CN106129823A - 特高压交流混合气体gil线段及布置方法 - Google Patents

特高压交流混合气体gil线段及布置方法 Download PDF

Info

Publication number
CN106129823A
CN106129823A CN201610453085.8A CN201610453085A CN106129823A CN 106129823 A CN106129823 A CN 106129823A CN 201610453085 A CN201610453085 A CN 201610453085A CN 106129823 A CN106129823 A CN 106129823A
Authority
CN
China
Prior art keywords
unit
line segment
units
gil
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610453085.8A
Other languages
English (en)
Inventor
费烨
王晓琪
陈江波
李辉
王通德
金光耀
郭慧浩
曹冬林
张志军
尹晶
邱进
毛安澜
陈晓明
王玲
周翠娟
朱丝丝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
North China Electric Power University
Original Assignee
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Zhejiang Electric Power Co Ltd, China Electric Power Research Institute Co Ltd CEPRI, North China Electric Power University filed Critical State Grid Corp of China SGCC
Priority to CN201610453085.8A priority Critical patent/CN106129823A/zh
Publication of CN106129823A publication Critical patent/CN106129823A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
    • H02B1/202Cable lay-outs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

本发明涉及特高压交流混合气体GIL线段及布置方法,包括第一线段和与所述第一线段相连的第二线段,所述第一线段包括第一补偿单元、与所述第一补偿单元相连的第一直线单元、与所述第一直线单元相连的第一上升单元、与所述第一上升单元相连的第一转角单元以及与所述第一转角单元相连的第一下降单元;所述第二线段包括与所述第一下降单元相连的第二定向单元、与所述第二定向单元相连的第二直线单元、与所述第二直线单元相连的第二补偿单元以及与所述第二补偿单元相连的第二转角单元。本发明有利于模拟现场运行环境,有效提高特高压交流GIL的运行可靠性,解决实际运行中遇到的可靠性问题。

Description

特高压交流混合气体GIL线段及布置方法
技术领域
本发明涉及电力输电领域,尤其是指特高压交流混合气体GIL线段及布置方法。
背景技术
GIL(gas-insulated metal enclosed transmission line)是气体绝缘金属封闭交流混合气体输电线路的缩写,是一种采用SF6或其它绝缘气体、外壳与导体同轴布置的高电压、大电流、长距离的电力传输设备,具有输电容量大、占地少、布置灵活、可靠性高、维护量小、寿命长、环境影响小的显著优点。目前高压GIL技术基本为ABB、西门子、美国AZZ等几个欧美大公司所掌握,其最新GIL产品都实现了部件标准化、模块化设计,可随路径弹性弯曲,采用N2/SF6 等混合气体以达到节约成本和环境保护效果,其中美国AZZ公司已研制成功1200 kV特高压混合气体GIL。而我国GIL产品尚处于空白状态,已运行如黄河拉西瓦水电站的750kV GIL、溪洛渡水电站等的550kV GIL全部采用国外产品。
近年来,我国逐步增强的智能电网建设和大能源基地建设对GIL产品和工程需求都在显著增长,尤其是特高压混合气体GIL已是特高压淮南-南京-上海工程跨长江隧道输电的重要方案,目前我国已经研制出基于混合气体绝缘的特高压交流GIL,且已经在特高压工程中挂网。但是当前特高压混合气体GIL工程应用上还存在许多问题,如若GIL线段布置不当,就会存在设备运行不可靠的问题。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中GIL线段布置不当的问题从而提供一种可以能够有效提高设备运行可靠性的特高压交流混合气体GIL线段及布置方法。
为解决上述技术问题,本发明的一种特高压交流混合气体GIL线段,包括第一线段和与所述第一线段相连的第二线段,所述第一线段包括第一补偿单元、与所述第一补偿单元相连的第一直线单元、与所述第一直线单元相连的第一上升单元、与所述第一上升单元相连的第一转角单元以及与所述第一转角单元相连的第一下降单元;所述第二线段包括与所述第一下降单元相连的第二定向单元、与所述第二定向单元相连的第二直线单元、与所述第二直线单元相连的第二补偿单元以及与所述第二补偿单元相连的第二转角单元。
在本发明的一个实施例中,所述第一线段和所述第二线段连接后形成回路。
在本发明的一个实施例中,所述第一补偿单元与所述第一直线单元之间、所述第一直线单元与所述第一上升单元之间、所述第一上升单元与所述第一转角单元之间、所述第一转角单元与所述第一下降单元之间以及所述第一下降单元与所述第二定向单元之间、所述第二定向单元与所述第二直线单元之间、所述第二直线单元与所述第二补偿单元之间、所述第二补偿单元以及所述第二转角单元之间均通过导体相互连接。
在本发明的一个实施例中,所述导体之间通过焊接或者插接相互连接。
在本发明的一个实施例中,所述第一补偿单元和所述第二补偿单元均是指补偿GIL在环境温度变化时造成相对位移而采用的一种单元结构。
在本发明的一个实施例中,所述第一直线单元和所述第二直线单元均是指GIL在直线安装时采用的一种单元结构。
在本发明的一个实施例中,所述第一上升单元是指GIL在上坡地或者斜井环境中应用安装时采用的一种单元结构;所述第一下降单元是指GIL在下坡地应用安装时采用的一种单元结构。
在本发明的一个实施例中,所述第一转角单元和所述第二转角单元均是指GIL在拐弯安装时采用的一种单元结构。
本发明还提供了一种特高压交流混合气体GIL线段布置方法,包括第一线段和与所述第一线段相连的第二线段,其步骤如下:步骤S1:依此连接所述第一线路中的第一补偿单元、第一直线单元以及第一上升单元;步骤S2:将所述第一线路中第一上升单元通过第一转角单元与第一下降单元相连,完成第一线段的布置;步骤S3:将所述第一试验单元中的第一下降单元与所述第二线段的第二定向单元相连;步骤S4:依此连接所述第二线段的第二定向单元、第二直线单元、第二补偿单元以及第二转角单元;步骤S5:根据所述第二实验线路的长度再次顺序连接所述第二直线单元、所述第二补偿单元以及所述第二转角单元,循环连接直至完成所述第二实验线路的布置。
在本发明的一个实施例中,所述第二实验线路布置完成后与所述第一线段形成回路。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述特高压交流混合气体GIL线段及布置方法,包括第一线段及与所述第一实验线段相连第二线段,且所述第一线段和第二线段均包括若干个单元,从而有利于模拟现场运行环境,有效提高特高压交流GIL的运行可靠性,解决实际运行中遇到的可靠性问题。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明所述特高压交流混合气体GIL线段的俯视图;
图2是图1中A方向的示意图;
图3是图1中B方向的示意图;
图4是图1中C方向的示意图;
图5是图1中D方向的示意图。
具体实施方式
实施例一:
请结合参考图1至图5所示,本实施例提供一种特高压交流混合气体GIL线段,包括第一线段10和与所述第一线段10相连的第二线段20,所述第一线段10包括第一补偿单元11、与所述第一补偿单元11相连的第一直线单元12、与所述第一直线单元12相连的第一上升单元13、与所述第一上升单元13相连的第一转角单元14以及与所述第一转角单元14相连的第一下降单元15;所述第二线段20包括与所述第一下降单元15相连的第二定向单元21、与所述第二定向单元21相连的第二直线单元22、与所述第二直线单元22相连的第二补偿单元23以及与所述第二补偿单元23相连的第二转角单元24。
上述是本发明所述的核心技术领域,本发明所述特高压交流混合气体GIL线段,包括第一线段10和第二线段20,其中所述第一线段10与所述第二线段20相连,从而有利于模拟现场运行环境开展带电考核。具体地,所述第一线段10包括第一补偿单元11、第一直线单元12、第一上升单元13、第一转角单元14以及第一下降单元15,其中所述第一补偿单元11通过所述第一直线单元12与所述第一上升单元13相连,通过所述第一补偿单元11有利于补偿GIL在环境温度变化时造成的相对位移,从而有利于模拟现场运行环境实现所述第一直线单元12与所述第一上升单元13的连接,所述第一上升单元13通过所述第一转角单元14与所述第一下降单元15相连,通过所述第一转角单元14有利于模拟现场运行环境实现所述第一上升单元13与所述第一下降单元15的连接,有效提高特高压交流GIL的运行可靠性;所述第二线段20包括第二定向单元21、第二直线单元22、第二补偿单元23以及第二转角单元24,其中所述第二定向单元21与所述第一下降单元15相连,从而实现第二线段20与所述第一线段10的相连,且所述第二定向单元21通过第二直线单元22以及所述第二补偿单元23与所述第二转角单元24相连,所述第二补偿单元23不但可以补偿GIL在环境温度变化时造成的相对位移,而且有利于模拟现场运行环境实现所述第二直线单元22与所述第二转角单元24的连接,有效提高特高压交流GIL的运行可靠性,解决实际运行中遇到的可靠性问题。
所述第一补偿单元11和所述第二补偿单元23均是指补偿GIL在环境温度变化时造成相对位移而采用的一种单元结构,通过所述第一补偿单元11和所述第二补偿单元23有利于补偿GIL在环境温度变化时造成的相对位移,从而有利于模拟现场运行环境。所述第一直线单元12和所述第二直线单元22均是指GIL在直线安装时采用的一种单元结构。所述第一上升单元13是指GIL在上坡地或者斜井环境中应用安装时采用的一种单元结构;所述第一下降单元15是指GIL在下坡地应用安装时采用的一种单元结构。所述第一转角单元14和所述第二转角单元24均是指GIL在拐弯安装时采用的一种单元结构。所述第二定向单元21用于两种其它不同单元之间的隔离和连接使用,主要是用于长距离GIL现场试验使用。
所述第一补偿单元11与所述第一直线单元12之间、所述第一直线单元12与所述第一上升单元13之间、所述第一上升单元13与所述第一转角单元14之间、所述第一转角单元14与所述第一下降单元15之间以及所述第一下降单元15与所述第二定向单元21之间、所述第二定向单元21与所述第二直线单元22之间、所述第二直线单元22与所述第二补偿单元23之间、所述第二补偿单元23以及所述第二转角单元24之间均通过导体相互连接。为了保证连接的稳定性,所述导体之间通过焊接或者插接相互连接。
所述第一线段10和所述第二线段20连接后形成回路,从而实现对所述特高压交流混合气体GIL线段进行通电加压,有利于模拟现场运行环境。
本实施例中,所述第一线段10采用30米GIL试验线段,所述第二线段20采用50米GIL试验线段,所述特高压交流混合气体GIL线段总长为80米。
实施例二:
本实施例提供一种特高压交流混合气体GIL线段布置方法,包括第一线段和与所述第一线段相连的第二线段,其步骤如下:步骤S1:依此连接所述第一线路10中的第一补偿单元11、第一直线单元12以及第一上升单元13;步骤S2:将所述第一线路10中第一上升单元13通过第一转角单元14与第一下降单元15相连,完成第一线段10的布置;步骤S3:将所述第一试验单元10中的第一下降单元15与所述第二线段20的第二定向单元21相连;步骤S4:依此连接所述第二线段20的第二定向单元21、第二直线单元22、第二补偿单元23以及第二转角单元24;步骤S5:根据所述第二实验线路20的长度再次顺序连接所述第二直线单元22、所述第二补偿单元23以及所述第二转角单元24,循环连接直至完成所述第二实验线路20的布置。
本实施例所述特高压交流混合气体GIL线段布置方法,包括第一线段10和与所述第一线段10相连的第二线段20,所述步骤S1中,依此连接所述第一线路10中的第一补偿单元11、第一直线单元12以及第一上升单元13,通过所述第一补偿单元11有利于补偿GIL在环境温度变化时造成的相对位移,从而有利于模拟现场运行环境实现所述第一直线单元12与所述第一上升单元13的连接;所述步骤S2中,将所述第一线路10中第一上升单元13通过第一转角单元14与第一下降单元15相连,完成第一线段10的布置,通过所述第一转角单元14有利于模拟现场运行环境实现所述第一上升单元13与所述第一下降单元15的连接,有效提高特高压交流GIL的运行可靠性;所述步骤S3中,将所述第一试验单元10中的第一下降单元15与所述第二线段20的第二定向单元21相连,有利于模拟现场运行环境开展带电考核;所述步骤S4中,依此连接所述第二线段20的第二定向单元21、第二直线单元22、第二补偿单元23以及第二转角单元24,通过所述第二补偿单元23不但可以补偿GIL在环境温度变化时造成的相对位移,有利于模拟现场运行环境实现所述第二直线单元22与所述第二转角单元24的连接,而且有效提高特高压交流GIL的运行可靠性;所述步骤S5中,根据所述第二实验线路20的长度再次顺序连接所述第二直线单元22、所述第二补偿单元23以及所述第二转角单元24,循环连接直至完成所述第二实验线路20的布置,通过有效模拟现场运行环境从而解决了实际运行中遇到的可靠性问题。
本实施例中,所述第二实验线路布置20完成后与所述第一线段10形成回路,从而实现对所述特高压交流混合气体GIL线段进行通电加压,有利于模拟现场运行环境。
综上,本发明所述技术方案具有以下优点:
1.本发明所述特高压交流混合气体GIL线段,包括第一线段和第二线段,其中所述第一线段与所述第二线段相连,从而有利于模拟现场运行环境开展带电考核。具体地,所述第一线段包括第一补偿单元、第一直线单元、第一上升单元、第一转角单元以及第一下降单元,其中所述第一补偿单元通过所述第一直线单元与所述第一上升单元相连,通过所述第一补偿单元有利于补偿GIL在环境温度变化时造成的相对位移,从而有利于模拟现场运行环境实现所述第一直线单元与所述第一上升单元的连接,所述第一上升单元通过所述第一转角单元与所述第一下降单元相连,通过所述第一转角单元有利于模拟现场运行环境实现所述第一上升单元与所述第一下降单元的连接,有效提高特高压交流GIL的运行可靠性;所述第二线段包括第二定向单元、第二直线单元、第二补偿单元以及第二转角单元,其中所述第二定向单元与所述第一下降单元相连,从而实现第二线段与所述第一线段的相连,且所述第二定向单元通过第二直线单元以及所述第二补偿单元与所述第二转角单元相连,所述第二补偿单元不但可以补偿GIL在环境温度变化时造成的相对位移,而且有利于模拟现场运行环境实现所述第二直线单元与所述第二转角单元的连接,有效提高特高压交流GIL的运行可靠性,解决实际运行中遇到的可靠性问题。
2.本发明所述特高压交流混合气体GIL线段布置方法,包括第一线段和与所述第一线段相连的第二线段,所述步骤S1中,依此连接所述第一线路中的第一补偿单元、第一直线单元以及第一上升单元,通过所述第一补偿单元有利于补偿GIL在环境温度变化时造成的相对位移,从而有利于模拟现场运行环境实现所述第一直线单元与所述第一上升单元的连接;所述步骤S2中,将所述第一线路中第一上升单元通过第一转角单元与第一下降单元相连,完成第一线段的布置,通过所述第一转角单元有利于模拟现场运行环境实现所述第一上升单元与所述第一下降单元的连接,有效提高特高压交流GIL的运行可靠性;所述步骤S3中,将所述第一试验单元中的第一下降单元与所述第二线段的第二定向单元相连,有利于模拟现场运行环境开展带电考核;所述步骤S4中,依此连接所述第二线段的第二定向单元、第二直线单元、第二补偿单元以及第二转角单元,通过所述第二补偿单元不但可以补偿GIL在环境温度变化时造成的相对位移,有利于模拟现场运行环境实现所述第二直线单元与所述第二转角单元的连接,而且有效提高特高压交流GIL的运行可靠性;所述步骤S5中,根据所述第二实验线路的长度再次顺序连接所述第二直线单元、所述第二补偿单元以及所述第二转角单元,循环连接直至完成所述第二实验线路的布置。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种特高压交流混合气体GIL线段,包括第一线段和与所述第一线段相连的第二线段,其特征在于:所述第一线段包括第一补偿单元、与所述第一补偿单元相连的第一直线单元、与所述第一直线单元相连的第一上升单元、与所述第一上升单元相连的第一转角单元以及与所述第一转角单元相连的第一下降单元;所述第二线段包括与所述第一下降单元相连的第二定向单元、与所述第二定向单元相连的第二直线单元、与所述第二直线单元相连的第二补偿单元以及与所述第二补偿单元相连的第二转角单元。
2.根据权利要求1所述的特高压交流混合气体GIL线段,其特征在于:所述第一线段和所述第二线段连接后形成回路。
3.根据权利要求1所述的特高压交流混合气体GIL线段,其特征在于:所述第一补偿单元与所述第一直线单元之间、所述第一直线单元与所述第一上升单元之间、所述第一上升单元与所述第一转角单元之间、所述第一转角单元与所述第一下降单元之间以及所述第一下降单元与所述第二定向单元之间、所述第二定向单元与所述第二直线单元之间、所述第二直线单元与所述第二补偿单元之间、所述第二补偿单元以及所述第二转角单元之间均通过导体相互连接。
4.根据权利要求3所述的特高压交流混合气体GIL线段,其特征在于:所述导体之间通过焊接或者插接相互连接。
5.根据权利要求1所述的特高压交流混合气体GIL线段,其特征在于:所述第一补偿单元和所述第二补偿单元均是指补偿GIL在环境温度变化时造成相对位移而采用的一种单元结构。
6.根据权利要求1所述的特高压交流混合气体GIL线段,其特征在于:所述第一直线单元和所述第二直线单元均是指GIL在直线安装时采用的一种单元结构。
7.根据权利要求1所述的特高压交流混合气体GIL线段,其特征在于:所述第一上升单元是指GIL在上坡地或者斜井环境中应用安装时采用的一种单元结构;所述第一下降单元是指GIL在下坡地应用安装时采用的一种单元结构。
8.根据权利要求1所述的特高压交流混合气体GIL线段,其特征在于:所述第一转角单元和所述第二转角单元均是指GIL在拐弯安装时采用的一种单元结构。
9.一种特高压交流混合气体GIL线段布置方法,包括第一线段和与所述第一线段相连的第二线段,其步骤如下:
步骤S1:依此连接所述第一线路中的第一补偿单元、第一直线单元以及第一上升单元;
步骤S2:将所述第一线路中第一上升单元通过第一转角单元与第一下降单元相连,完成第一线段的布置;
步骤S3:将所述第一试验单元中的第一下降单元与所述第二线段的第二定向单元相连;
步骤S4:依此连接所述第二线段的第二定向单元、第二直线单元、第二补偿单元以及第二转角单元;
步骤S5:根据所述第二实验线路的长度再次顺序连接所述第二直线单元、所述第二补偿单元以及所述第二转角单元,循环连接直至完成所述第二实验线路的布置。
10.根据权利要求9所述的特高压交流混合气体GIL线段布置方法,其特征在于:所述第二实验线路布置完成后与所述第一线段形成回路。
CN201610453085.8A 2016-06-21 2016-06-21 特高压交流混合气体gil线段及布置方法 Pending CN106129823A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610453085.8A CN106129823A (zh) 2016-06-21 2016-06-21 特高压交流混合气体gil线段及布置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610453085.8A CN106129823A (zh) 2016-06-21 2016-06-21 特高压交流混合气体gil线段及布置方法

Publications (1)

Publication Number Publication Date
CN106129823A true CN106129823A (zh) 2016-11-16

Family

ID=57470304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610453085.8A Pending CN106129823A (zh) 2016-06-21 2016-06-21 特高压交流混合气体gil线段及布置方法

Country Status (1)

Country Link
CN (1) CN106129823A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532438A (zh) * 2016-12-12 2017-03-22 江苏安靠智能输电工程科技股份有限公司 一种三相共体刚性气体绝缘输电线路
CN106711766A (zh) * 2016-12-12 2017-05-24 江苏安靠智能输电工程科技股份有限公司 一种三相共体刚性气体绝缘输电线路
CN106785944A (zh) * 2016-12-12 2017-05-31 江苏安靠智能输电工程科技股份有限公司 一种三相共体刚性气体绝缘输电线路
DE102018205096A1 (de) * 2018-04-05 2019-10-10 Siemens Aktiengesellschaft Elektroenergieübertragungseinrichtung
CN114910753A (zh) * 2022-04-21 2022-08-16 武汉朗德电气有限公司 一种用于gil故障定位的声波传输装置及检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483396A (en) * 1965-11-03 1969-12-09 Ass Elect Ind Polyphase electrical couplings
JPS577075A (en) * 1980-06-14 1982-01-14 Nissin Electric Co Ltd Large deflecting angle conductor
CN201303237Y (zh) * 2008-11-20 2009-09-02 青岛汉缆股份有限公司 母线长度调节装置
CN104538915A (zh) * 2015-01-04 2015-04-22 河南森源电气股份有限公司 一种可调节式金属封闭母线桥架

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483396A (en) * 1965-11-03 1969-12-09 Ass Elect Ind Polyphase electrical couplings
JPS577075A (en) * 1980-06-14 1982-01-14 Nissin Electric Co Ltd Large deflecting angle conductor
CN201303237Y (zh) * 2008-11-20 2009-09-02 青岛汉缆股份有限公司 母线长度调节装置
CN104538915A (zh) * 2015-01-04 2015-04-22 河南森源电气股份有限公司 一种可调节式金属封闭母线桥架

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
南振乐等: "复杂地形条件下的GIL工程设计", 《高压电器》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532438A (zh) * 2016-12-12 2017-03-22 江苏安靠智能输电工程科技股份有限公司 一种三相共体刚性气体绝缘输电线路
CN106711766A (zh) * 2016-12-12 2017-05-24 江苏安靠智能输电工程科技股份有限公司 一种三相共体刚性气体绝缘输电线路
CN106785944A (zh) * 2016-12-12 2017-05-31 江苏安靠智能输电工程科技股份有限公司 一种三相共体刚性气体绝缘输电线路
CN106711766B (zh) * 2016-12-12 2019-05-21 江苏安靠智能输电工程科技股份有限公司 一种三相共体刚性气体绝缘输电线路
DE102018205096A1 (de) * 2018-04-05 2019-10-10 Siemens Aktiengesellschaft Elektroenergieübertragungseinrichtung
CN114910753A (zh) * 2022-04-21 2022-08-16 武汉朗德电气有限公司 一种用于gil故障定位的声波传输装置及检测方法

Similar Documents

Publication Publication Date Title
Ye et al. Review on HVDC cable terminations
CN106129823A (zh) 特高压交流混合气体gil线段及布置方法
Dubey et al. Adaptive distance protection scheme for shunt‐FACTS compensated line connecting wind farm
Liu et al. Survey of technologies of line commutated converter based high voltage direct current transmission in China
Westerweller et al. Trans bay cable-world’s first HVDC system using multilevel voltage-sourced converter
CN102073795B (zh) 一种110kV线缆混合线路操作过电压水平预测方法
CN102252787A (zh) 测量电缆终端绝缘界面压力的方法
CN102361322B (zh) 交联聚乙烯电缆交流线路改为直流运行的技术判定方法
CN102445642A (zh) 一种电力设备金具电晕试验方法
CN105445567B (zh) 全封闭式gis***的核相方法
Bai et al. Partial discharge of cable termination on electric multiple unit of China high‐speed railway below zero‐degree centigrade
Ghassemi et al. Power flow solvers for medium voltage direct current (MVDC) microgrids
CN106124928A (zh) 特高压交流混合气体gil线段温度监测方法
Xu et al. Compensating scheme for limiting secondary arc current of 1000 kV ultra‐high voltage long parallel lines
CN203278257U (zh) 一种快速极性反转的高压直流电源装置
CN103078313B (zh) 一种抑制750kV并行单回架设线路感应电压和电流的方法
Rao et al. Analysis of very long distance AC power transmission line
Wang et al. The electric energy loss in overhead ground wires of 110kV six-circuit transmission line on the same tower
Zhu et al. Analysis of electromagnetic coupling of HVAC cable section partly installed in parallel with HVDC lines in one corridor
Khan et al. Comparison of transmission losses and voltage drops of GIL (Gas Insulated transmission line) and overhead transmission lines
Al-Khalidi et al. Performance analysis of HTS cables with variable load demand
Chien et al. Theoretical aspects of the harmonic performance of subsea AC transmission systems for offshore power generation schemes
Ghorbani et al. Extra high voltage DC extruded cable system qualification
Yao et al. Preliminary study on voltage level standardization of DC grid based on VSC-HVDC technology in China
Zhao et al. Study on the scheme design of integrated grounding system for a 550 kV gas insulated transmission line

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication