CN106130135A - 一种高效率恒压电流电路 - Google Patents

一种高效率恒压电流电路 Download PDF

Info

Publication number
CN106130135A
CN106130135A CN201610695483.0A CN201610695483A CN106130135A CN 106130135 A CN106130135 A CN 106130135A CN 201610695483 A CN201610695483 A CN 201610695483A CN 106130135 A CN106130135 A CN 106130135A
Authority
CN
China
Prior art keywords
circuit
effect transistor
field effect
voltage
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610695483.0A
Other languages
English (en)
Inventor
刘佩阳
范继光
喻德茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Nulike-Tech Co Ltd
Original Assignee
Shenzhen Nulike-Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Nulike-Tech Co Ltd filed Critical Shenzhen Nulike-Tech Co Ltd
Priority to CN201610695483.0A priority Critical patent/CN106130135A/zh
Publication of CN106130135A publication Critical patent/CN106130135A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

一种高效率恒压恒流电路,涉及电池充电技术领域,包括快充电源、通讯电路、电压调节、驱动电路、输出电压电流取样电路、电池以及MCU电路;所述电压调节电路和通讯电路均电性连接至快充电源上;所述驱动电路电性连接在电压调节电路上,所述MCU电路电性连接至所述的通讯电路和驱动电路上;所述输出电压电流取样电路电性连接所述的电压调节电路和所述的MCU电路,电池的正极端连接至所述的输出电压电流取样电路,电池的负极端接地;本发明的有益效果是:该电路为电池智能快速充电的解决方案,成本低、效率高。

Description

一种高效率恒压电流电路
技术领域
本发明涉及电池充电技术领域,更具体的说,本发明涉及一种高效率恒压电流电路。
背景技术
随着移动电子产品所用电池容量越来越大,缩短充电时间成为硬性要求。随之诞生了QC2.0/3.0, Pump Express, USB PD2.0/3.0 (Power Delivery) 等各种快充技术,可以对出输出电压实现5-20V范围内调整,支持最大功率也越来越高,基于USB PD2.0/3.0的USB 3.1 Type-C最大输出达到20V/5A 100W。可以预见应用快充技术的电子产品将日益广泛。
发明内容
本发明的目的在于克服上述技术的不足,提供一种高效率恒压电流电路,该电路为电池智能快速充电的解决方案,成本低、效率高 。
本发明的技术方案是这样实现的:一种高效率恒压恒流电路,其改进之处在于:包括快充电源、通讯电路、电压调节、驱动电路、输出电压电流取样电路、电池以及MCU电路;
所述电压调节电路和通讯电路均电性连接至快充电源上;
所述驱动电路电性连接在电压调节电路上,所述MCU电路电性连接至所述的通讯电路和驱动电路上;
所述输出电压电流取样电路电性连接所述的电压调节电路和所述的MCU电路,电池的正极端连接至所述的输出电压电流取样电路,电池的负极端接地。
在上述的结构中,还包括连接器,所述电压调节电路和所述通讯电路通过所述的连接器与快充电源电性连接。
在上述的结构中,所述电压调节电路包括升压电路和降压电路,所述升压电路包括场效应管Q1、场效应管Q3、场效应管Q4以及电感L2;所述降压电路包括场效应管Q1、场效应管Q2、场效应管Q3以及电感L2;
所述场效应管Q1与所述场效应管Q2串联后形成第一连接端、第二连接端以及第一公共端,所述第一连接端连接至所述的连接器,第二连接端接地;
所述场效应管Q3与所述场效应管Q4串联后形成第三连接端、第四连接端以及第二公共端,所述第三连接端连接至所述的输出电压电流取样电路,第四连接端接地;
所述电感设置于第一公共端与第二公共端之间。
在上述的结构中,所述电压调节电路包括升压电路;
所述升压电路包括场效应管Q3、场效应管Q4以及电感L2,所述场效应管Q3与所述场效应管Q4串联后形成第三连接端、第四连接端以及第二公共端,所述第三连接端连接至所述的输出电压电流取样电路,第四连接端接地;所述电感L2的一端连接至连接器上,电感L2的另一端连接至第二公共端上。
在上述的结构中,还包括电容C3,所述电容C3连接在第三连接端与第四连接端之间。
在上述的结构中,所述电压调节电路包括降压电路;
所述降压电路包括场效应管Q1、场效应管Q2以及电感L2,所述场效应管Q1与所述场效应管Q2串联后形成第一连接端、第二连接端以及第一公共端,所述第一连接端连接至所述的连接器,第二连接端接地;所述电感L2的一端连接在第一公共端上,电感L2的另一端连接至输出电压电流取样电路。
在上述的结构中,还包括电容C3,所述电容C3连接在电感L2的另一端与接地端之间。
在上述的结构中,所述第一连接端与接地端之间还设置有电容C1。
在上述的结构中,所述输出电压电流取样电路包括电流取样电路、电压取样电路以及电阻RS1。
本发明的有益效果是:本发明通过上述的结构,主要解决电动工具等大容量电池与各类快充充电器匹配充电问题;以相当简单的电路提供了为电池智能快速充电的解决方案,成本低,元减少,效率高。
附图说明
图1、图2为本发明的原理框图。
图3为本发明的第一实施例图。
图4为本发明的第二实施例图。
图5为本发明的第三实施例图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
参照1所示,本发明揭示了一种高效率恒压电流电路,包括快充电源、通讯电路、电压调节、驱动电路、输出电压电流取样电路、电池以及MCU电路;所述电压调节电路和通讯电路均电性连接至快充电源上;所述驱动电路电性连接在电压调节电路上,所述MCU电路电性连接至所述的通讯电路和驱动电路上;所述输出电压电流取样电路电性连接所述的电压调节电路和所述的MCU电路,电池的正极端连接至所述的输出电压电流取样电路,电池的负极端接地。
另外,本发明还提供了一实施例,参照图2所示,在本实施例中,与图1所述的实施例的不同仅在于,还包括连接器,所述电压调节电路和所述通讯电路通过所述的连接器与快充电源电性连接。
参照图3所示,为本发明提供的第一具体实施例,本实施例中,所述电压调节电路包括升压电路和降压电路,所述升压电路包括场效应管Q1、场效应管Q3、场效应管Q4以及电感L2;所述降压电路包括场效应管Q1、场效应管Q2、场效应管Q3以及电感L2。所述场效应管Q1与所述场效应管Q2串联后形成第一连接端、第二连接端以及第一公共端,所述第一连接端连接至所述的连接器,第二连接端接地;所述场效应管Q3与所述场效应管Q4串联后形成第三连接端、第四连接端以及第二公共端,所述第三连接端连接至所述的输出电压电流取样电路,第四连接端接地;所述电感设置于第一公共端与第二公共端之间。还包括电容C3,所述电容C3连接在第三连接端与第四连接端之间。所述第一连接端与接地端之间还设置有电容C1。所述输出电压电流取样电路包括电流取样电路、电压取样电路以及电阻RS1。
对于图3所述的实施例,其工作原理如下:电路工作包括降压模式和升压模式,降压工作模式:当电池电压小于快充输出最高电压时可工作于降压模式,此时场效应管Q3常开,场效应管Q4常关,场效应管Q1、场效应管Q2处于PWM控制模式,占空比取决于输入电压及输出电压电流反馈值;MCU根据电池电池电压发出指令给快充,使之输出一个比电池要高一点的电压, 以保持场效应管Q1工作于较大占空比,已达到效率最优化。升压工作模式:当电池电压大于等于快充输出最高电压时需工作于升压模式,此时场效应管Q1常开,场效应管Q2常关,场效应管Q3、场效应管Q4处于PWM控制模式,占空比取决于输入电压及电压电流反馈值;MCU根据电池电池电压发出指令给快充,使之输出最高或接近最高电压,以达到效率优化。通讯电路由专用快充通讯IC或单片机植入通讯协议替代构成。输出电流放置于输出负极也可以。
参照图4所示,为本发明提供的第二具体实施例,本实施例中,所述电压调节电路包括升压电路;所述升压电路包括场效应管Q3、场效应管Q4以及电感L2。所述场效应管Q3与所述场效应管Q4串联后形成第三连接端、第四连接端以及第二公共端,所述第三连接端连接至所述的输出电压电流取样电路,第四连接端接地;所述电感L2的一端连接至连接器上,电感L2的另一端连接至第二公共端上。另外,还包括电容C3,所述电容C3连接在第三连接端与第四连接端之间;所述第一连接端与接地端之间还设置有电容C1。所述输出电压电流取样电路包括电流取样电路、电压取样电路以及电阻RS1。
在本实施例中,在已确定电池电压始终高于快充输出最低电压条件下可简化为单独升压模式。升压工作模式原理如下:场效应管Q3、场效应管Q4处于PWM控制模式,占空比取决于输入电压及输出电压电流反馈值;MCU根据电池电池电压发出指令给快充,使之输出一个比电池要低一点的电压, 以保持场效应管Q3工作于较大占空比,已达到效率最优化。
参照图5所示,为本发明提供的第三具体实施例,本实施例中,所述电压调节电路包括降压电路;所述降压电路包括场效应管Q1、场效应管Q2以及电感L2;所述场效应管Q1与所述场效应管Q2串联后形成第一连接端、第二连接端以及第一公共端,所述第一连接端连接至所述的连接器,第二连接端接地;所述电感L2的一端连接在第一公共端上,电感L2的另一端连接至输出电压电流取样电路。还包括电容C3,所述电容C3连接在电感L2的另一端与接地端之间;所述第一连接端与接地端之间还设置有电容C1。所述输出电压电流取样电路包括电流取样电路、电压取样电路以及电阻RS1。
在本实施例中,在已确定电池始终低于快充输出最高电压条件下可简化为单独降压模式;降压工作模式:场效应管Q1、场效应管Q2处于PWM控制模式,占空比取决于输入电压及输出电压电流反馈值。 MCU根据电池电压发出指令给快充,使之输出一个比电池要高一点的电压, 以保持场效应管Q1工作于较大占空比,已达到效率最优化。
本发明通过上述的结构,主要解决电动工具等大容量电池与各类快充充电器匹配充电问题;以相当简单的电路提供了为电池智能快速充电的解决方案,成本低,元减少,效率高。
以上所描述的仅为本发明的较佳实施例,上述具体实施例不是对本发明的限制。在本发明的技术思想范畴内,可以出现各种变形及修改,凡本领域的普通技术人员根据以上描述所做的润饰、修改或等同替换,均属于本发明所保护的范围。

Claims (9)

1.一种高效率恒压恒流电路,其特征在于:包括快充电源、通讯电路、电压调节、驱动电路、输出电压电流取样电路、电池以及MCU电路;
所述电压调节电路和通讯电路均电性连接至快充电源上;
所述驱动电路电性连接在电压调节电路上,所述MCU电路电性连接至所述的通讯电路和驱动电路上;
所述输出电压电流取样电路电性连接所述的电压调节电路和所述的MCU电路,电池的正极端连接至所述的输出电压电流取样电路,电池的负极端接地。
2.根据权利要求1所述的一种高效率恒压电流电路,其特征在于:还包括连接器,所述电压调节电路和所述通讯电路通过所述的连接器与快充电源电性连接。
3.根据权利要求2所述的一种高效率恒压恒流电路,其特征在于:所述电压调节电路包括升压电路和降压电路,所述升压电路包括场效应管Q1、场效应管Q3、场效应管Q4以及电感L2;所述降压电路包括场效应管Q1、场效应管Q2、场效应管Q3以及电感L2;
所述场效应管Q1与所述场效应管Q2串联后形成第一连接端、第二连接端以及第一公共端,所述第一连接端连接至所述的连接器,第二连接端接地;
所述场效应管Q3与所述场效应管Q4串联后形成第三连接端、第四连接端以及第二公共端,所述第三连接端连接至所述的输出电压电流取样电路,第四连接端接地;
所述电感设置于第一公共端与第二公共端之间。
4.根据权利要求1所述的一种高效率恒压恒流电路,其特征在于:所述电压调节电路包括升压电路;
所述升压电路包括场效应管Q3、场效应管Q4以及电感L2,所述场效应管Q3与所述场效应管Q4串联后形成第三连接端、第四连接端以及第二公共端,所述第三连接端连接至所述的输出电压电流取样电路,第四连接端接地;所述电感L2的一端连接至连接器上,电感L2的另一端连接至第二公共端上。
5.根据权利要求3或4所述的一种高效率恒压恒流电路,其特征在于:还包括电容C3,所述电容C3连接在第三连接端与第四连接端之间。
6.根据权利要求1所述的一种高效率恒压电流电路,其特征在于:所述电压调节电路包括降压电路;
所述降压电路包括场效应管Q1、场效应管Q2以及电感L2,所述场效应管Q1与所述场效应管Q2串联后形成第一连接端、第二连接端以及第一公共端,所述第一连接端连接至所述的连接器,第二连接端接地;所述电感L2的一端连接在第一公共端上,电感L2的另一端连接至输出电压电流取样电路。
7.根据权利要求6所述的一种高效率恒压恒流电路,其特征在于:还包括电容C3,所述电容C3连接在电感L2的另一端与接地端之间。
8.根据权利要求3或6所述的一种高效率恒压恒流电路,其特征在于:所述第一连接端与接地端之间还设置有电容C1。
9.根据权利要求3所述的一种高效率恒压电流电路,其特征在于:所述输出电压电流取样电路包括电流取样电路、电压取样电路以及电阻RS1。
CN201610695483.0A 2016-08-19 2016-08-19 一种高效率恒压电流电路 Pending CN106130135A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610695483.0A CN106130135A (zh) 2016-08-19 2016-08-19 一种高效率恒压电流电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610695483.0A CN106130135A (zh) 2016-08-19 2016-08-19 一种高效率恒压电流电路

Publications (1)

Publication Number Publication Date
CN106130135A true CN106130135A (zh) 2016-11-16

Family

ID=57278841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610695483.0A Pending CN106130135A (zh) 2016-08-19 2016-08-19 一种高效率恒压电流电路

Country Status (1)

Country Link
CN (1) CN106130135A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169649A (ja) * 1997-08-06 1999-03-09 Mitsumi Electric Co Ltd 充電制御回路
CN101572425A (zh) * 2009-06-15 2009-11-04 江苏工业学院 一种升降压可调快速充电器
CN201440614U (zh) * 2009-06-26 2010-04-21 比亚迪股份有限公司 一种充电控制电路
CN204216600U (zh) * 2014-09-25 2015-03-18 深圳市大乘科技股份有限公司 同步升降压电池充电装置
CN105471045A (zh) * 2015-12-31 2016-04-06 深圳宝砾微电子有限公司 一种多电压快速充电电路及多电压快充一体化芯片
CN105610216A (zh) * 2015-12-29 2016-05-25 成都芯源***有限公司 大容量电池充电电路及其控制电路和控制方法
CN206060264U (zh) * 2016-08-19 2017-03-29 深圳市纽莱克科技有限公司 一种高效率恒压电流电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169649A (ja) * 1997-08-06 1999-03-09 Mitsumi Electric Co Ltd 充電制御回路
CN101572425A (zh) * 2009-06-15 2009-11-04 江苏工业学院 一种升降压可调快速充电器
CN201440614U (zh) * 2009-06-26 2010-04-21 比亚迪股份有限公司 一种充电控制电路
CN204216600U (zh) * 2014-09-25 2015-03-18 深圳市大乘科技股份有限公司 同步升降压电池充电装置
CN105610216A (zh) * 2015-12-29 2016-05-25 成都芯源***有限公司 大容量电池充电电路及其控制电路和控制方法
CN105471045A (zh) * 2015-12-31 2016-04-06 深圳宝砾微电子有限公司 一种多电压快速充电电路及多电压快充一体化芯片
CN206060264U (zh) * 2016-08-19 2017-03-29 深圳市纽莱克科技有限公司 一种高效率恒压电流电路

Similar Documents

Publication Publication Date Title
CN207304045U (zh) 一种快速充电电路、适配器及移动终端
CN105896646A (zh) 智能升降压充放电电路及其充放电方法
CN106887884A (zh) 电池的充电方法以及电池充电设备
CN104300769B (zh) 一种隔离型h桥驱动装置
CN105912058B (zh) 待机电路及电子设备
CN206673831U (zh) 一种高压输入低压输出的dc‑dc电源的延时启动电路
CN106558901A (zh) 一种应用于快充电源的输出电压控制电路
CN201860261U (zh) 一种升压电路
CN204696725U (zh) 一种通用型快速充电器
CN206060264U (zh) 一种高效率恒压电流电路
CN103985891B (zh) 一种液流电池***的控制***及其方法
CN107612311A (zh) 一种igbt串联型功率模块及其供电***和控制方法
CN207853759U (zh) 一种升压电路及电子设备
CN106130135A (zh) 一种高效率恒压电流电路
CN206442169U (zh) 携带式太阳能充电背包
CN206237306U (zh) 直流‑直流变换器、升压单元、电动汽车和电池备份***
CN206023316U (zh) 一种充电***
CN205092770U (zh) 电源升压管理电路
CN209675982U (zh) 一种防止充电后电池电压反灌输入端的电路
CN209572692U (zh) 一种低功耗灌溉装置
CN207743728U (zh) 一种无线适配器供电电路
CN207251476U (zh) 反激电源预负载装置
CN208806636U (zh) 一种手机电源电路
CN206962696U (zh) 一种适用于车载***的低电反激电源电路
CN207765972U (zh) 一种充电电路及终端设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication