CN106111181A - 多孔石墨烯‑沸石‑卤氧化铋光催化材料及制备与应用 - Google Patents

多孔石墨烯‑沸石‑卤氧化铋光催化材料及制备与应用 Download PDF

Info

Publication number
CN106111181A
CN106111181A CN201610471976.6A CN201610471976A CN106111181A CN 106111181 A CN106111181 A CN 106111181A CN 201610471976 A CN201610471976 A CN 201610471976A CN 106111181 A CN106111181 A CN 106111181A
Authority
CN
China
Prior art keywords
zeolite
porous graphene
biox
catalysis material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610471976.6A
Other languages
English (en)
Other versions
CN106111181B (zh
Inventor
蔡祥
吴婷
胡家彩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Gaoming Greening New Material Co Ltd
Original Assignee
Foshan Gaoming Greening New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Gaoming Greening New Material Co Ltd filed Critical Foshan Gaoming Greening New Material Co Ltd
Priority to CN201610471976.6A priority Critical patent/CN106111181B/zh
Publication of CN106111181A publication Critical patent/CN106111181A/zh
Application granted granted Critical
Publication of CN106111181B publication Critical patent/CN106111181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7807A-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料技术领域,公开了一种多孔石墨烯‑沸石‑卤氧化铋光催化材料及制备与应用。所述光催化材料由9~50质量份的多孔石墨烯、50~91质量份的沸石和10~100质量份的卤氧化铋复合而成。所述制备方法为:将多孔石墨烯和沸石在乙醇溶液中反应,得到多孔石墨烯‑沸石复合材料,然后将其与卤氧化铋在乙醇溶液中反应,冷冻干燥,得到多孔石墨烯‑沸石‑卤氧化铋光催化材料。本发明方法采用多孔石墨烯‑沸石作为载体,可以更好地负载卤氧化铋,增大卤氧化铋的比表面积,减小卤氧化铋晶粒尺寸,显著提高催化剂活性。

Description

多孔石墨烯-沸石-卤氧化铋光催化材料及制备与应用
技术领域
本发明属于光催化材料技术领域,具体涉及一种多孔石墨烯-沸石-卤氧化铋光催化材料及制备与应用。
背景技术
随着全球环境问题的日益突出,利用半导体材料的光催化氧化进行污染物治理已成为污染治理技术领域的研究热点。同时,在能源日益短缺的今天,太阳能的利用自然会成为人们关注的焦点。到目前为止,TiO2被证实为最优秀的半导体光催化剂,其氧化能力强,催化活性高,生物、化学、光化学稳定性等优势一直处于光催化研究中的核心地位(Xu Bai-Huan,Lin Bi-Zhou,Wang Qin-Qin,Pian Xue-Tao,Zhang Ou,Fu Li-Mei.Anatase TiO2-pillared hexaniobate mesoporous nanocomposite with enhanced photocatalyticactivity[J].Microporous and Mesoporous Materials,2012,147(1):79-85.)。然而,TiO2的带隙能为3.2ev,只有波长小于387nm的紫外光才能激发它产生电子—空穴对。在太阳光谱中紫外光(400nm以下)不到5%,而波长为400~800nm的可见光占到43%,因此,寻求具有高性能的可见光光催化材料已是必然趋势(Surajit Kumar,Andrei G.Fedorova,James L.Gole.Photodegradation of ethylene using visible light responsivesurfaces prepared from titania nanoparticle slurries[J].Applied Catalysis B:Environmental,2005,57(2):93-107.)。
卤氧化铋(BiOX,X=F,Cl,Br,I)以其独特的电子结构,良好的光催化性能和高的化学稳定性,吸引了研究者的广泛关注,并成为光催化研究领域中的一颗新星(魏平玉,杨青林,郭林.卤氧化铋化合物光催化剂[J].化学进展.2009,21(9):1734-1741.)。但是,卤氧化铋光催化性能的发挥强烈依赖于其自身的粒径,只有将卤氧化铋颗粒的粒径控制在微纳米范围,才能有效缩短电子与空穴的激发路程,提高可见光催化效率(AR Liu,SM Wanga,YRZhao,Z Zheng.Low temperature preparation of nanocrystalline TiO2photocatalyst with a very large specific surface area[J].Materials Chemistryand Physics,2006,99(1):131-134.)。另外,卤氧化铋很容易产生团聚,降低了光催化效率(魏平玉,杨青林,郭林.卤氧化铋化合物光催化剂[J].化学进展.2009,21(9):1734-1741.)。为了避免上述缺陷,目前常用的解决方法是制备可固定化的卤氧化铋光催化剂。
Wang等(Changhua Wang,Changlu Shao,Yichun Liu,LinaZhang.Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared byelectrospinning[J].Scripta Materialia,2008,59(3):332-335.)采用电纺丝的方法,以PAN为载体制备出粒径为80~140nm,长度达几个微米的BiOCl纤维。以BiOCl纤维作为光催化剂时,在紫外-可见光下,60min内将罗丹明B(RB)几乎全部降解完全;相同条件下,其催化性能是Bi2O3纳米纤维光催化剂的三倍。此外,对BiOCl纤维反应后沉降性能的研究表明,长度为微米级的BiOCl纤维在光催化完成后,1h之内从水悬浮液中沉降完全。BiOCl纤维具有可重复利用性,能够避免二次污染,降低成本,在工业化应用中具有广阔的前景。Yu等(Changlin Yu,Jimmy C.Yu,Caifeng Fan,Herui Wen,Shengjie Hu.Synthesis andcharacterization of Pt/BiOI nanoplate catalyst with enhanced activity undervisible light irradiation[J].Materials Science and Engineering:B,AdvancedFunctional Solid-State Materials,2010,166(3):213-219.)合成了一系列Pt/BiOI纳米片,铂纳米粒可以充当电子捕获剂,促进电子和空穴的分离,降低再复合率,增加量子效率。通过在可见光照射下降解酸性橙II以测定其活性。结果表明,照射1h,Pt(0.2%wt)/BiOI催化活性最高,对酸性橙II的降解率为90%,能明显克服卤氧化铋很容易产生团聚的问题。专利(CN101653732)“一种分子筛负载卤氧化铋光催化剂、制备方法及其应用”提供了一种分子筛负载卤氧化铋光催化剂、制备方法及其应用,该发明的催化剂是以SBA-15、ZSM-5、HY中的一种或几种为载体,卤氧化铋为活性组分构成的负载型催化剂。该催化剂用于气相有机物的去除。该催化剂中引入分子筛为载体,增大了催化剂的比表面积,减小了晶粒尺寸,显著提高催化剂降解苯的活性。
从以上分析可以看出,现有技术仍然存在功能单一的问题,不能全面解决卤氧化铋很容易产生团聚和光催化效率受粒径影响的问题。
发明内容
为了解决以上现有技术的缺点和不足之处,本发明的首要目的在于提供一种多孔石墨烯-沸石-卤氧化铋光催化材料。所得材料的卤氧化铋粒径可控、不易团聚、有机物吸附能力强、可见光催化活性增强。
本发明的另一目的在于提供上述多孔石墨烯-沸石-卤氧化铋光催化材料的制备方法。
本发明的再一目的在于提供上述多孔石墨烯-沸石-卤氧化铋光催化材料在可见光催化降解水中有机污染物的应用。
本发明目的通过以下技术方案实现:
一种多孔石墨烯-沸石-卤氧化铋光催化材料,所述光催化材料由9~50质量份的多孔石墨烯、50~91质量份的沸石和10~100质量份的卤氧化铋复合而成。其组成可表示为[多孔石墨烯]a[沸石]b[BiOX]c,其中a、b、c表示多孔石墨烯、沸石和卤氧化铋(BiOX)的质量比。
优选地,所述多孔石墨烯的比表面积为350~450m2/g,电导率为20~60S·m-1,900℃内的失重为4~6wt%;所述沸石的粒径为0.3~0.5nm,比表面积为100~400m2/g。
上述多孔石墨烯-沸石-卤氧化铋光催化材料的制备方法,包括如下制备步骤:
(1)多孔石墨烯的制备:将石墨粉加入浓硫酸中,冰盐浴冷却下加入KMnO4,室温搅拌反应,反应完成后加水稀释,再加入双氧水,离心去除杂质后,所得上清液依次经超声和微波处理,得到氧化石墨烯溶液,然后加入NaOH,于700~800℃及氮气保护下烧结,得到多孔石墨烯;
(2)多孔石墨烯-沸石复合材料的制备:步骤(1)所得多孔石墨烯加入到乙醇中,超声处理后加入沸石搅拌混合均匀,加热去除乙醇后于700~800℃烧结,得到多孔石墨烯-沸石复合材料;
(3)多孔石墨烯-沸石-卤氧化铋的制备:将BiOX加入到乙醇中,然后加入步骤(2)所得多孔石墨烯-沸石复合材料,超声分散均匀后冷冻干燥,得到所述多孔石墨烯-沸石-卤氧化铋光催化材料。
优选地,步骤(1)中所述KMnO4的用量为石墨粉质量的2.5~3倍;所述双氧水的用量与石墨粉的质量体积比为(2~3)-:1mL/g;所述NaOH的用量为石墨粉质量的3~5倍。
优选地,步骤(2)中所述沸石的用量为多孔石墨烯质量的1~10倍。
优选地,步骤(3)中所述BiOX与多孔石墨烯-沸石复合材料加入的质量比为(10~100):(100~110)。
上述多孔石墨烯-沸石-卤氧化铋光催化材料在可见光催化降解水中有机污染物的应用。
相对于现有技术,本发明具有如下优点及有益效果:
(1)本发明方法采用多孔石墨烯-沸石作为载体,可以更好地负载卤氧化铋,增大卤氧化铋的比表面积,减小卤氧化铋晶粒尺寸,显著提高催化剂活性。
(2)多孔石墨烯可以充当电子捕获剂,促进电子和空穴的分离,降低再复合率,增加卤氧化铋的量子效率。
(3)采用冷冻干燥法处理多孔石墨烯-沸石-卤氧化铋,在增大了催化剂的比表面积的同时减小了晶粒的尺寸,可以提高卤氧化铋的催化活性。
(4)多孔石墨烯-沸石-卤氧化铋具有可重复利用性,能够避免二次污染,降低成本,在工业化应用中具有广阔的前景。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例所得产物的理化性能通过如下方法测定:
比表面积:采用Micromeritics ASAP 2010测定氧化石墨烯比表面积;
多孔石墨烯的电阻率和电导率:利用RTS-8型四探针仪器测试多孔石墨烯的电阻率和电导率;
多孔石墨烯的热失重:使用美国TA公司的SDT-Q600型热重分析仪进行热重测试,升温速率10℃/min,在N2气氛中进行;
实施例1
(1)100g石墨粉加入2.5L浓硫酸中,冰盐浴冷却到0℃,缓慢加入250g的KMnO4,然后升温至30℃,60rpm搅拌2h,加入20L水,再加入200mL双氧水,600rpm离心去除杂质后,超声(400W,50Hz)处理上层液1h,继而微波(800W,2450Hz)处理上层液1h,得到氧化石墨烯溶液,然后加入300g NaOH,在管式炉中氮气保护700℃加热1h,得到50g多孔石墨烯;多孔石墨烯的比表面积为350m2/g;其电导率为60S·m-1;900℃内的失重为4wt%。
(2)将50g多孔石墨烯加入到50L乙醇中,超声(400W,50Hz)处理1h,然后加入50g粒径为3A沸石,20rpm搅拌1h,80℃加热1h去除乙醇,700℃加热1h得到100g固体多孔石墨烯-沸石复合材料。
(3)10g的BiOCl加入到100mL乙醇中,然后加入100g的多孔石墨烯-沸石复合材料,超声(400W,50Hz)处理1h,冷冻干燥,得到多孔石墨烯-沸石-卤氧化铋光催化材料。其组成为[多孔石墨烯]50[沸石]50[BiOCl]10
实施例2
(1)100g石墨粉加入2.5L浓硫酸中,冰盐浴冷却到0℃,缓慢加入260g的KMnO4,然后升温至30℃,60rpm搅拌2h,加入20L水,再加入300mL双氧水,600rpm离心去除杂质后,超声(400W,50Hz)处理上层液1h,继而微波(800W,2450Hz)处理上层液1h,得到氧化石墨烯溶液,然后加入300g NaOH,在管式炉中氮气保护760℃加热1h,得到33g多孔石墨烯;多孔石墨烯的比表面积为370m2/g;其电导率为50S·m-1;900℃内的失重为4.5wt%。
(2)将33g多孔石墨烯加入到33L乙醇中,超声(400W,50Hz)处理1h,然后加入67g粒径为4A沸石,20rpm搅拌1h,80℃加热1h去除乙醇,760℃加热1h得到100g固体多孔石墨烯-沸石复合材料;
(3)20g的BiOBr加入到100mL乙醇中,然后加入100g的多孔石墨烯-沸石复合材料,超声(400W,50Hz)处理1h,冷冻干燥,得到多孔石墨烯-沸石-卤氧化铋光催化材料。其组成为[多孔石墨烯]33[沸石]67[BiOBr]20
实施例3
(1)100g石墨粉加入2.5L浓硫酸中,冰盐浴冷却到0℃,缓慢加入270g的KMnO4,然后升温至30℃,60rpm搅拌2h,加入20L水,再加入200mL双氧水,600rpm离心去除杂质后,超声(400W,50Hz)处理上层液1h,继而微波(800W,2450Hz)处理上层液1h,得到氧化石墨烯溶液,然后加入400g NaOH,在管式炉中氮气保护800℃加热1h,得到20g多孔石墨烯;多孔石墨烯的比表面积为390m2/g;其电导率为40S·m-1;900℃内的失重为5wt%。
(2)将20g多孔石墨烯加入到100mL乙醇中,超声(400W,50Hz)处理1h,然后加入80g粒径为5A沸石,20rpm搅拌1h,80℃加热1h去除乙醇,800℃加热1h得到100g固体多孔石墨烯-沸石复合材料。
(3)40g的BiOI加入到100mL乙醇中,然后加入100g的多孔石墨烯-沸石复合材料,超声(400W,50Hz)处理1h,冷冻干燥,得到多孔石墨烯-沸石-卤氧化铋光催化材料。其组成为[多孔石墨烯]20[沸石]80[BiOI]40
实施例4
(1)100g石墨粉加入2.5L浓硫酸中,冰盐浴冷却到0℃,缓慢加入280g的KMnO4,然后升温至30℃,60rpm搅拌2h,加入20L水,再加入300mL双氧水,600rpm离心去除杂质后,超声(400W,50Hz)处理上层液1h,继而微波(800W,2450Hz)处理上层液1h,得到氧化石墨烯溶液,然后加入300g NaOH,在管式炉中氮气保护760℃加热1h,得到14g多孔石墨烯;多孔石墨烯的比表面积为410m2/g;其电导率为30S·m-1;900℃内的失重为5.5wt%。
(2)将14g多孔石墨烯加入到100mL乙醇中,超声(400W,50Hz)处理1h,然后加入86g粒径为3A沸石,20rpm搅拌1h,80℃加热1h去除乙醇,760℃加热1h得到100g固体多孔石墨烯-沸石复合材料。
(3)60g的BiOCl加入到100mL乙醇中,然后加入100g的多孔石墨烯-沸石复合材料,超声(400W,50Hz)处理1h,冷冻干燥,得到多孔石墨烯-沸石-卤氧化铋光催化材料。其组成为[多孔石墨烯]14[沸石]86[BiOCl]60
实施例5
(1)100g石墨粉加入2.5L浓硫酸中,冰盐浴冷却到0℃,缓慢加入290g的KMnO4,然后升温至30℃,60rpm搅拌2h,加入20L水,再加入200mL双氧水,600rpm离心去除杂质后,超声(400W,50Hz)处理上层液1h,继而微波(800W,2450Hz)处理上层液1h,得到氧化石墨烯溶液,然后加入400g NaOH,在管式炉中氮气保护700℃加热1h,得到11g多孔石墨烯;多孔石墨烯的比表面积为430m2/g;其电导率为25S·m-1;900℃内的失重为5.5wt%。
(2)将11g多孔石墨烯加入到100mL乙醇中,超声(400W,50Hz)处理1h,然后加入89g粒径为4A沸石,20rpm搅拌1h,80℃加热1h去除乙醇,700℃加热1h得到100g固体多孔石墨烯-沸石复合材料。
(3)80g的BiOBr加入到100mL乙醇中,然后加入100g的多孔石墨烯-沸石复合材料,超声(400W,50Hz)处理1h,冷冻干燥,得到多孔石墨烯-沸石-卤氧化铋光催化材料。其组成为[多孔石墨烯]11[沸石]89[BiOBr]80
实施例6
(1)100g石墨粉加入2.5L浓硫酸中,冰盐浴冷却到0℃,缓慢加入300g的KMnO4,然后升温至30℃,60rpm搅拌2h,加入20L水,再加入300mL双氧水,600rpm离心去除杂质后,超声(400W,50Hz)处理上层液1h,继而微波(800W,2450Hz)处理上层液1h,得到氧化石墨烯溶液,然后加入500g NaOH,在管式炉中氮气保护800℃加热1h,得到9g多孔石墨烯;多孔石墨烯的比表面积为450m2/g;其电导率为20S·m-1;900℃内的失重为6wt%。
(2)将9g多孔石墨烯加入到100mL乙醇中,超声(400W,50Hz)处理1h,然后加入91g粒径为5A沸石,20rpm搅拌1h,800℃加热1h,得到100g固体多孔石墨烯-沸石复合材料。
(3)100g的BiOI加入到100mL乙醇中,然后加入100g的多孔石墨烯-沸石复合材料,超声(400W,50Hz)处理1h,冷冻干燥,得到多孔石墨烯-沸石-卤氧化铋光催化材料。其组成为[多孔石墨烯]9[沸石]91[BiOI]100
从实施例1~6可以看出,通过改变多孔石墨烯-沸石-卤氧化铋的加入量,分别制得多孔石墨烯-沸石-卤氧化铋比例不同的可见光催化剂。
本发明所得多孔石墨烯-沸石-卤氧化铋可见光催化剂的性能评价:
(1)取实施例6制备的多孔石墨烯-沸石-碘氧化铋0.05g,加入到50mL的罗丹明(10mg/L)水溶液中,调节pH=3.0,混合混合均匀后转入玻璃瓶中,在黑暗的环境中暗反应60min后做光催化测试,可见光灯为氙灯(300W,>420nm)。2h后取样,在551nm处测量溶液的吸光度(Lambda25紫外-可见光分光光度计),测试罗丹明的降解效果(王昭,毛峰,黄祥平,黄应平,冯笙琴,易佳,张昌远,刘栓.TiO2/石墨烯复合材料的制备及其光催化性能[J].材料科学与工程学报,2011,29(2):267-232.)。结果如表1所示。
表1多孔石墨烯-沸石-碘氧化铋可见光催化剂降解罗丹明B的活性效果
活性测试结果表明,采用多孔石墨烯-沸石作为载体,可以更好地负载碘氧化铋,增大碘氧化铋的比表面积,减小碘氧化铋晶粒尺寸,经过多孔石墨烯-沸石负载后,碘氧化铋降解罗丹明B的活性得到显著提高,说明多孔石墨烯-沸石可显著提高碘氧化铋催化剂活性,具有广阔的前景。
(2)取实施例5制备的多孔石墨烯-沸石-溴氧化铋0.05g,加入到50mL的罗丹明(10mg/L)水溶液中,调节pH=3.0,混合混合均匀后转入玻璃瓶中,在黑暗的环境中暗反应60min后做光催化测试,可见光灯为氙灯(300W,>420nm)。2h后取样,在551nm处测量溶液的吸光度(Lambda25紫外-可见光分光光度计),测试罗丹明的降解效果(王昭,毛峰,黄祥平,黄应平,冯笙琴,易佳,张昌远,刘栓.TiO2/石墨烯复合材料的制备及其光催化性能[J].材料科学与工程学报,2011,29(2):267-232.)。结果如表2所示。
表2多孔石墨烯-沸石-溴氧化铋可见光催化剂降解罗丹明B的活性效果
活性测试结果表明,采用多孔石墨烯-沸石作为载体,可以更好地负载溴氧化铋,增大溴氧化铋的比表面积,减小溴氧化铋晶粒尺寸,经过多孔石墨烯-沸石负载后,溴氧化铋降解罗丹明B的活性得到显著提高,说明多孔石墨烯-沸石可显著提高溴氧化铋催化剂活性,具有广阔的前景。
(3)取实施例4制备的多孔石墨烯-沸石-氯氧化铋0.05g,加入到50mL的罗丹明(10mg/L)水溶液中,调节pH=3.0,混合混合均匀后转入玻璃瓶中,在黑暗的环境中暗反应60min后做光催化测试,可见光灯为氙灯(300W,>420nm)。2h后取样,在551nm处测量溶液的吸光度(Lambda25紫外-可见光分光光度计),测试罗丹明的降解效果(王昭,毛峰,黄祥平,黄应平,冯笙琴,易佳,张昌远,刘栓.TiO2/石墨烯复合材料的制备及其光催化性能[J].材料科学与工程学报,2011,29(2):267-232.)。结果如表3所示。
表3多孔石墨烯-沸石-卤氧化铋可见光催化剂降解罗丹明B的活性效果
活性测试结果表明,采用多孔石墨烯-沸石作为载体,可以更好地负载氯氧化铋,增大氯氧化铋的比表面积,减小碘氯化铋晶粒尺寸,经过多孔石墨烯-沸石负载后,氯氧化铋降解罗丹明B的活性得到显著提高,说明多孔石墨烯-沸石可显著提高氯氧化铋催化剂活性,具有广阔的前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种多孔石墨烯-沸石-卤氧化铋光催化材料,其特征在于:所述光催化材料由9~50质量份的多孔石墨烯、50~91质量份的沸石和10~100质量份的卤氧化铋复合而成。
2.根据权利要求1所述的一种多孔石墨烯-沸石-卤氧化铋光催化材料,其特征在于:所述多孔石墨烯的比表面积为350~450m2/g,电导率为20~60S·m-1,900℃内的失重为4~6wt%;所述沸石的粒径为0.3~0.5nm,比表面积为100~400m2/g。
3.权利要求1或2所述的多孔石墨烯-沸石-卤氧化铋光催化材料的制备方法,其特征在于包括如下制备步骤:
(1)多孔石墨烯的制备:将石墨粉加入浓硫酸中,冰盐浴冷却下加入KMnO4,室温搅拌反应,反应完成后加水稀释,再加入双氧水,离心去除杂质后,所得上清液依次经超声和微波处理,得到氧化石墨烯溶液,然后加入NaOH,于700~800℃及氮气保护下烧结,得到多孔石墨烯;
(2)多孔石墨烯-沸石复合材料的制备:步骤(1)所得多孔石墨烯加入到乙醇中,超声处理后加入沸石搅拌混合均匀,加热去除乙醇后于700~800℃烧结,得到多孔石墨烯-沸石复合材料;
(3)多孔石墨烯-沸石-卤氧化铋的制备:将BiOX加入到乙醇中,然后加入步骤(2)所得多孔石墨烯-沸石复合材料,超声分散均匀后冷冻干燥,得到所述多孔石墨烯-沸石-卤氧化铋光催化材料。
4.根据权利要求3所述的多孔石墨烯-沸石-卤氧化铋光催化材料的制备方法,其特征在于:步骤(1)中所述KMnO4的用量为石墨粉质量的2.5~3倍;所述双氧水的用量与石墨粉的体积质量比为(2~3):1mL/g;所述NaOH的用量为石墨粉质量的3~5倍。
5.根据权利要求3所述的多孔石墨烯-沸石-卤氧化铋光催化材料的制备方法,其特征在于:步骤(2)中所述沸石的用量为多孔石墨烯质量的1~10倍。
6.根据权利要求3所述的多孔石墨烯-沸石-卤氧化铋光催化材料的制备方法,其特征在于:步骤(3)中所述BiOX与多孔石墨烯-沸石复合材料加入的质量比为(10~100):(100~110)。
7.权利要求1或2所述的多孔石墨烯-沸石-卤氧化铋光催化材料在可见光催化降解水中有机污染物的应用。
CN201610471976.6A 2016-06-22 2016-06-22 多孔石墨烯-沸石-卤氧化铋光催化材料及制备与应用 Active CN106111181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610471976.6A CN106111181B (zh) 2016-06-22 2016-06-22 多孔石墨烯-沸石-卤氧化铋光催化材料及制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610471976.6A CN106111181B (zh) 2016-06-22 2016-06-22 多孔石墨烯-沸石-卤氧化铋光催化材料及制备与应用

Publications (2)

Publication Number Publication Date
CN106111181A true CN106111181A (zh) 2016-11-16
CN106111181B CN106111181B (zh) 2019-07-05

Family

ID=57269023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610471976.6A Active CN106111181B (zh) 2016-06-22 2016-06-22 多孔石墨烯-沸石-卤氧化铋光催化材料及制备与应用

Country Status (1)

Country Link
CN (1) CN106111181B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107051587A (zh) * 2017-06-01 2017-08-18 上海师范大学 漂浮型半导体光催化材料及其制备方法和应用
CN109364999A (zh) * 2018-11-23 2019-02-22 淮北师范大学 一种超薄多孔2d石墨烯/硫化镉-有机胺复合光催化剂及其制备方法
CN111097393A (zh) * 2018-10-25 2020-05-05 中国科学院上海硅酸盐研究所 一种基于二维多孔石墨烯的光催化材料及其制备方法和应用
CN113019401A (zh) * 2021-03-11 2021-06-25 黑龙江工业学院 一种石墨烯基光催化复合材料的制备方法和应用及应用方法
CN113117728A (zh) * 2021-03-07 2021-07-16 桂林理工大学 一种ZSM-5/Bi4O5Br2复合光催化材料的制备方法
CN117399059A (zh) * 2023-10-19 2024-01-16 北京道思克能源设备有限公司 一种氢氰酸的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101653732A (zh) * 2009-09-29 2010-02-24 福州大学 一种分子筛负载卤氧化铋光催化剂、制备方法及其应用
CN103111286A (zh) * 2013-01-22 2013-05-22 湖南元素密码石墨烯研究院(有限合伙) 一种新型纳米复合可见光催化剂及其制备方法
CN103877971A (zh) * 2014-03-07 2014-06-25 中国科学院东北地理与农业生态研究所 高效可见光催化剂及其制备方法
CN104353472A (zh) * 2014-11-26 2015-02-18 安徽工业大学 一种BiOBr/RGO纳米复合材料的制备方法及其在降解罗丹明反应中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101653732A (zh) * 2009-09-29 2010-02-24 福州大学 一种分子筛负载卤氧化铋光催化剂、制备方法及其应用
CN103111286A (zh) * 2013-01-22 2013-05-22 湖南元素密码石墨烯研究院(有限合伙) 一种新型纳米复合可见光催化剂及其制备方法
CN103877971A (zh) * 2014-03-07 2014-06-25 中国科学院东北地理与农业生态研究所 高效可见光催化剂及其制备方法
CN104353472A (zh) * 2014-11-26 2015-02-18 安徽工业大学 一种BiOBr/RGO纳米复合材料的制备方法及其在降解罗丹明反应中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KOVTYUKHOVA, NI等: "Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations", 《CHEMISTRY OF MATERIALS》 *
于爱丽: "石墨烯/沸石复合材料的制备及对水中污染物的吸附性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
于爱丽: "石墨烯/沸石复合材料的制备及对水中污染物的吸附性能研究", 《暨南大学硕士学位论文》 *
林立等: "卤氧化铋异质结型可见光光催化的新进展", 《材料导报A:综述篇》 *
郑昌琼等: "《简明材料词典》", 30 April 2002 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107051587A (zh) * 2017-06-01 2017-08-18 上海师范大学 漂浮型半导体光催化材料及其制备方法和应用
CN107051587B (zh) * 2017-06-01 2020-04-07 上海师范大学 漂浮型半导体光催化材料及其制备方法和应用
CN111097393A (zh) * 2018-10-25 2020-05-05 中国科学院上海硅酸盐研究所 一种基于二维多孔石墨烯的光催化材料及其制备方法和应用
CN109364999A (zh) * 2018-11-23 2019-02-22 淮北师范大学 一种超薄多孔2d石墨烯/硫化镉-有机胺复合光催化剂及其制备方法
CN109364999B (zh) * 2018-11-23 2021-08-13 淮北师范大学 一种超薄多孔2d石墨烯/硫化镉-有机胺复合光催化剂及其制备方法
CN113117728A (zh) * 2021-03-07 2021-07-16 桂林理工大学 一种ZSM-5/Bi4O5Br2复合光催化材料的制备方法
CN113019401A (zh) * 2021-03-11 2021-06-25 黑龙江工业学院 一种石墨烯基光催化复合材料的制备方法和应用及应用方法
CN113019401B (zh) * 2021-03-11 2021-09-24 黑龙江工业学院 一种石墨烯基光催化复合材料的制备方法和应用及应用方法
CN117399059A (zh) * 2023-10-19 2024-01-16 北京道思克能源设备有限公司 一种氢氰酸的制备方法
CN117399059B (zh) * 2023-10-19 2024-02-09 北京道思克能源设备有限公司 一种氢氰酸的制备方法

Also Published As

Publication number Publication date
CN106111181B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN106111181B (zh) 多孔石墨烯-沸石-卤氧化铋光催化材料及制备与应用
Liu et al. Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance
Wang et al. Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal
Pan et al. Preparation of carbon quantum dots/TiO 2 nanotubes composites and their visible light catalytic applications
Zhu et al. Construction and mechanism of a highly efficient and stable Z-scheme Ag 3 PO 4/reduced graphene oxide/Bi 2 MoO 6 visible-light photocatalyst
Di et al. A gC 3 N 4/BiOBr visible-light-driven composite: synthesis via a reactable ionic liquid and improved photocatalytic activity
Chen et al. In2O3/g-C3N4 composite photocatalysts with enhanced visible light driven activity
Wang et al. Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr
Priya et al. Synthesis of BiFeWO6/WO3 nanocomposite and its enhanced photocatalytic activity towards degradation of dye under irradiation of light
Chen et al. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets
Dong et al. Highly-effective photocatalytic properties and interfacial transfer efficiencies of charge carriers for the novel Ag 2 CO 3/AgX heterojunctions achieved by surface modification
Yang et al. Roles of photo-generated holes and oxygen vacancies in enhancing photocatalytic performance over CeO2 prepared by molten salt method
Jiang et al. Ta 3 N 5 nanoparticles/TiO 2 hollow sphere (0D/3D) heterojunction: facile synthesis and enhanced photocatalytic activities of levofloxacin degradation and H 2 evolution
Song et al. Fabrication and mechanism of a novel direct solid-state Z-scheme photocatalyst CdS/BiOI under visible light
Yoon et al. Graphene, charcoal, ZnO, and ZnS/BiOX (X= Cl, Br, and I) hybrid microspheres for photocatalytic simulated real mixed dye treatments
Khasevani et al. Novel MIL-88A/g-C3N4 nanocomposites: Fabrication, characterization and application as a photocatalyst
Zhao et al. In situ co-precipitation for the synthesis of an Ag/AgBr/Bi5O7I heterojunction for enhanced visible-light photocatalysis
Tang et al. Ultrafast NaN3-deflagration induced nitrogen vacancy-enriched g-C3N4 for tailoring band structures and enhanced photocatalytic performance
Perales-Martínez et al. Facile synthesis of InVO4/TiO2 heterojunction photocatalysts with enhanced photocatalytic properties under UV–vis irradiation
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
Smrithi et al. Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation
Yin et al. Greatly enhanced photocatalytic activity of semiconductor CeO 2 by integrating with upconversion nanocrystals and graphene
Luo et al. Fabrication and characterization of Ag 2 CO 3/SnS 2 composites with enhanced visible-light photocatalytic activity for the degradation of organic pollutants
Li et al. Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO 4 under a broad-spectrum irradiation
Liu et al. Synthesis, characterization, and its photocatalytic activity of double-walled carbon nanotubes-TiO2 hybrid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant