energy consumption cost substantially reduce.
Description of the drawings
Fig. 1 is graphene preparation method process flow chart of the present invention;
Fig. 2 is bigger serface nitrogen-doped graphene typical scan electron microscope prepared by embodiment 3.
Specific implementation mode
Detailed description below should not be construed as limiting the invention for illustrating the present invention.
In embodiment, unless otherwise instructed, technological means used is this field conventional technology.
Graphite raw material is general commercial graphite raw material in embodiment, wherein expanded graphite is purchased from triumphant abundant industry, and particle is average Granularity is 10-30 microns.
Embodiment 1:
A.Hummers methods prepare graphene oxide:
(1) it aoxidizes:Weigh natural flake graphite 3g, potassium permanganate 7g, wherein a diameter of 1- of natural flake graphite particle 200 microns, two kinds of raw materials are slowly added to the concentrated sulfuric acid that 60ml mass concentrations are 98% after mixing, and concentrated sulfuric acid temperature is 2 DEG C. Mixture keeps 0-2 DEG C of stirring after sixty minutes, temperature is adjusted to 30 DEG C, then insulated and stirred 60 minutes.It is slowly added to for the first time 150ml temperature is 2 DEG C of deionized water, while improving mixing speed.Raise the temperature to 95 DEG C, Heat preservation 15 minutes, with The hydrogen peroxide that 6ml mass fractions are 30% is added afterwards, the dilution of 250ml deionized waters is added, graphite oxide concentration is about 6mg/ Ml obtains graphite oxide dilution.
(2) ultrasonic:Gained graphite oxide solution is ultrasonically treated, ultrasonic acc power is 100W, frequency 10Hz, is surpassed The sound time is 5 minutes, obtains suspension.
(3) washing and drying:After being settled by the suspension, remove supernatant liquor, salt acid elution is added;And it sinks again Drop obtains lower layer's colloid.It washed once and then settle using 100ml hydrochloric acid once, washed once again, then with 100ml ethyl alcohol Sedimentation is primary, then Reusability deionized water is washed and settled, and is operated repeatedly to the aobvious neutrality of solution, it is existing to occur hydrogel at this time As.Hydrogel is freeze-dried, sample lasts 72 hours and is warmed to room temperature by -35 DEG C under 1Pa air pressures, and it is dry to obtain brown color Dry object powder 3.4g, i.e. graphene oxide powder.
B. the microwave treatment of graphene oxide, thermal reduction and chemical vapor deposition doping:
(1) microwave treatment:In vacuum 1 × 10-3Under the conditions of torr, microwave treatment is carried out to 3.4g graphene oxide powders, Power 600W, 5 seconds microwave time.Color sample switchs to black by brown color, apparent expansion occurs, before weight is expansion 60%;
(2) it heat-treats:Keep 1 × 10-3Torr vacuum degrees keep the temperature 20 minutes after rising to 800 DEG C with 4 DEG C/min.
(3) chemical vapor deposition:800 DEG C of heat preservations after twenty minutes, are passed through ammonia, flow 30sccm, and pressure is about in storehouse 1torr ventilates 30 minutes.Subsequent vacuum cooled to room temperature.Bigger serface nitrogen-doped graphene is can be obtained, tail gas makes It is collected with water.
It is about 500m to measure the present embodiment to prepare gained graphene specific surface area through BET method2/g.N content is about 5%.
Embodiment 2:
A.Hummers methods prepare graphene oxide:
(1) it aoxidizes:Weigh graphous graphite powder 3.5g, potassium permanganate 6.5g, wherein a diameter of 1- of artificial graphite powder particles 200 microns, two kinds of raw materials are slowly added to the concentrated sulfuric acid of 105ml a concentration of 98% after mixing, and concentrated sulfuric acid temperature is 2 DEG C.It is mixed It closes after object keeps 0-2 DEG C of stirring 120 minutes, temperature is adjusted to 40 DEG C, then insulated and stirred 120 minutes.It is slowly added to for the first time 230ml temperature is 2 DEG C of deionized water, while improving mixing speed.Raise the temperature to 90 DEG C, Heat preservation 15 minutes, with The hydrogen peroxide that 11ml mass fractions are 30% is added afterwards, 200ml deionized waters dilution acid solution is added, graphite oxide concentration is about For 10mg/ml, graphite oxide dilution is obtained.
(2) ultrasonic:Gained graphite oxide solution is ultrasonically treated, ultrasonic acc power is 1000W, frequency is 5000Hz, ultrasonic time are 120 minutes, obtain suspension.
(3) washing and drying:After being settled by the suspension, remove supernatant liquor, salt acid elution is added;And it sinks again Drop obtains lower layer's colloid.It washed once and then settle using 150ml hydrochloric acid once, washed once again, then with 150ml ethyl alcohol Sedimentation is primary, then Reusability deionized water is washed and settled, and operates repeatedly and shows neutrality to solution and hydrogel phenomenon occur.By water Gel is freeze-dried, and sample lasts 72 hours and is warmed to room temperature by -35 DEG C under 1Pa air pressures, obtains brown color dried object powder Last 6g, i.e. graphene oxide powder.
B. the microwave treatment of graphene oxide, thermal reduction and chemical vapor deposition doping:
(1) microwave treatment:In vacuum 9 × 10-4Under the conditions of torr, microwave treatment, work(are carried out to 6g graphene oxide powders Rate 850W, 60 seconds microwave time.Color sample switchs to black by brown color, apparent expansion occurs, and weight is 40% before expanding.
(2) it heat-treats:Keep 9 × 10-4Torr vacuum degrees keep the temperature 60 minutes after rising to 800 DEG C with 8 DEG C/min.
(3) chemical vapor deposition:800 DEG C of heat preservations after sixty minutes, are passed through ammonia, flow 50sccm, and pressure is about in storehouse 30torr ventilates 180 minutes.Subsequent vacuum cooled to room temperature.It can be obtained bigger serface nitrogen-doped graphene, tail gas It is collected using water.
It is about 1000m to measure the present embodiment to prepare gained graphene specific surface area through BET method2/g.N content is about 8%.
Embodiment 3:
A.Hummers methods prepare graphene oxide:
(1) it aoxidizes:Expanded graphite 10g, potassium permanganate 20g are weighed, a diameter of 1-200 of wherein expanded graphite particles is micro- Rice, two kinds of raw materials are slowly added to the concentrated sulfuric acid of 250ml a concentration of 98% after mixing, and concentrated sulfuric acid temperature is 2 DEG C.Mixture is protected After holding 0-2 DEG C of stirring 90 minutes, temperature is adjusted to 35 DEG C, then insulated and stirred 90 minutes.Being slowly added to 500ml temperature for the first time is 2 DEG C of deionized water, while improving mixing speed.93 DEG C are raised the temperature to, 25ml matter is then added in Heat preservation 10 minutes The hydrogen peroxide that score is 30% is measured, 700ml deionized waters dilution acid solution is added, graphite oxide concentration is about 8mg/ml, is obtained Graphite oxide dilution.
(2) ultrasonic:Gained graphite oxide solution is ultrasonically treated, ultrasonic acc power is 550W, frequency 2500Hz, Ultrasonic time is 60 minutes.
(3) washing and drying:After being settled by the suspension, remove supernatant liquor, salt acid elution is added;And it sinks again Drop obtains lower layer's colloid.It washed once and then settle using 250ml hydrochloric acid once, washed once again, so with 250ml ethyl alcohol Sedimentation is primary afterwards, then Reusability deionized water is washed and settled, and operates repeatedly and shows neutrality to solution and hydrogel phenomenon occur.It will Hydrogel is freeze-dried, and sample lasts 96 hours and is warmed to room temperature by -35 DEG C under 1Pa air pressures, obtains brown color dried object Powder 12g, i.e. graphene oxide powder.
B. the microwave treatment of graphene oxide, thermal reduction and chemical vapor deposition doping:
(1) microwave treatment:In vacuum 2 × 10-3Under the conditions of torr, microwave treatment, work(are carried out to 12g graphene oxide powders Rate 725W, 30 seconds microwave time.Color sample switchs to black by brown color, apparent expansion occurs, and weight is 50% before expanding.
(2) it heat-treats:Keep 2 × 10-3Torr vacuum degrees keep the temperature 40 minutes after rising to 800 DEG C with 6 DEG C/min.
(3) chemical vapor deposition:800 DEG C of heat preservations after forty minutes, are passed through ammonia, flow 60sccm, and pressure is about in storehouse 15torr ventilates 105 minutes.Subsequent vacuum cooled to room temperature.It can be obtained bigger serface nitrogen-doped graphene, tail gas It is collected using water.
It is about 850m to measure the present embodiment to prepare gained graphene specific surface area through BET method2/g.N content is about 7%.
Above embodiment be only to the present invention specific implementation mode be described, not to the scope of the present invention into Row limits, and those skilled in the art can also do numerous modifications and variations, be set not departing from the present invention on the basis of existing technology Under the premise of meter spirit, all variations and modifications that this field ordinary engineering and technical personnel makes technical scheme of the present invention, It should all fall into the protection domain of claims of the present invention determination.

Claims (9)

1. a kind of preparation method of bigger serface nitrogen-doped graphene, includes the following steps:
A.Hummers methods prepare graphene oxide:
(1) it aoxidizes:Graphite raw material and potassium permanganate are weighed, the concentrated sulfuric acid is then added to graphite raw material and potassium permanganate mixture In stir evenly, temperature is maintained at 0-2 DEG C when stirring, and after stirring 60-120 minutes, temperature is adjusted to 30-40 DEG C, then is kept the temperature Stirring 60-120 minutes;Deionized water is added for the first time, stirs evenly, raises the temperature to 90-95 DEG C, 5-15 points of Heat preservation Hydrogen peroxide is added in clock, and deionized water dilution is added again, obtains graphite oxide dilution;
(2) ultrasonic:The graphite oxide dilution of gained is ultrasonically treated, suspension is obtained;
(3) it washes, is dry:The suspension is settled, removes supernatant;Use hydrochloric acid, ethyl alcohol to outstanding successively respectively again Turbid is washed, is settled, removing supernatant operation;Reusability deionized water is washed and is settled again, is operated repeatedly to solution There is hydrogel phenomenon in aobvious neutrality, and hydrogel is carried out freeze-drying process, obtains brownish-yellow powder, i.e. graphene oxide powder End;
B. the microwave treatment of graphene oxide, thermal reduction and chemical vapor deposition doping:
(1) microwave treatment:Under vacuum, microwave treatment is carried out to the graphene oxide powder, the graphene oxide powder is micro- 2-3 times of volume expansion after wave processing, 40-60% before weight is expansion;
(2) it heat-treats:In-situ annealing is carried out to the graphene oxide powder after microwave treatment:4-8 DEG C/minute of heating rate, temperature 20-60 minutes are kept the temperature after rising to 800 DEG C;
(3) chemical vapor deposition:After 800 DEG C keep the temperature 20-60 minutes, it is passed through the ammonia of certain flow, it is 1- to keep pressure in storehouse 30torr ventilates 30-180 minutes, subsequent vacuum cooled to room temperature, you can obtain bigger serface nitrogen-doped graphene.
2. preparation method according to claim 1, which is characterized in that graphite raw material is natural scale stone in the A (1) One kind in ink, graphous graphite powder, expanded graphite or arbitrary combination.
3. preparation method according to claim 1, which is characterized in that the matter of graphite raw material and potassium permanganate in the A (1) Amount is than being 3:5.57-7, and the corresponding concentrated sulfuric acid dosage of every gram of graphite raw material is 20-30mL;The corresponding dioxygen of every gram of graphite raw material Water consumption is 2-3mL.
4. preparation method according to claim 1, which is characterized in that the A (1) is first after insulated and stirred 60-120 minutes The secondary temperature that deionized water is added is 0-2 DEG C, and it is 2 that deionized water is added for the first time with the concentrated sulfuric acid volume ratio:1.
5. preparation method according to claim 1, which is characterized in that deionized water dilution is added in the A (1) again Afterwards, a concentration of 6-10mg/mL of graphite oxide in graphite oxide dilution.
6. preparation method according to claim 1, which is characterized in that suspension described in the A (3) is finally washed to molten Liquid is in gel form.
7. preparation method according to claim 1, which is characterized in that microwave treatment power is 600- in the B (1) 850W, microwave time are 5-60 seconds.
8. preparation method according to claim 1, which is characterized in that B (1) microwave treatment, B (2) thermal reductions and B (3) chemical vapor deposition carries out in situ.
9. a kind of graphene, which is characterized in that the graphene is prepared by any preparation methods of claim 1-8 It arrives.
CN201610528330.7A 2016-07-06 2016-07-06 A kind of bigger serface nitrogen-doped graphene and preparation method thereof Active CN106145101B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610528330.7A CN106145101B (en) 2016-07-06 2016-07-06 A kind of bigger serface nitrogen-doped graphene and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610528330.7A CN106145101B (en) 2016-07-06 2016-07-06 A kind of bigger serface nitrogen-doped graphene and preparation method thereof

Publications (2)

Publication Number Publication Date
CN106145101A CN106145101A (en) 2016-11-23
CN106145101B true CN106145101B (en) 2018-08-10

Family

ID=58062040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610528330.7A Active CN106145101B (en) 2016-07-06 2016-07-06 A kind of bigger serface nitrogen-doped graphene and preparation method thereof

Country Status (1)

Country Link
CN (1) CN106145101B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019224579A1 (en) 2018-05-23 2019-11-28 Arcelormittal A method for the manufacture of reduced graphene oxide from electrode graphite scrap
WO2019224578A1 (en) * 2018-05-23 2019-11-28 Arcelormittal A method for the manufacture of graphene oxide from electrode graphite scrap
CN109179387B (en) * 2018-11-16 2020-08-18 重庆大学 Method for preparing graphene and graphene prepared by method
CN109346338B (en) * 2018-11-16 2020-11-27 郑州轻工业学院 Rapid room-temperature preparation method of nitrogen-doped graphene
CN110217782B (en) * 2019-07-05 2021-01-05 郑州新世纪材料基因组工程研究院有限公司 Application of reduced graphene oxide in electromagnetic wave absorption-reflection material and adjustment method of electromagnetic wave absorption-reflection material
CN110327927A (en) * 2019-07-10 2019-10-15 大英聚能科技发展有限公司 A kind of modified graphene material of high catalytic activity and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101987729A (en) * 2010-11-08 2011-03-23 中国科学技术大学 Method for preparing graphene by reduction of sulfur-contained compound
CN102887501A (en) * 2011-07-21 2013-01-23 海洋王照明科技股份有限公司 Method for preparing nitrating graphene
CN103058177A (en) * 2013-01-05 2013-04-24 张家港市东大工业技术研究院 Preparation method for realizing N-doped grapheme by high-energy microwave vacuum irradiation
CN104008894A (en) * 2013-02-21 2014-08-27 海洋王照明科技股份有限公司 Nitrogen-doped graphene material, preparation method thereof, nitrogen-doped graphene electrode, and electrochemical capacitor
WO2015031841A1 (en) * 2013-08-30 2015-03-05 Board Of Regents, The University Of Texas System Doped graphite oxide and doped graphene, methods for producing the same, electrodes and ultracapacitors comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101987729A (en) * 2010-11-08 2011-03-23 中国科学技术大学 Method for preparing graphene by reduction of sulfur-contained compound
CN102887501A (en) * 2011-07-21 2013-01-23 海洋王照明科技股份有限公司 Method for preparing nitrating graphene
CN103058177A (en) * 2013-01-05 2013-04-24 张家港市东大工业技术研究院 Preparation method for realizing N-doped grapheme by high-energy microwave vacuum irradiation
CN104008894A (en) * 2013-02-21 2014-08-27 海洋王照明科技股份有限公司 Nitrogen-doped graphene material, preparation method thereof, nitrogen-doped graphene electrode, and electrochemical capacitor
WO2015031841A1 (en) * 2013-08-30 2015-03-05 Board Of Regents, The University Of Texas System Doped graphite oxide and doped graphene, methods for producing the same, electrodes and ultracapacitors comprising the same

Also Published As

Publication number Publication date
CN106145101A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
CN106145101B (en) A kind of bigger serface nitrogen-doped graphene and preparation method thereof
CN105271217B (en) A kind of preparation method of the three-dimensional grapheme of N doping
CN104150471B (en) A kind of method of redox graphene
CN102544445B (en) Preparation method for graphene composite material supporting silicon nanoparticles
Lu et al. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation
CN106910640A (en) Controllable graphene nanometer sheet electrode material of a kind of form and its preparation method and application
CN103508442B (en) The preparation method of Graphene
CN107946084A (en) A kind of metal oxide/three-dimensional porous graphene composite material and its preparation method and application
Zhan et al. Rationally designed Ta 3 N 5@ ReS 2 heterojunctions for promoted photocatalytic hydrogen production
CN105271170B (en) Preparation method of nano carbon and composite material of nano carbon
CN105140042B (en) A kind of preparation method and applications of bacteria cellulose/activated carbon fiber/CNT membrane material
CN104617280B (en) Adhesive-free graphene/silicon electrode for lithium ion battery and preparation method thereof
Lin et al. The effect of Sn content in Pt–SnO2/CNTs for methanol electro-oxidation
CN103359709A (en) Preparation method of nitrogen-doped graphene
CN106987857A (en) Single-layer metal structure molybdenum disulfide/redox graphene complex and preparation method thereof
CN102718250A (en) Method for preparing carbon-material-carrying tin dioxide nanosheet composite material
CN106986387B (en) A kind of three-dimensional molybdenum disulfide bouquet and preparation method thereof
JPWO2014103480A1 (en) Electrode material for secondary battery, method for producing the same, and secondary battery
CN105036250B (en) A kind of preparation method and application of activated carbon fiber-loaded ordered mesopore carbon graphene composite material
CN108183204A (en) A kind of silicon nanometer sheet-graphene nanometer sheet composite material and preparation and application
CN108172420A (en) Nano carbon balls fiber hybrid aerogel electrode material for super capacitor and its preparation method and application
CN106504902A (en) A kind of CuO@MnO2Core shell structure porous nano wire material and preparation method thereof
CN108615860A (en) Nitrogen-doped graphene/silicon 3 D lithium-ion negative pole composite material and preparation method
CN109003826A (en) N and S codope graphene-graphene nanobelt aeroge preparation method
CN108831757A (en) A kind of preparation method of N and S codope graphene/carbon nano-tube aeroge

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant