CN106112702A - 一种柴油机用飞轮壳的加工装置 - Google Patents

一种柴油机用飞轮壳的加工装置 Download PDF

Info

Publication number
CN106112702A
CN106112702A CN201610550182.9A CN201610550182A CN106112702A CN 106112702 A CN106112702 A CN 106112702A CN 201610550182 A CN201610550182 A CN 201610550182A CN 106112702 A CN106112702 A CN 106112702A
Authority
CN
China
Prior art keywords
transducer
cover board
metal cover
piezoelectric ceramics
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610550182.9A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610550182.9A priority Critical patent/CN106112702A/zh
Publication of CN106112702A publication Critical patent/CN106112702A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q2039/002Machines with twin spindles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明公开了一种柴油机用飞轮壳的加工装置,主要包括机架、安装座、左刀头及右刀头,所述安装座位于机架上且与机架内的横向调节单元及纵向调节单元连接,所述左刀头及右刀头位于安装座的上方,左刀头安装在机架的侧壁上,在机架内还设置有驱使右刀头做水平方向往复运动的横向调节装置,横向调节装置包括丝杆、与丝杆相配合的丝母、导杆及横移驱动电机,丝母的尾端固定有支撑座,右刀头安装在支撑座上,导杆由焊接在机架内部的两支撑耳支撑,所述支撑座与丝杆及导杆间隙配合。本发明可同时对飞轮壳的两端同时进行加工,节约二次装夹时间,单班产量提高了一倍,极大的提高了生产效率,降低企业的生产成本。

Description

一种柴油机用飞轮壳的加工装置
技术领域
本发明涉及机械领域,具体涉及的是一种柴油机用飞轮壳的加工装置。
背景技术
相关技术中,飞轮壳是柴油机的零部件之一,柴油机飞轮壳安装于柴油机飞轮的外部,用于罩盖飞轮,起安全防护作用。传统的柴油机飞轮壳包括飞轮壳本体,飞轮壳本体上设置有飞轮室和机体连接面,通过机体连接面与柴油机机体连接,通过飞轮室罩盖飞轮,结构简单,功能单一。但是,采用传统的加工装置生产飞轮壳加工出飞轮室轴承安装孔及定位销孔后,然后再以定位销孔为加工基准精车飞轮止口,累积误差大,飞轮止口与飞轮室轴承安装孔的同轴度难以达到φ0.05的要求,安装精度差。
发明内容
针对上述问题,本发明的目的是提供一种一种柴油机用飞轮壳的加工装置,解决采用传统的加工装置生产飞轮壳安装精度差的技术问题。
为解决上述技术问题,本发明采用的技术方案是一种柴油机用飞轮壳的加工装置,包括框架、旋转变压器、换能器、变幅杆和工具头。所述换能器上方的两侧设置旋转变压器,所述变幅杆包括上端部分、变截面部分和下端部分,所述上端部分直接连接换能器的底面,所述下端部分直接连接工具头,所述变截面的形状根据下列公式计算: 其中,P(x)为变幅杆的横截面面积函数,k为圆波数,D(x)为轮廓半径函数,D0为上端部分的半径,P0为上端部分与变截面部分连接处的横截面面积,P1为下端部分与变截面部分连接处的横截面面积,下端部分的长度根据下列公式计算:
所述换能器包括前金属盖板、后金属盖板以及厚度方向极化的压电陶瓷圆环,偶数个所述压电陶瓷圆环共轴连接形成压电陶瓷晶堆,压电陶瓷晶堆中相邻两个压电陶瓷圆环极化方向相反。根据实际需要设定换能器的共振频率后通过下列公式得到换能器的几何尺寸:
(1)所述换能器的等效电路图如图3所示,虚线将整个电路划分为三个部分,分别为前盖板等效电路、后盖板等效电路和压电陶瓷晶堆等效电路,其中,ZbL和ZfL分别是换能器后、前两端的负载阻抗,根据实际需要设定;
(2)所述换能器的振动频率方程为
Z i = Z m N 2 + jωPC o r Z m ,
前金属盖板输入机械阻抗为后金属盖板输入机械阻抗为换能器的机械阻抗为
其中,Zf=ρ2c2S2,k2=ω/c2,c2是前金属盖板中的声速,ρ2、E2、σ2分别是前金属盖板的密度、杨氏模量和泊松系数,l2和S2是前金属盖板的厚度和横截面的面积;
(3)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,若忽略机械损耗和介电损耗,换能器的共振频率方程为|Zi|=0;若考虑机械损耗,输入电阻抗为最小时,换能器的共振频率方程为|Zi|=|Zi|min,通过换能器的振动频率方程计算得到换能器的具体尺寸;
(4)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,当输入电阻抗为无效大时,忽略损耗,换能器的***振频率方程为|Zi|=∞;当输入电阻抗为无效大时,考虑损耗,换能器的***振频率方程为|Zi|=|Zi|max,通过换能器的振动频率方程计算得到换能器的具体尺寸;
所述换能器还包括外壳、设于外壳上表面的上端盖、设于外壳下表面的下端盖和固定法兰,所述外壳固定所述压电陶瓷圆环、前金属盖板和后金属盖板,所述上端盖包括固定柱,所述固定柱设于上端盖的中心轴位置并向上延伸至旋转变压器内,且向下延伸至上端盖的下方,所述变幅杆向上延伸至换能器的内部,且变幅杆与固定柱之间设有连接件、上弹簧和下弹簧,所述上弹簧的上端连接固定柱的下端,所述上弹簧的下端连接连接件,所述下弹簧的上端连接连接件,所述下弹簧的下端连接变幅杆。
作为优选,相邻两个压电陶瓷圆环间还设有金属电极,金属电极的厚度为0.02-0.2mm。
作为优选,根据实际需要设定换能器的共振频率后通过下列公式得到换能器的几何尺寸:(1)首先对换能器的频率方程进行推导:截面AB为位移节面,位移节面AB将换能器分成两个四分之一波长的振子,即Lf+l2以及Lb+l1均为振动波长的四分之一,每个四分之一波长的振子都是由压电陶瓷晶片及金属盖板组成,位移节面前与前金属盖板之间的压电陶瓷进队的长度记为Lf,位移节面后与后金属盖板之间的压电陶瓷晶堆的长度记为Lb,若压电陶瓷晶堆由P个厚度为l的压电陶瓷圆环组成,则有Lf+Lb=Pl且l远小于厚度振动的波长。位移波节前的四分之一波长振子的共振方程为位移波节后的四分之一波长振子的共振方程为tan(keLb)tan(k1l1)=Zo/Zf,其中,Z0是单个压电陶瓷圆环的特性阻抗,l1和l2分别是后、前金属盖板的厚度;(2)根据实际需要设定共振频率,并通过得到的共振频率方程得到换能器具体尺寸。
作为优选,所述固定法兰的中心轴位置留有开孔,所述开孔的内侧沿其圆周方向设有包围变幅杆变截面部分的弹性橡胶圈。且所述固定法兰的上表面间隔设有多个可伸缩结构,并通过可伸缩结构连接所述下端盖。
本发明的有益效果:利用形状因数比较所述变幅杆所能达到最大振幅,形状因数表达式如下:
其中,ρC为仅与材料有关的变幅杆的材料机械阻抗。
通过ANSYS谐响应分析可以获得A值,经计算,所述变幅杆的A值为0.371×10-12m/Pa,设计固有频率和面积因数与所述变幅杆相同的阶梯型变幅杆,计算得到A值为0.090×10-12m/Pa。
附图说明
利用附图对发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明的结构示意图。
图2是本发明换能器的等效电路图。
图3是本发明的压电陶瓷圆环结构示意图。
图4是本发明的结构示意图。
附图标记:1、框架,2、旋转变压器,3、换能器,4、变幅杆,5、工具头。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例一
本发明的装置,如图1所示,包括框架、旋转变压器、换能器、变幅杆和工具头。所述换能器上方的两侧设置旋转变压器。
相较于指数形状、圆锥形状、悬链线形状等的变幅杆,阶梯型变幅杆放大系数最大,但是应力分布集中,容易断裂,工作安全性较差。所述变幅杆采用阶梯型,包括上端部分、变截面部分和下端部分,所述上端部分直接连接换能器的底面,所述下端部分直接连接工具头。所述变截面的形状根据下列公式计算:其中,P(x)为变幅杆的横截面面积函数,k为圆波数,D(x)为轮廓半径函数,D0为上端部分的半径,P0为上端部分与变截面部分连接处的横截面面积,P1为下端部分与变截面部分连接处的横截面面积。
下端部分的长度根据下列公式计算:
于变幅杆上增加变截面部分可有利于将作用于节面上的应力均匀分散,减少变幅杆断裂的可能性。
所述换能器包括前金属盖板、后金属盖板以及厚度方向极化的压电陶瓷圆环。偶数个所述压电陶瓷圆环共轴连接形成压电陶瓷晶堆,压电陶瓷晶堆中相邻两个压电陶瓷圆环极化方向相反,偶数个压电陶瓷圆环连接可使得前金属盖板、后金属盖板与同一极性的电极连接,同时可与电路的接地端连接,避免前金属盖板、后金属盖板与压电陶瓷晶堆之间绝缘垫圈的设置。相邻两个压电陶瓷圆环间还设有金属电极,金属电极的厚度为0.02-0.2mm。
根据实际需要设定换能器的共振频率,通过下列公式得到换能器的几何尺寸:
(1)所述换能器的等效电路图如图3所示,虚线将整个电路划分为三个部分,分别为前盖板等效电路、后盖板等效电路和压电陶瓷晶堆等效电路,其中,ZbL和ZfL分别是换能器后、前两端的负载阻抗,根据实际需要设定;
(2)所述换能器的振动频率方程为
Z i = Z m N 2 + jωPC o r Z m ,
前金属盖板输入机械阻抗为后金属盖板输入机械阻抗为换能器的机械阻抗为
其中,Zf=ρ2c2S2,k2=ω/c2,c2是前金属盖板中的声速,ρ2、E2、σ2分别是前金属盖板的密度、杨氏模量和泊松系数,l2和S2是前金属盖板的厚度和横截面的面积;
(3)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,若忽略机械损耗和介电损耗,换能器的共振频率方程为|Zi|=0;若考虑机械损耗,输入电阻抗为最小时,换能器的共振频率方程为|Zi|=|Zi|min,通过换能器的振动频率方程计算得到换能器的具体尺寸;
(4)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,当输入电阻抗为无效大时,忽略损耗,换能器的***振频率方程为|Zi|=∞;当输入电阻抗为无效大时,考虑损耗,换能器的***振频率方程为|Zi|=|Zi|max,通过换能器的振动频率方程计算得到换能器的具体尺寸。
在本实施例中,如图3所示,通过下列方法得到换能器的尺寸:(1)首先对换能器的频率方程进行推导:截面AB为位移节面,位移节面AB将换能器分成两个四分之一波长的振子,即Lf+l2以及Lb+l1均为振动波长的四分之一,每个四分之一波长的振子都是由压电陶瓷晶片及金属盖板组成,位移节面前与前金属盖板之间的压电陶瓷进队的长度记为Lf,位移节面后与后金属盖板之间的压电陶瓷晶堆的长度记为Lb,若压电陶瓷晶堆由P个厚度为l的压电陶瓷圆环组成,则有Lf+Lb=Pl且l远小于厚度振动的波长。位移波节前的四分之一波长振子的共振方程为tan(keLf)tan(k2l2)=Zo/Zf,位移波节后的四分之一波长振子的共振方程为tan(keLb)tan(k1l1)=Zo/Zf,其中,Z0是单个压电陶瓷圆环的特性阻抗,l1和l2分别是后、前金属盖板的厚度;(2)根据实际需要设定共振频率,并通过得到的共振频率方程得到换能器具体尺寸。
相关技术中,变幅杆作为连接换能器和工具头的中间部件,一般采用螺纹连接,但是由于螺纹连接存在间隙,振动传输过程中有能量损失,且高频振动易造成螺纹疲劳失效。
所述换能器还包括外壳、设于外壳上表面的上端盖、设于外壳下表面的下端盖和固定法兰,所述外壳固定所述压电陶瓷圆环、前金属盖板和后金属盖板,所述上端盖包括固定柱,所述固定柱设于上端盖的中心轴位置并向上延伸至旋转变压器内,且向下延伸至上端盖的下方,实现旋转变压器与换能器的连接。所述变幅杆向上延伸至换能器的内部,且变幅杆与固定柱之间设有连接件、上弹簧和下弹簧,所述上弹簧的上端连接固定柱的下端,所述上弹簧的下端连接连接件,所述下弹簧的上端连接连接件,所述下弹簧的下端连接变幅杆。所述连接件可以为铁块等。通过上弹簧、连接件和下弹簧实现变幅杆与换能器的一体化,避免使用容易造成疲劳损耗的螺纹连接,工作时,向固定柱传播的超声振动被上弹簧、下弹簧所吸收,减缓振动能量传向固定柱,避免固定柱与旋转变压器之间的连接受到振动损耗,最大化地将振动能量传输至变幅杆。
所述固定法兰的中心轴位置留有开孔,所述开孔的内侧沿其圆周方向设有包围变幅杆变截面部分的弹性橡胶圈。且所述固定法兰的上表面间隔设有多个可伸缩结构,并通过可伸缩结构连接所述下端盖。调节不同的频率时,通过可伸缩结构可使得所述固定法兰相对换能器上下运动,从而最大限度地保护并固定变幅杆的同时减少变幅杆振动频率的传递,提高振动能量的利用率。
在本实施例中,所述换能器的前金属盖板和后金属盖板的厚度均为17mm,压电陶瓷晶堆的厚度为12mm,前金属盖板、后金属盖板和压电陶瓷晶堆的直径均为35mm。
在本实施例中,所述变幅杆是由钛合金材料制成的,其超声频率为30KHz。
在本实施例中,所述变幅杆的上端部分的端面直径为30mm,其长度为12mm,下端部分的端面直径为15mm,其长度为36mm。所述变幅杆与工具头为一体,所述工具头的末端电镀或烧结金刚砂磨料。
利用形状因数比较所述变幅杆所能达到最大振幅,形状因数表达式如下:
其中,ρC为仅与材料有关的变幅杆的材料机械阻抗。
通过ANSYS谐响应分析可以获得A值,经计算,所述变幅杆的A值为0.371×10-12m/Pa,设计固有频率和面积因数与所述变幅杆相同的阶梯型变幅杆,计算得到A值为0.090×10-12m/Pa。
实施例二
本发明的装置,如图1所示,包括框架、旋转变压器、换能器、变幅杆和工具头。所述换能器上方的两侧设置旋转变压器。
相较于指数形状、圆锥形状、悬链线形状等的变幅杆,阶梯型变幅杆放大系数最大,但是应力分布集中,容易断裂,工作安全性较差。所述变幅杆采用阶梯型,包括上端部分、变截面部分和下端部分,所述上端部分直接连接换能器的底面,所述下端部分直接连接工具头。所述变截面的形状根据下列公式计算:其中,P(x)为变幅杆的横截面面积函数,k为圆波数,D(x)为轮廓半径函数,D0为上端部分的半径,P0为上端部分与变截面部分连接处的横截面面积,P1为下端部分与变截面部分连接处的横截面面积。
下端部分的长度根据下列公式计算:
于变幅杆上增加变截面部分可有利于将作用于节面上的应力均匀分散,减少变幅杆断裂的可能性。
所述换能器包括前金属盖板、后金属盖板以及厚度方向极化的压电陶瓷圆环。偶数个所述压电陶瓷圆环共轴连接形成压电陶瓷晶堆,压电陶瓷晶堆中相邻两个压电陶瓷圆环极化方向相反,偶数个压电陶瓷圆环连接可使得前金属盖板、后金属盖板与同一极性的电极连接,同时可与电路的接地端连接,避免前金属盖板、后金属盖板与压电陶瓷晶堆之间绝缘垫圈的设置。相邻两个压电陶瓷圆环间还设有金属电极,金属电极的厚度为0.02-0.2mm。
根据实际需要设定换能器的共振频率,通过下列公式得到换能器的几何尺寸:
(1)所述换能器的等效电路图如图2所示,虚线将整个电路划分为三个部分,分别为前盖板等效电路、后盖板等效电路和压电陶瓷晶堆等效电路,其中,ZbL和ZfL分别是换能器后、前两端的负载阻抗,根据实际需要设定;
(2)所述换能器的振动频率方程为
Z i = Z m N 2 + jωPC o r Z m ,
前金属盖板输入机械阻抗为后金属盖板输入机械阻抗为换能器的机械阻抗为
其中,Zf=ρ2c2S2,k2=ω/c2,c2是前金属盖板中的声速,ρ2、E2、σ2分别是前金属盖板的密度、杨氏模量和泊松系数,l2和S2是前金属盖板的厚度和横截面的面积;
(3)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,若忽略机械损耗和介电损耗,换能器的共振频率方程为|Zi|=0;若考虑机械损耗,输入电阻抗为最小时,换能器的共振频率方程为|Zi|=|Zi|min,通过换能器的振动频率方程计算得到换能器的具体尺寸;
(4)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,当输入电阻抗为无效大时,忽略损耗,换能器的***振频率方程为|Zi|=∞;当输入电阻抗为无效大时,考虑损耗,换能器的***振频率方程为|Zi|=|Zi|max,通过换能器的振动频率方程计算得到换能器的具体尺寸。
在本实施例中,如图3所示,通过下列方法得到换能器的尺寸:(1)首先对换能器的频率方程进行推导:截面AB为位移节面,位移节面AB将换能器分成两个四分之一波长的振子,即Lf+l2以及Lb+l1均为振动波长的四分之一,每个四分之一波长的振子都是由压电陶瓷晶片及金属盖板组成,位移节面前与前金属盖板之间的压电陶瓷进队的长度记为Lf,位移节面后与后金属盖板之间的压电陶瓷晶堆的长度记为Lb,若压电陶瓷晶堆由P个厚度为l的压电陶瓷圆环组成,则有Lf+Lb=Pl且l远小于厚度振动的波长。位移波节前的四分之一波长振子的共振方程为位移波节后的四分之一波长振子的共振方程为tan(keLb)tan(k1l1)=Zo/Zf,其中,Z0是单个压电陶瓷圆环的特性阻抗,l1和l2分别是后、前金属盖板的厚度;(2)根据实际需要设定共振频率,并通过得到的共振频率方程得到换能器具体尺寸。
相关技术中,变幅杆作为连接换能器和工具头的中间部件,一般采用螺纹连接,但是由于螺纹连接存在间隙,振动传输过程中有能量损失,且高频振动易造成螺纹疲劳失效。
所述换能器还包括外壳、设于外壳上表面的上端盖、设于外壳下表面的下端盖和固定法兰,所述外壳固定所述压电陶瓷圆环、前金属盖板和后金属盖板,所述上端盖包括固定柱,所述固定柱设于上端盖的中心轴位置并向上延伸至旋转变压器内,且向下延伸至上端盖的下方,实现旋转变压器与换能器的连接。所述变幅杆向上延伸至换能器的内部,且变幅杆与固定柱之间设有连接件、上弹簧和下弹簧,所述上弹簧的上端连接固定柱的下端,所述上弹簧的下端连接连接件,所述下弹簧的上端连接连接件,所述下弹簧的下端连接变幅杆。所述连接件可以为铁块等。通过上弹簧、连接件和下弹簧实现变幅杆与换能器的一体化,避免使用容易造成疲劳损耗的螺纹连接,工作时,向固定柱传播的超声振动被上弹簧、下弹簧所吸收,减缓振动能量传向固定柱,避免固定柱与旋转变压器之间的连接受到振动损耗,最大化地将振动能量传输至变幅杆。
所述固定法兰的中心轴位置留有开孔,所述开孔的内侧沿其圆周方向设有包围变幅杆变截面部分的弹性橡胶圈。且所述固定法兰的上表面间隔设有多个可伸缩结构,并通过可伸缩结构连接所述下端盖。调节不同的频率时,通过可伸缩结构可使得所述固定法兰相对换能器上下运动,从而最大限度地保护并固定变幅杆的同时减少变幅杆振动频率的传递,提高振动能量的利用率。
在本实施例中,所述换能器的前金属盖板和后金属盖板的厚度均为18mm,压电陶瓷晶堆的厚度为13mm,前金属盖板、后金属盖板和压电陶瓷晶堆的直径均为36mm。
在本实施例中,所述变幅杆是由钛合金材料制成的,其超声频率为30KHz。
在本实施例中,所述变幅杆的上端部分的端面直径为32mm,其长度为12mm,下端部分的端面直径为16mm,其长度为37mm。所述变幅杆与工具头为一体,所述工具头的末端电镀或烧结金刚砂磨料。
利用形状因数比较所述变幅杆所能达到最大振幅,形状因数表达式如下:
其中,ρC为仅与材料有关的变幅杆的材料机械阻抗。
通过ANSYS谐响应分析可以获得A值,经计算,所述变幅杆的A值为0.389×10-12m/Pa,设计固有频率和面积因数与所述变幅杆相同的阶梯型变幅杆,计算得到A值为0.090=10-12m/Pa。
实施例三
本发明的装置,如图1所示,包括框架、旋转变压器、换能器、变幅杆和工具头。所述换能器上方的两侧设置旋转变压器。
相较于指数形状、圆锥形状、悬链线形状等的变幅杆,阶梯型变幅杆放大系数最大,但是应力分布集中,容易断裂,工作安全性较差。所述变幅杆采用阶梯型,包括上端部分、变截面部分和下端部分,所述上端部分直接连接换能器的底面,所述下端部分直接连接工具头。所述变截面的形状根据下列公式计算:其中,P(x)为变幅杆的横截面面积函数,k为圆波数,D(x)为轮廓半径函数,D0为上端部分的半径,P0为上端部分与变截面部分连接处的横截面面积,P1为下端部分与变截面部分连接处的横截面面积。
下端部分的长度根据下列公式计算:
于变幅杆上增加变截面部分可有利于将作用于节面上的应力均匀分散,减少变幅杆断裂的可能性。
所述换能器包括前金属盖板、后金属盖板以及厚度方向极化的压电陶瓷圆环。偶数个所述压电陶瓷圆环共轴连接形成压电陶瓷晶堆,压电陶瓷晶堆中相邻两个压电陶瓷圆环极化方向相反,偶数个压电陶瓷圆环连接可使得前金属盖板、后金属盖板与同一极性的电极连接,同时可与电路的接地端连接,避免前金属盖板、后金属盖板与压电陶瓷晶堆之间绝缘垫圈的设置。相邻两个压电陶瓷圆环间还设有金属电极,金属电极的厚度为0.02-0.2mm。
根据实际需要设定换能器的共振频率,通过下列公式得到换能器的几何尺寸:
(1)所述换能器的等效电路图如图3所示,虚线将整个电路划分为三个部分,分别为前盖板等效电路、后盖板等效电路和压电陶瓷晶堆等效电路,其中,ZbL和ZfL分别是换能器后、前两端的负载阻抗,根据实际需要设定;
(2)所述换能器的振动频率方程为
Z i = Z m N 2 + jωPC o r Z m ,
前金属盖板输入机械阻抗为后金属盖板输入机械阻抗为换能器的机械阻抗为
其中,Zf=ρ2c2S2,k2=ω/c2,c2是前金属盖板中的声速,ρ2、E2、σ2分别是前金属盖板的密度、杨氏模量和泊松系数,l2和S2是前金属盖板的厚度和横截面的面积;
(3)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,若忽略机械损耗和介电损耗,换能器的共振频率方程为|Zi|=0;若考虑机械损耗,输入电阻抗为最小时,换能器的共振频率方程为|Zi|=|Zi|min,通过换能器的振动频率方程计算得到换能器的具体尺寸;
(4)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,当输入电阻抗为无效大时,忽略损耗,换能器的***振频率方程为|Zi|=∞;当输入电阻抗为无效大时,考虑损耗,换能器的***振频率方程为|Zi|=|Zi|max,通过换能器的振动频率方程计算得到换能器的具体尺寸。
在本实施例中,如图3所示,通过下列方法得到换能器的尺寸:(1)首先对换能器的频率方程进行推导:截面AB为位移节面,位移节面AB将换能器分成两个四分之一波长的振子,即Lf+l2以及Lb+l1均为振动波长的四分之一,每个四分之一波长的振子都是由压电陶瓷晶片及金属盖板组成,位移节面前与前金属盖板之间的压电陶瓷进队的长度记为Lf,位移节面后与后金属盖板之间的压电陶瓷晶堆的长度记为Lb,若压电陶瓷晶堆由P个厚度为l的压电陶瓷圆环组成,则有Lf+Lb=Pl且l远小于厚度振动的波长。位移波节前的四分之一波长振子的共振方程为位移波节后的四分之一波长振子的共振方程为tan(keLb)tan(k1l1)=Zo/Zf,其中,Z0是单个压电陶瓷圆环的特性阻抗,l1和l2分别是后、前金属盖板的厚度;(2)根据实际需要设定共振频率,并通过得到的共振频率方程得到换能器具体尺寸。
相关技术中,变幅杆作为连接换能器和工具头的中间部件,一般采用螺纹连接,但是由于螺纹连接存在间隙,振动传输过程中有能量损失,且高频振动易造成螺纹疲劳失效。
所述换能器还包括外壳、设于外壳上表面的上端盖、设于外壳下表面的下端盖和固定法兰,所述外壳固定所述压电陶瓷圆环、前金属盖板和后金属盖板,所述上端盖包括固定柱,所述固定柱设于上端盖的中心轴位置并向上延伸至旋转变压器内,且向下延伸至上端盖的下方,实现旋转变压器与换能器的连接。所述变幅杆向上延伸至换能器的内部,且变幅杆与固定柱之间设有连接件、上弹簧和下弹簧,所述上弹簧的上端连接固定柱的下端,所述上弹簧的下端连接连接件,所述下弹簧的上端连接连接件,所述下弹簧的下端连接变幅杆。所述连接件可以为铁块等。通过上弹簧、连接件和下弹簧实现变幅杆与换能器的一体化,避免使用容易造成疲劳损耗的螺纹连接,工作时,向固定柱传播的超声振动被上弹簧、下弹簧所吸收,减缓振动能量传向固定柱,避免固定柱与旋转变压器之间的连接受到振动损耗,最大化地将振动能量传输至变幅杆。
所述固定法兰的中心轴位置留有开孔,所述开孔的内侧沿其圆周方向设有包围变幅杆变截面部分的弹性橡胶圈。且所述固定法兰的上表面间隔设有多个可伸缩结构,并通过可伸缩结构连接所述下端盖。调节不同的频率时,通过可伸缩结构可使得所述固定法兰相对换能器上下运动,从而最大限度地保护并固定变幅杆的同时减少变幅杆振动频率的传递,提高振动能量的利用率。
在本实施例中,所述换能器的前金属盖板和后金属盖板的厚度均为16mm,压电陶瓷晶堆的厚度为11mm,前金属盖板、后金属盖板和压电陶瓷晶堆的直径均为32mm。
在本实施例中,所述变幅杆是由钛合金材料制成的,其超声频率为30KHz。
在本实施例中,所述变幅杆的上端部分的端面直径为28mm,其长度为10mm,下端部分的端面直径为13mm,其长度为32mm。所述变幅杆与工具头为一体,所述工具头的末端电镀或烧结金刚砂磨料。
利用形状因数比较所述变幅杆所能达到最大振幅,形状因数表达式如下:
其中,ρC为仅与材料有关的变幅杆的材料机械阻抗。
通过ANSYS谐响应分析可以获得A值,经计算,所述变幅杆的A值为0.365×10-12m/Pa,设计固有频率和面积因数与所述变幅杆相同的阶梯型变幅杆,计算得到A值为0.090×10-12m/Pa。
实施例四
本发明的装置,如图1所示,包括框架、旋转变压器、换能器、变幅杆和工具头。所述换能器上方的两侧设置旋转变压器。
相较于指数形状、圆锥形状、悬链线形状等的变幅杆,阶梯型变幅杆放大系数最大,但是应力分布集中,容易断裂,工作安全性较差。所述变幅杆采用阶梯型,包括上端部分、变截面部分和下端部分,所述上端部分直接连接换能器的底面,所述下端部分直接连接工具头。所述变截面的形状根据下列公式计算:其中,P(x)为变幅杆的横截面面积函数,k为圆波数,D(x)为轮廓半径函数,D0为上端部分的半径,P0为上端部分与变截面部分连接处的横截面面积,P1为下端部分与变截面部分连接处的横截面面积。
下端部分的长度根据下列公式计算:
于变幅杆上增加变截面部分可有利于将作用于节面上的应力均匀分散,减少变幅杆断裂的可能性。
所述换能器包括前金属盖板、后金属盖板以及厚度方向极化的压电陶瓷圆环。偶数个所述压电陶瓷圆环共轴连接形成压电陶瓷晶堆,压电陶瓷晶堆中相邻两个压电陶瓷圆环极化方向相反,偶数个压电陶瓷圆环连接可使得前金属盖板、后金属盖板与同一极性的电极连接,同时可与电路的接地端连接,避免前金属盖板、后金属盖板与压电陶瓷晶堆之间绝缘垫圈的设置。相邻两个压电陶瓷圆环间还设有金属电极,金属电极的厚度为0.02-0.2mm。
根据实际需要设定换能器的共振频率,通过下列公式得到换能器的几何尺寸:
(1)所述换能器的等效电路图如图2所示,虚线将整个电路划分为三个部分,分别为前盖板等效电路、后盖板等效电路和压电陶瓷晶堆等效电路,其中,ZbL和ZfL分别是换能器后、前两端的负载阻抗,根据实际需要设定;
(2)所述换能器的振动频率方程为
Z i = Z m N 2 + jωPC o r Z m ,
前金属盖板输入机械阻抗为后金属盖板输入机械阻抗为换能器的机械阻抗为
其中,Zf=p2c2S2,k2=ω/c2,c2是前金属盖板中的声速,ρ2、E2、σ2分别是前金属盖板的密度、杨氏模量和泊松系数,l2和S2是前金属盖板的厚度和横截面的面积;
(3)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,若忽略机械损耗和介电损耗,换能器的共振频率方程为|Zi|=0;若考虑机械损耗,输入电阻抗为最小时,换能器的共振频率方程为|Zi|=|Zi|min,通过换能器的振动频率方程计算得到换能器的具体尺寸;
(4)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,当输入电阻抗为无效大时,忽略损耗,换能器的***振频率方程为|Zi|=∞;当输入电阻抗为无效大时,考虑损耗,换能器的***振频率方程为|Zi|=|Zi|max,通过换能器的振动频率方程计算得到换能器的具体尺寸。
在本实施例中,如图3所示,通过下列方法得到换能器的尺寸:(1)首先对换能器的频率方程进行推导:截面AB为位移节面,位移节面AB将换能器分成两个四分之一波长的振子,即Lf+l2以及Lb+l1均为振动波长的四分之一,每个四分之一波长的振子都是由压电陶瓷晶片及金属盖板组成,位移节面前与前金属盖板之间的压电陶瓷进队的长度记为Lf,位移节面后与后金属盖板之间的压电陶瓷晶堆的长度记为Lb,若压电陶瓷晶堆由P个厚度为l的压电陶瓷圆环组成,则有Lf+Lb=Pl且l远小于厚度振动的波长。位移波节前的四分之一波长振子的共振方程为位移波节后的四分之一波长振子的共振方程为tan(keLb)tan(k1l1)=Zo/Zf,其中,Z0是单个压电陶瓷圆环的特性阻抗,l1和l2分别是后、前金属盖板的厚度;(2)根据实际需要设定共振频率,并通过得到的共振频率方程得到换能器具体尺寸。
相关技术中,变幅杆作为连接换能器和工具头的中间部件,一般采用螺纹连接,但是由于螺纹连接存在间隙,振动传输过程中有能量损失,且高频振动易造成螺纹疲劳失效。
所述换能器还包括外壳、设于外壳上表面的上端盖、设于外壳下表面的下端盖和固定法兰,所述外壳固定所述压电陶瓷圆环、前金属盖板和后金属盖板,所述上端盖包括固定柱,所述固定柱设于上端盖的中心轴位置并向上延伸至旋转变压器内,且向下延伸至上端盖的下方,实现旋转变压器与换能器的连接。所述变幅杆向上延伸至换能器的内部,且变幅杆与固定柱之间设有连接件、上弹簧和下弹簧,所述上弹簧的上端连接固定柱的下端,所述上弹簧的下端连接连接件,所述下弹簧的上端连接连接件,所述下弹簧的下端连接变幅杆。所述连接件可以为铁块等。通过上弹簧、连接件和下弹簧实现变幅杆与换能器的一体化,避免使用容易造成疲劳损耗的螺纹连接,工作时,向固定柱传播的超声振动被上弹簧、下弹簧所吸收,减缓振动能量传向固定柱,避免固定柱与旋转变压器之间的连接受到振动损耗,最大化地将振动能量传输至变幅杆。
所述固定法兰的中心轴位置留有开孔,所述开孔的内侧沿其圆周方向设有包围变幅杆变截面部分的弹性橡胶圈。且所述固定法兰的上表面间隔设有多个可伸缩结构,并通过可伸缩结构连接所述下端盖。调节不同的频率时,通过可伸缩结构可使得所述固定法兰相对换能器上下运动,从而最大限度地保护并固定变幅杆的同时减少变幅杆振动频率的传递,提高振动能量的利用率。
在本实施例中,所述换能器的前金属盖板和后金属盖板的厚度均为20mm,压电陶瓷晶堆的厚度为15mm,前金属盖板、后金属盖板和压电陶瓷晶堆的直径均为39mm。
在本实施例中,所述变幅杆是由钛合金材料制成的,其超声频率为30KHz。
在本实施例中,所述变幅杆的上端部分的端面直径为25mm,其长度为10mm,下端部分的端面直径为10mm,其长度为30mm。所述变幅杆与工具头为一体,所述工具头的末端电镀或烧结金刚砂磨料。
利用形状因数比较所述变幅杆所能达到最大振幅,形状因数表达式如下:
其中,ρC为仅与材料有关的变幅杆的材料机械阻抗。
通过ANSYS谐响应分析可以获得A值,经计算,所述变幅杆的A值为0.326×10-12m/Pa,设计固有频率和面积因数与所述变幅杆相同的阶梯型变幅杆,计算得到A值为0.090×10-12m/Pa。
实施例五
本发明的装置,如图1所示,包括框架、旋转变压器、换能器、变幅杆和工具头。所述换能器上方的两侧设置旋转变压器。
相较于指数形状、圆锥形状、悬链线形状等的变幅杆,阶梯型变幅杆放大系数最大,但是应力分布集中,容易断裂,工作安全性较差。所述变幅杆采用阶梯型,包括上端部分、变截面部分和下端部分,所述上端部分直接连接换能器的底面,所述下端部分直接连接工具头。所述变截面的形状根据下列公式计算:其中,P(x)为变幅杆的横截面面积函数,k为圆波数,D(x)为轮廓半径函数,D0为上端部分的半径,P0为上端部分与变截面部分连接处的横截面面积,P1为下端部分与变截面部分连接处的横截面面积。
下端部分的长度根据下列公式计算:
于变幅杆上增加变截面部分可有利于将作用于节面上的应力均匀分散,减少变幅杆断裂的可能性。
所述换能器包括前金属盖板、后金属盖板以及厚度方向极化的压电陶瓷圆环。偶数个所述压电陶瓷圆环共轴连接形成压电陶瓷晶堆,压电陶瓷晶堆中相邻两个压电陶瓷圆环极化方向相反,偶数个压电陶瓷圆环连接可使得前金属盖板、后金属盖板与同一极性的电极连接,同时可与电路的接地端连接,避免前金属盖板、后金属盖板与压电陶瓷晶堆之间绝缘垫圈的设置。相邻两个压电陶瓷圆环间还设有金属电极,金属电极的厚度为0.02-0.2mm。
根据实际需要设定换能器的共振频率,通过下列公式得到换能器的几何尺寸:
(1)所述换能器的等效电路图如图2所示,虚线将整个电路划分为三个部分,分别为前盖板等效电路、后盖板等效电路和压电陶瓷晶堆等效电路,其中,ZbL和ZfL分别是换能器后、前两端的负载阻抗,根据实际需要设定;
(2)所述换能器的振动频率方程为
Z i = Z m N 2 + jωPC o r Z m ,
前金属盖板输入机械阻抗为后金属盖板输入机械阻抗为换能器的机械阻抗为
其中,Zf=ρ2c2S2,k2=ω/c2,c2是前金属盖板中的声速,ρ2、E2、σ2分别是前金属盖板的密度、杨氏模量和泊松系数,l2和S2是前金属盖板的厚度和横截面的面积;
(3)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,若忽略机械损耗和介电损耗,换能器的共振频率方程为|Zi|=0;若考虑机械损耗,输入电阻抗为最小时,换能器的共振频率方程为|Zi|=|Zi|min,通过换能器的振动频率方程计算得到换能器的具体尺寸;
(4)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,当输入电阻抗为无效大时,忽略损耗,换能器的***振频率方程为|Zi|=∞;当输入电阻抗为无效大时,考虑损耗,换能器的***振频率方程为|Zi|=|Zi|max,通过换能器的振动频率方程计算得到换能器的具体尺寸。
在本实施例中,如图3所示,通过下列方法得到换能器的尺寸:(1)首先对换能器的频率方程进行推导:截面AB为位移节面,位移节面AB将换能器分成两个四分之一波长的振子,即Lf+l2以及Lb+l1均为振动波长的四分之一,每个四分之一波长的振子都是由压电陶瓷晶片及金属盖板组成,位移节面前与前金属盖板之间的压电陶瓷进队的长度记为Lf,位移节面后与后金属盖板之间的压电陶瓷晶堆的长度记为Lb,若压电陶瓷晶堆由P个厚度为l的压电陶瓷圆环组成,则有Lf+Lb=Pl且l远小于厚度振动的波长。位移波节前的四分之一波长振子的共振方程为位移波节后的四分之一波长振子的共振方程为tan(keLb)tan(k1l1)=Zo/Zf,其中,Z0是单个压电陶瓷圆环的特性阻抗,l1和l2分别是后、前金属盖板的厚度;(2)根据实际需要设定共振频率,并通过得到的共振频率方程得到换能器具体尺寸。
相关技术中,变幅杆作为连接换能器和工具头的中间部件,一般采用螺纹连接,但是由于螺纹连接存在间隙,振动传输过程中有能量损失,且高频振动易造成螺纹疲劳失效。
所述换能器还包括外壳、设于外壳上表面的上端盖、设于外壳下表面的下端盖和固定法兰,所述外壳固定所述压电陶瓷圆环、前金属盖板和后金属盖板,所述上端盖包括固定柱,所述固定柱设于上端盖的中心轴位置并向上延伸至旋转变压器内,且向下延伸至上端盖的下方,实现旋转变压器与换能器的连接。所述变幅杆向上延伸至换能器的内部,且变幅杆与固定柱之间设有连接件、上弹簧和下弹簧,所述上弹簧的上端连接固定柱的下端,所述上弹簧的下端连接连接件,所述下弹簧的上端连接连接件,所述下弹簧的下端连接变幅杆。所述连接件可以为铁块等。通过上弹簧、连接件和下弹簧实现变幅杆与换能器的一体化,避免使用容易造成疲劳损耗的螺纹连接,工作时,向固定柱传播的超声振动被上弹簧、下弹簧所吸收,减缓振动能量传向固定柱,避免固定柱与旋转变压器之间的连接受到振动损耗,最大化地将振动能量传输至变幅杆。
所述固定法兰的中心轴位置留有开孔,所述开孔的内侧沿其圆周方向设有包围变幅杆变截面部分的弹性橡胶圈。且所述固定法兰的上表面间隔设有多个可伸缩结构,并通过可伸缩结构连接所述下端盖。调节不同的频率时,通过可伸缩结构可使得所述固定法兰相对换能器上下运动,从而最大限度地保护并固定变幅杆的同时减少变幅杆振动频率的传递,提高振动能量的利用率。
在本实施例中,所述换能器的前金属盖板和后金属盖板的厚度均为17mm,压电陶瓷晶堆的厚度为12mm,前金属盖板、后金属盖板和压电陶瓷晶堆的直径均为35mm。
在本实施例中,所述变幅杆是由钛合金材料制成的,其超声频率为30KHz。
在本实施例中,所述变幅杆的上端部分的端面直径为40mm,其长度为25mm,下端部分的端面直径为21mm,其长度为40mm。所述变幅杆与工具头为一体,所述工具头的末端电镀或烧结金刚砂磨料。
利用形状因数比较所述变幅杆所能达到最大振幅,形状因数表达式如下:
其中,ρC为仅与材料有关的变幅杆的材料机械阻抗。
通过ANSYS谐响应分析可以获得A值,经计算,所述变幅杆的A值为0.402×10-12m/Pa,设计固有频率和面积因数与所述变幅杆相同的阶梯型变幅杆,计算得到A值为0.090×10-12m/Pa。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (6)

1.一种柴油机用飞轮壳的加工装置,其特征在于,主要包括机架、安装座、左刀头及右刀头,所述安装座位于机架上且与机架内的横向调节单元及纵向调节单元连接,所述左刀头及右刀头位于安装座的上方且分布在安装座的两侧,左刀头安装在机架的侧壁上,在机架内还设置有驱使右刀头做水平方向往复运动的横向调节装置,所述横向调节装置包括丝杆、与丝杆相配合的丝母、导杆及横移驱动电机,所述丝杆的一端与横向驱动电机的输出轴连接,另一端插接在机架的侧壁与机架间隙配合,所述丝母的尾端固定有支撑座,右刀头安装在支撑座上,所述导杆由焊接在机架内部的两支撑耳支撑,导杆与丝杆平行,所述支撑座与丝杆及导杆间隙配合。
2.根据权利要求1所述的一种柴油机用飞轮壳的加工装置,其特征在于,所述左刀头及右刀头各通过一电机驱动。
3.根据权利要求2所述的一种柴油机用飞轮壳的加工装置,其特征在于,包括框架、旋转变压器、换能器、变幅杆和工具头;所述换能器上方的两侧设置旋转变压器,所述变幅杆包括上端部分、变截面部分和下端部分,所述上端部分直接连接换能器的底面,所述下端部分直接连接工具头,所述变截面的形状根据下列公式计算: 其中,P(x)为变幅杆的横截面面积函数,k为圆波数,D(x)为轮廓半径函数,D0为上端部分的半径,P0为上端部分与变截面部分连接处的横截面面积,P1为下端部分与变截面部分连接处的横截面面积,下端部分的长度根据下列公式计算:所述换能器包括前金属盖板、后金属盖板以及厚度方向极化的压电陶瓷圆环,偶数个所述压电陶瓷圆环共轴连接形成压电陶瓷晶堆,压电陶瓷晶堆中相邻两个压电陶瓷圆环极化方向相反;根据实际需要设定换能器的共振频率后通过下列公式得到换能器的几何尺寸:
(1)所述换能器的等效电路图,虚线将整个电路划分为三个部分,分别为前盖板等效电路、后盖板等效电路和压电陶瓷晶堆等效电路,其中,ZbL和ZfL分别是换能器后、前两端的负载阻抗,根据实际需要设定;
(2)所述换能器的振动频率方程为
Z i = Z m N 2 + jωPC o r Z m ,
前金属盖板输入机械阻抗为后金属盖板输入机械阻抗为换能器的机械阻抗为
其中,Zf=ρ2c2S2,k2=ω/c2,c2是前金属盖板中的声速,ρ2、E2、σ2分别是前金属盖板的密度、杨氏模量和泊松系数,l2和S2是前金属盖板的厚度和横截面的面积;
(3)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,若忽略机械损耗和介电损耗,换能器的共振频率方程为|Zi|=0;若考虑机械损耗,输入电阻抗为最小时,换能器的共振频率方程为|Zi|=|Zi|min,通过换能器的振动频率方程计算得到换能器的具体尺寸;
(4)由于换能器的负载很难确定,因此通常把换能器看成空载,即ZbL=ZfL=0,当输入电阻抗为无效大时,忽略损耗,换能器的***振频率方程为|Zi|=∞;当输入电阻抗为无效大时,考虑损耗,换能器的***振频率方程为|Zi|=|Zi|max,通过换能器的振动频率方程计算得到换能器的具体尺寸;
所述换能器还包括外壳、设于外壳上表面的上端盖、设于外壳下表面的下端盖和固定法兰,所述外壳固定所述压电陶瓷圆环、前金属盖板和后金属盖板,所述上端盖包括固定柱,所述固定柱设于上端盖的中心轴位置并向上延伸至旋转变压器内,且向下延伸至上端盖的下方,所述变幅杆向上延伸至换能器的内部,且变幅杆与固定柱之间设有连接件、上弹簧和下弹簧,所述上弹簧的上端连接固定柱的下端,所述上弹簧的下端连接连接件,所述下弹簧的上端连接连接件,所述下弹簧的下端连接变幅杆。
4.根据权利要求3所述的一种柴油机用飞轮壳的加工装置,其特征在于,相邻两个压电陶瓷圆环间还设有金属电极,金属电极的厚度为0.02-0.2mm。
5.根据权利要求4所述的一种柴油机用飞轮壳的加工装置,其特征在于,根据实际需要设定换能器的共振频率后通过下列公式得到换能器的几何尺寸:(1)首先对换能器的频率方程进行推导:截面AB为位移节面,位移节面AB将换能器分成两个四分之一波长的振子,即Lf+l2以及Lb+l1均为振动波长的四分之一,每个四分之一波长的振子都是由压电陶瓷晶片及金属盖板组成,位移节面前与前金属盖板之间的压电陶瓷进队的长度记为Lf,位移节面后与后金属盖板之间的压电陶瓷晶堆的长度记为Lb,若压电陶瓷晶堆由P个厚度为l的压电陶瓷圆环组成,则有Lf+Lb=Pl且l远小于厚度振动的波长。位移波节前的四分之一波长振子的共振方程为tan(keLf)tan(k2l2)=Zo/Zf,位移波节后的四分之一波长振子的共振方程为tan(keLb)tan(k1l1)=Zo/Zf,其中,Z0是单个压电陶瓷圆环的特性阻抗,l1和l2分别是后、前金属盖板的厚度;(2)根据实际需要设定共振频率,并通过得到的共振频率方程得到换能器具体尺寸。
6.根据权利要求5所述的一种柴油机用飞轮壳的加工装置,其特征在于,所述固定法兰的中心轴位置留有开孔,所述开孔的内侧沿其圆周方向设有包围变幅杆变截面部分的弹性橡胶圈。且所述固定法兰的上表面间隔设有多个可伸缩结构,并通过可伸缩结构连接所述下端盖。
CN201610550182.9A 2016-07-11 2016-07-11 一种柴油机用飞轮壳的加工装置 Pending CN106112702A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610550182.9A CN106112702A (zh) 2016-07-11 2016-07-11 一种柴油机用飞轮壳的加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610550182.9A CN106112702A (zh) 2016-07-11 2016-07-11 一种柴油机用飞轮壳的加工装置

Publications (1)

Publication Number Publication Date
CN106112702A true CN106112702A (zh) 2016-11-16

Family

ID=57283692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610550182.9A Pending CN106112702A (zh) 2016-07-11 2016-07-11 一种柴油机用飞轮壳的加工装置

Country Status (1)

Country Link
CN (1) CN106112702A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121445A (en) * 1981-01-13 1982-07-28 Hitachi Seiki Co Ltd Apparatus for fixing machined material for a transfer machine
DE3732559A1 (de) * 1987-09-26 1989-04-06 Hessische Apparatebau Fertigungseinheit
CN2178158Y (zh) * 1993-11-24 1994-09-28 杨铁工厂股份有限公司 卧式综合加工机梭台交换装置
CN101168235A (zh) * 2007-11-30 2008-04-30 安团英 双面加工组合机床
CN104759669A (zh) * 2015-03-17 2015-07-08 黄春凤 一种飞轮壳用双面加工铣床
CN104759665A (zh) * 2015-03-17 2015-07-08 黄春凤 一种双刀头铣床

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121445A (en) * 1981-01-13 1982-07-28 Hitachi Seiki Co Ltd Apparatus for fixing machined material for a transfer machine
DE3732559A1 (de) * 1987-09-26 1989-04-06 Hessische Apparatebau Fertigungseinheit
CN2178158Y (zh) * 1993-11-24 1994-09-28 杨铁工厂股份有限公司 卧式综合加工机梭台交换装置
CN101168235A (zh) * 2007-11-30 2008-04-30 安团英 双面加工组合机床
CN104759669A (zh) * 2015-03-17 2015-07-08 黄春凤 一种飞轮壳用双面加工铣床
CN104759665A (zh) * 2015-03-17 2015-07-08 黄春凤 一种双刀头铣床

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
姚震: "旋转超声加工振动***及电源技术研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 *
潘巧生等: "一种大振幅超声变幅杆设计", 《振动与冲击》 *
田华: "新型超声换能器与辐射器的研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 *

Similar Documents

Publication Publication Date Title
CN106694932A (zh) 一种通用型频率匹配式纵‑扭复合超声振动铣、钻削装置
CN104607671B (zh) 一种单激励超声椭圆振动车削装置
CN1613273B (zh) 装套筒的超声换能器
CN106807615B (zh) 磁致伸缩纵扭复合超声振动换能器
CN107297317A (zh) 实现单激励纵‑扭复合超声振动的一体式转换方法及装置
CN107221316A (zh) 一种低频宽带Helmholtz水声换能器
CN106217851A (zh) 新型超声焊接装置
CN106230307B (zh) 非对称结构式纵弯复合振动的超声波拉丝振子
CN107335601A (zh) 一种单激励二维超声振动辅助微细加工平台
CN106179929A (zh) 旋转超声加工振动装置
CN107509149A (zh) 一种小尺寸大振幅螺旋弹簧低频换能器
CN106112702A (zh) 一种柴油机用飞轮壳的加工装置
CN104439890B (zh) 单激励超声椭圆振动挤压加工装置
CN202042174U (zh) 一种折回式压电陶瓷低频水声换能器
CN103212532B (zh) T型大功率超声波换能器
CN106179928A (zh) 一种壳体两圆弧跑道的加工装置
CN207215138U (zh) 超声波传感器
CN106240139A (zh) 凹凸电雕版加工装置
CN106140596A (zh) 超声波处置装置
CN203221210U (zh) 一种单激励超声椭圆振动车削装置
CN108988814A (zh) 一种声表面波的谐振器及其制作方法
JP2020028873A (ja) ランジュバン型超音波振動子とその支持方法
CN106179930A (zh) 超声波振子单元
CN105945203A (zh) 一种齿轮锻造加工用装置
US3145312A (en) High frequency sonic transducers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116