CN106139318A - 一种基于组合卡尔曼滤波的智能输液监测方法 - Google Patents

一种基于组合卡尔曼滤波的智能输液监测方法 Download PDF

Info

Publication number
CN106139318A
CN106139318A CN201610477445.8A CN201610477445A CN106139318A CN 106139318 A CN106139318 A CN 106139318A CN 201610477445 A CN201610477445 A CN 201610477445A CN 106139318 A CN106139318 A CN 106139318A
Authority
CN
China
Prior art keywords
transfusion
transfusion speed
kalman filter
moment
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610477445.8A
Other languages
English (en)
Inventor
高�豪
杨帆
高源�
袁飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Yitai Technology Co Ltd
Original Assignee
Chengdu Yitai Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Yitai Technology Co Ltd filed Critical Chengdu Yitai Technology Co Ltd
Priority to CN201610477445.8A priority Critical patent/CN106139318A/zh
Publication of CN106139318A publication Critical patent/CN106139318A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/1684Monitoring, detecting, signalling or eliminating infusion flow anomalies by detecting the amount of infusate remaining, e.g. signalling end of infusion
    • A61M5/16845Monitoring, detecting, signalling or eliminating infusion flow anomalies by detecting the amount of infusate remaining, e.g. signalling end of infusion by weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16886Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16886Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
    • A61M5/16895Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters by monitoring weight change, e.g. of infusion container

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

本发明涉及生物医药领域,特别涉及一种基于组合卡尔曼滤波的智能输液监测方法。本发明的方法,利用两个局部卡尔曼滤波器分别处理重力传感器和红外传感器测得的输液速度信息,并根据重力传感***和红外传感***各自的状态方程和测量方程来进行卡尔曼滤波,输出建立在局部测量基础上输液速度的最优估计值及其估计协方差,然后传递给全局滤波器并完成信息的最优综合,形成全局最优估计的输液速度。与传统的输液监测装置相比,这种组合卡尔曼滤波器基于信息融合技术,利用卡尔曼滤波方法,将多个传感器采集到的输液信息利用起来,进行数据融合得出全局最优估计输液速度,明显提高了监测精度,解决了传统多通道传感器输液速度监测装置精度低的问题。

Description

一种基于组合卡尔曼滤波的智能输液监测方法
技术领域
本发明涉及生物医药领域,特别涉及一种基于组合卡尔曼滤波的智能输液监测方法。
背景技术
静脉输液是医疗护理中一项重要的治疗技术,因其给药迅速、疗效快、刺激小,临床应用十分普遍,特别是急救、疾病治疗等情况下,更是必不可少的治疗措施。
目前普遍使用的静脉输液工具仍然是传统的莫菲输液器。输液时需要将输液瓶(袋)悬挂在输液架上,高于患者的穿刺部位,利用势差将药液输入患者体内,护士凭借肉眼观察莫菲氏管中单位时间内的液滴数来估计输液滴速,根据经验手动调节输液器上的滑轮来控制输液速度。传统的输液过程往往长达几个小时,在这过程中需要有人关注输液瓶内液体的变化,因为一旦输液完毕没有及时更换药液或取出输液针头,就会发生回血现象,发生医疗事故,严重时会威胁到患者的生命。输液过程中一般由本人及其家属和医护人员采用人工监护的方法,观测其输液滴速、输液时间和剩余药液,给患者本人及其家属和医护人员带来很大的精神负担。
目前,市场上已有几款不同的输液监测或报警设备。但大多输液监测设备采用了单一的传感器来对输液速度和药液余量进行监测,传感器一旦失效会造成输液监测***无法继续进行自动监测或报警,容易引发医疗事故。中国实用新型专利说明书CN201220328064中公开了一种组合式输液监测装置,同时采用重力传感***和红外传感***,可以实时监测输液速度并在输液快结束时发出报警信号。如果在使用时,重力传感***或红外传感***之一失效,该输液监测装置仍可继续工作,不影响输液过程的监测功能和报警功能。
另外,在上述输液监测装置中,只有当重力传感器实效时,该***才会切换使用红外传感器采集到的数据作为监测数据。输液监控***始终采用其中一路传感器采集的数据作为监测数据,而并未将两路传感器数据做比较和修正。因此,***只保证了传感器监测通道的冗余性,但和传统单通道传感器相比,该输液监测装置的精度并未得到提高。
发明内容
本发明针对上述问题,提出一种基于组合卡尔曼滤波的智能输液监测方法。
本发明的技术方案:一种基于组合卡尔曼滤波的智能输液监测方法,包括以下步骤:
⒈采用重力传感器采集输液容器包括其内药液和附件的毛重量信号,微处理器在k时刻对所述毛重量信号进行分析得到毛重量W 1,经过一个时间周期,微处理器在k+1时刻对所述毛重量信号进行分析得到毛重量W 2,微处理器通过计算得到k时刻由重力传感器所测得的输液速度Z 1 (k);
⒉采用红外传感器采集在输液过程中输液容器或输液管中药液的下落信号,当红外传感器检测到液滴下落时会产生脉冲信号,微处理器在k时刻分析上两次脉冲信号之间的时间差,通过计算得到k时刻由红外传感器所测得的输液速度Z 2 (k);
⒊将重力传感***测得的输液速度数据Z 1 (k)通过重力传感***的局部卡尔曼滤波器进行滤波分析,得到k时刻重力传感***的最优估计输液速度V 1 (k)和最优估计输液速度的协方差P 1 (k);
⒋将红外传感***测得的输液速度数据Z 2 (k)通过红外传感***的局部卡尔曼滤波器进行滤波分析,得到k时刻红外传感***的最优估计输液速度V 2(k)和最优估计输液速度的协方差P 2 (k);
⒌将上述两组最优估计输液速度V 1(k)、V 2(k)和最优估计输液速度的协方差P 1(k)、P 2(k)传递给全局滤波器。全局滤波器完成信息的最优综合,得到k时刻全局最优估计的输液速度V m (k)。
本发明的方法,先利用两个局部卡尔曼滤波器同时分别处理重力传感器和红外传感器测得的输液速度信息,并根据重力传感***和红外传感***各自的状态方程和测量方程来进行卡尔曼滤波,输出建立在局部测量基础上的k时刻输液速度的最优估计结果及其估计协方差V i (k)、P i (k) ( i=1,2),然后传递给全局滤波器。全局滤波器完成信息的最优综合,形成k时刻全局最优估计的输液速度V m (k)。
本发明的有益效果为,这种组合卡尔曼滤波器将重力传感器和红外传感器采集到的输液速度信息各自进行卡尔曼滤波后再进行全局融合,输出全局最优估计的输液速度值。与传统的输液监测装置相比,这种基于组合卡尔曼滤波的智能输液监测方法明显提高了监测精度。这种组合卡尔曼滤波器基于信息融合技术,利用卡尔曼滤波方法,将多个传感器采集到的输液信息利用起来,进行数据融合得出全局最优估计输液速度,解决以前多通道传感器输液监测装置输液速度监测精度低的问题。
附图说明
图1为一种基于组合卡尔曼滤波的智能输液监测方法流程图。
图2为采用组合卡尔曼滤波器对智能输液监测***的实例数据处理图。
具体实施方式
下面结和附图和实施例对本发明进行详细的描述。
在如图1所示,重力传感器1实时采集输液容器包括其内药液和附件的毛重量信号,微处理器在k时刻对所述毛重量信号进行分析得到毛重量W 1,经过一个时间周期,微处理器在k+1时刻对所述毛重量信号进行分析得到毛重量W 2,实时计算输液容器中输液速度Z 1(k)=( W 1- W 2)/(ρ×t1),其中ρ为输液液体的密度。
红外传感器2测定输液滴管中药液滴速,当莫菲试管中有液体滴下时,红外传感器产生脉冲信号,微处理器在k时刻分析上两次脉冲信号之间的时间差τ,由于每次下落液滴的体积相同均为0.05mL,由此可计算得到其输液速度Z 1(k)=0.05/τ。
微处理器3和4分别将重力传感器1和红外传感器2测得的输液过程信息通过计算得到输液速度测量值Z 1(k)、Z 2(k)。将输液速度测量值Z 1(k)通过局部卡尔曼滤波器5进行分析,得到k时刻重力传感***8的最优估计输液速度V 1(k)和最优估计输液速度的协方差P 1(k);将输液速度测量值Z 2(k)通过局部卡尔曼滤波器6进行分析,得到k时刻红外传感***9的最优估计输液速度V 2(k)和最优估计输液速度的协方差P 2(k);将上述两组最优估计输液速度和最优估计输液速度的协方差通过全局滤波器7进行全局融合得到k时刻全局最优估计的输液速度V m (k)。以上过程的具体计算方法如下所示。
局部卡尔曼滤波器5和局部卡尔曼滤波器6的状态方程为:
其中k+1时刻和k时刻***真实的输液速度。AB为***的控制参数,由于我们预计输液监测***的流速基本保持不变且该预测模型为一维模型,故将AB取恒值1。W(k)为k时刻***的过程噪声,一般假设为高斯白噪声,其协方差为Q
局部卡尔曼滤波器5和局部卡尔曼滤波器6的测量方程为:
其中Z i (k)为k时刻传感器***测得的输液速度值,H是***测量参数,由于测量***始终保持不变且该测量模型为一维模型,故将H 取恒值1,C(k)为k时刻***测量噪声,一般假设为高斯白噪声,其协方差为R
局部卡尔曼滤波器5和局部卡尔曼滤波器6的算法如下:
上式计算k+1时刻的输液速度预测值的协方差P i (k+1/k),式中P i (k)是k时刻的输液速度V i (k)最优估计值的协方差,A T A的转置矩阵,其值仍为1。
上式计算k+1时刻的最优估计输液速度值V i (k+1),式中K i (k+1)为k+1时刻的卡尔曼增益,卡尔曼增益的计算方式在下式给出,Z i (k+1)为k+1时刻的***输液速度的测量值,V i (k)是k时刻的输液速度最优估计值。
上式计算k+1时刻的卡尔曼增益K i (k+1),式中P i (k+1/k)为k+1时刻的输液速度预测值协方差,H T H的转置矩阵,其值仍为1。
上式计算k+1时刻的最优估计输液速度的协方差P i (k+1)。经过分散化并行运算的局部卡尔曼滤波器5和6的处理,分别得到由重力传感器1和红外传感器2采集到的输液速度信息局部最优估计及其协方差V i (k)P i (k)i=1,2)。
V i (k)P i (k)在全局滤波器7中按下式进行融合,全局融合结果为:
V m (k)为输液监测***k时刻的全局最优估计输液速度值。
要精确描述重力传感***8和红外传感***9的状态方程和测量方程,以上算法中关键环节是QR的确定。QR的选择对卡尔曼滤波器5和6的精度有直接影响,如果Q值选取过大,则滤波在过去观测量上的加权衰减就过快,导致的后果是滤波不能很好地利用已有的测量信息,从而降低了滤波器的精度;反之,如果Q值选取过小,使滤波在过去观测量上的衰减过慢,随着滤波的递推,将会引进越来越大的模型噪声,从而使滤波误差越来越大。卡尔曼增益K达到稳态的快慢取决于QR的比值,Q/R此值越大,最优估计值达到稳态就越快。所以***的测量方程所描述的测量环节的精度,也一定要和***匹配得当。
实施例
下面结合附图,以Matlab软件仿真结果为例进一步说明本发明。
利用重力传感器1和红外传感器2分别连续采集100个数据点,假设***采样周期为1s,真实的输液速度为恒定值50 μL/s,对输液速度的初始估计值为45 μL/s,重力传感***8和红外传感器9的状态方程和测量方程的噪声协方差Q=4×10-4R=1。重力传感***和红外传感***采集到的数据分别经过各自的卡尔曼滤波器5和6进行滤波,然后将输出建立在局部测量基础上的输液速度的最优估计结果及其估计协方差V i (k)、P i (k) (i=1,2),传递给全局滤波器5。全局滤波器完成信息的最优综合,形成全局***的全局最优估计输液速度值V m (k)。
V m (k)输出结果如图2的虚线所示,虽然重力传感器8和红外传感器9的测量值Z 1(k)、Z 2(k)的噪声很大,但组合卡尔曼滤波的全局最优估计输液速度V m (k)逐渐逼近了真实输液速度。此组合滤波器能够对***状态量做较好的估计,即***能够有效地消除在输液过程中重力传感器1和红外传感器2产生的测量误差,能完成输液监测***的组合测速功能,提供较精确的静脉输液速度信息。
由具体实施例可知,本发明提出了一种基于组合卡尔曼滤波的智能输液监测方法,这种组合卡尔曼滤波器将重力传感器和红外传感器采集到的输液速度信息各自进行卡尔曼滤波后再进行全局融合,输出全局最优估计的输液速度值。与传统的输液监测装置相比,该组合卡尔曼滤波器的精度有着明显的提高。这种组合卡尔曼滤波器基于信息融合技术,利用卡尔曼滤波方法,利用多个传感器采集到的输液信息,进行数据融合得出全局最优估计输液速度,解决以前多通道传感器输液监测装置输液速度监测精度低的问题。
另外需要说明的是,本发明并不限于上述实施方式中的具体细节,在本发明的原理方法范围内的多种简化、变型均属于本发明的保护内容。

Claims (2)

1.一种基于组合卡尔曼滤波的智能输液监测方法,其特征在于,包括以下步骤:
采用重力传感器采集输液容器包括其内药液和附件的毛重量信号,微处理器在k时刻对所述毛重量信号进行分析得到毛重量W 1,经过一个时间周期,微处理器在k+1时刻对所述毛重量信号进行分析得到毛重量W 2,微处理器通过计算可得到k时刻由重力传感器所测得的输液速度Z 1(k);
采用红外传感器采集在输液过程中输液容器或输液管中药液的下落信号,当红外传感器检测到液滴下落时会产生脉冲信号,微处理器在k时刻分析上两次脉冲信号之间的时间差,通过计算可得到k时刻由红外传感器所测得的输液速度Z 2(k);
将重力传感***测得到的输液速度数据Z 1(k)通过重力传感***局部卡尔曼滤波器进行滤波分析,得到k时刻重力传感***的最优估计输液速度V 1(k)和最优估计输液速度的协方差P 1(k);
将红外传感***测得到的输液速度数据Z 2(k)通过红外传感***局部卡尔曼滤波器进行滤波分析,得到k时刻红外传感***的最优估计输液速度V 2(k)和最优估计输液速度的协方差P 2(k);
将上述两组最优估计输液速度V 1(k)、V 2(k)和最优估计输液速度的协方差P 1(k)、P 2(k)传递给全局滤波器;
全局滤波器完成信息的最优综合,形成k时刻全局最优估计的输液速度V m (k)。
2.根据权利要求1所述的一种基于组合卡尔曼滤波的智能输液监测方法,其特征在于:
所述重力传感***和红外传感器的状态方程和测量方程的噪声协方差Q=4×10-4R=1。
CN201610477445.8A 2016-06-28 2016-06-28 一种基于组合卡尔曼滤波的智能输液监测方法 Pending CN106139318A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610477445.8A CN106139318A (zh) 2016-06-28 2016-06-28 一种基于组合卡尔曼滤波的智能输液监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610477445.8A CN106139318A (zh) 2016-06-28 2016-06-28 一种基于组合卡尔曼滤波的智能输液监测方法

Publications (1)

Publication Number Publication Date
CN106139318A true CN106139318A (zh) 2016-11-23

Family

ID=57349287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610477445.8A Pending CN106139318A (zh) 2016-06-28 2016-06-28 一种基于组合卡尔曼滤波的智能输液监测方法

Country Status (1)

Country Link
CN (1) CN106139318A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987267A (zh) * 2019-12-23 2020-04-10 佳讯飞鸿(北京)智能科技研究院有限公司 转辙机应力信号检测装置和方法及电子设备
CN111000684A (zh) * 2019-09-27 2020-04-14 张兴利 一种基于多传感器融合的纸尿裤外置监测***及监测方法
CN111426353A (zh) * 2020-04-08 2020-07-17 中国民用航空飞行学院 一种精确流量获取装置及方法
CN111750962A (zh) * 2020-06-04 2020-10-09 江南大学 一种基于滤波的物体重量高精度估计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955368A1 (de) * 1999-11-17 2001-05-23 Lre Technology Partner Gmbh Infusionsvorrichtung
WO2002024065A1 (en) * 2000-09-22 2002-03-28 Knobbe, Lim & Buckingham Method and apparatus for real-time estimation and control of pysiological parameters
CN102028990A (zh) * 2010-02-22 2011-04-27 缪学明 一种输液监测方法
CN103250156A (zh) * 2010-12-09 2013-08-14 弗雷塞尼斯医疗保健德国有限责任公司 用于对表示患者参数的一个或多个值进行计算或逼近的方法以及设备
CN103932720A (zh) * 2014-05-09 2014-07-23 珠海沃姆电子有限公司 尿量和尿流率测量方法及测量***
US20140221966A1 (en) * 2013-02-07 2014-08-07 The Board Of Trustees Of The Leland Stanford Junior University Kalman Filter Based On-Off Switch for Insulin Pump
CN105148354A (zh) * 2015-07-30 2015-12-16 陈威 一种分离式结构的液滴检测装置及高抗干扰检测方法
CN105536103A (zh) * 2016-02-17 2016-05-04 黄湘惠 一种感应点滴报警器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955368A1 (de) * 1999-11-17 2001-05-23 Lre Technology Partner Gmbh Infusionsvorrichtung
WO2002024065A1 (en) * 2000-09-22 2002-03-28 Knobbe, Lim & Buckingham Method and apparatus for real-time estimation and control of pysiological parameters
CN102028990A (zh) * 2010-02-22 2011-04-27 缪学明 一种输液监测方法
CN103250156A (zh) * 2010-12-09 2013-08-14 弗雷塞尼斯医疗保健德国有限责任公司 用于对表示患者参数的一个或多个值进行计算或逼近的方法以及设备
US20140221966A1 (en) * 2013-02-07 2014-08-07 The Board Of Trustees Of The Leland Stanford Junior University Kalman Filter Based On-Off Switch for Insulin Pump
CN103932720A (zh) * 2014-05-09 2014-07-23 珠海沃姆电子有限公司 尿量和尿流率测量方法及测量***
CN105148354A (zh) * 2015-07-30 2015-12-16 陈威 一种分离式结构的液滴检测装置及高抗干扰检测方法
CN105536103A (zh) * 2016-02-17 2016-05-04 黄湘惠 一种感应点滴报警器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111000684A (zh) * 2019-09-27 2020-04-14 张兴利 一种基于多传感器融合的纸尿裤外置监测***及监测方法
CN111000684B (zh) * 2019-09-27 2022-04-01 张兴利 一种基于多传感器融合的纸尿裤外置监测***及监测方法
CN110987267A (zh) * 2019-12-23 2020-04-10 佳讯飞鸿(北京)智能科技研究院有限公司 转辙机应力信号检测装置和方法及电子设备
CN111426353A (zh) * 2020-04-08 2020-07-17 中国民用航空飞行学院 一种精确流量获取装置及方法
CN111750962A (zh) * 2020-06-04 2020-10-09 江南大学 一种基于滤波的物体重量高精度估计方法
CN111750962B (zh) * 2020-06-04 2021-07-27 江南大学 一种基于滤波的物体重量高精度估计方法

Similar Documents

Publication Publication Date Title
CN104873186B (zh) 一种可穿戴的动脉检测装置及其数据处理方法
CN106139318A (zh) 一种基于组合卡尔曼滤波的智能输液监测方法
Warner et al. Computer-based monitoring of cardiovascular functions in postoperative patients
CN104138253B (zh) 一种无创动脉血压连续测量方法和设备
CN102178529B (zh) 基于体域网的呼吸疾病远程诊断监护***
CN104622444B (zh) 一种多光电传感模块腕式监测***
CN107203695A (zh) 一种基于云平台大数据统计与计算的糖尿病监测与交互***
CN107106027A (zh) 婴儿睡眠监测器
CN108309262A (zh) 多参数监护数据分析方法和多参数监护仪
AU2005268811B2 (en) Non-invasive heart monitoring apparatus and method
CN106175772A (zh) 一种睡眠呼吸暂停监测方法及***
CN205235061U (zh) 一种智能输液***
CN106388771A (zh) 一种自动检测人体生理状态的方法及运动手环
CN106344034A (zh) 一种睡眠质量评估***及其方法
WO2020228083A1 (zh) 血压个性化区间的统计方法及装置
CN109172941A (zh) 基于4g的力学传感式智能输液监控***
CN104523260B (zh) 一种微循环血流速度测量装置及方法
KR101971208B1 (ko) 가속도와 자이로 센서를 이용한 심탄도 모니터링 장치 및 그 방법
CN102512180A (zh) 血氧测量仪
Wu et al. Data processing platform design and algorithm research of wearable sports physiological parameters detection based on medical internet of things
CN104274882A (zh) 一种输液时间监控装置及方法
CN208511630U (zh) 一种具有信息监测及反馈功能的分娩镇痛泵及***
CN211096685U (zh) 一种输液滴速的检测装置
CN104799814A (zh) 气虚、血虚状态量化测量方法与装置
Gohlke et al. An IoT based low-cost heart rate measurement system employing PPG sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161123

WD01 Invention patent application deemed withdrawn after publication