CN106086828B - 一种ZnOw晶须表面复合层的制备方法 - Google Patents

一种ZnOw晶须表面复合层的制备方法 Download PDF

Info

Publication number
CN106086828B
CN106086828B CN201610628952.7A CN201610628952A CN106086828B CN 106086828 B CN106086828 B CN 106086828B CN 201610628952 A CN201610628952 A CN 201610628952A CN 106086828 B CN106086828 B CN 106086828B
Authority
CN
China
Prior art keywords
znow
whiskers
concentration
iron
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610628952.7A
Other languages
English (en)
Other versions
CN106086828A (zh
Inventor
赵明
王学良
陈睿
王宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haimen Chuanghao Industrial Design Co ltd
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN201610628952.7A priority Critical patent/CN106086828B/zh
Publication of CN106086828A publication Critical patent/CN106086828A/zh
Application granted granted Critical
Publication of CN106086828B publication Critical patent/CN106086828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种ZnOw晶须表面复合层的制备方法,通过在金属镍纳米颗粒表面沉积MnxMgyZn1‑x‑yFe2O4铁氧体,从而形成核壳结构纳米颗粒;然后在四针ZnOw晶须表面实现金属铁的局域化学沉积的基础上进行核壳结构纳米颗粒的复合共沉积,从而在四针ZnOw晶须表面制备了铁及镍核@MnxMgyZn1‑x‑yFe2O4铁氧体壳结构复合层,其充分发挥了四针ZnOw晶须在用作吸波材料时具有较大介电损耗的特点,并结合了尖晶石型MnxMgyZn1‑x‑yFe2O4铁氧体具有的宽频带和兼容性好的吸波特性以及镍纳米颗粒优良的磁滞和涡流损耗的优点。

Description

一种ZnOw晶须表面复合层的制备方法
技术领域
本发明涉及吸波材料技术领域,特别是一种ZnOw晶须表面复合层的制备方法。
背景技术
随着科学技术的发展,广播电视、通讯及电力产生的电磁福射污染越来越严重;此外,在军事领域,武器装备的隐身技术要求也越来越高,因而,研发一种高性能的吸波材料具有重要意义。四针ZnOw晶须作为一种极性单体具有独特的吸波特性,其具有四角针状结构,在吸波过程中具有较大的介电损耗,且四针ZnOw晶须有压电效应,能将入射电磁波能量转化为电能或其它能量从而达到使电磁波耗散消失的目的。但是,现有技术中制备的四针ZnOw晶须的低频吸波特性能差,不能有效满足低频波段吸波性能。
发明内容
为了克服现有技术的不足,本发明提供了一种ZnOw晶须表面复合层的制备方法,该制备方法包括镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒的制备以及四针ZnOw晶须表面铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层的制备,本发明制备方法使得镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒弥散分布于四针ZnOw晶须表面的金属铁层,充分发挥了四针ZnOw晶须在用作吸波材料时具有较大介电损耗的特点,并集合了尖晶石型MnxMgyZn1-x-yFe2O4铁氧体具有的宽频带和兼容性好的吸波特性以及镍纳米颗粒优良的磁滞和涡流损耗的优点。
本发明解决其技术问题所采用的技术方案是:一种ZnOw晶须表面复合层的制备方法,由以下制备步骤组成:
步骤一:镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒的制备;
步骤二:四针ZnOw晶须表面局域铁的化学沉积;
步骤三:四针ZnOw晶须表面铁与镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒的复合共沉积。
优选的,所述步骤一具体为:
①配制反应液:将浓度为分析纯的乙酸锰、硝酸镁和乙酸亚铁加入去离子水中,形成乙酸锰浓度为50-280g/L、硝酸镁浓度为80-320g/L和乙酸亚铁浓度为35-410g/L的混合液,随后向混合液中依次加入60%的磷酸、分析纯的磷酸氢二钠和高锰酸钾,形成60%的磷酸浓度为60-90mL/L、磷酸氢二钠浓度为15-40g/L和高锰酸钾浓度为60-160g/L的反应液。
②制备镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒:将镍纳米颗粒加入去离子水,使其重量百分比为10%-40%,在室温下以超声波分散1-1.5小时形成稳定的镍纳米颗粒去离子水分散体系;将50-120mL前述配制的反应液与1L镍纳米颗粒去离子水分散体系充分混合,反应1-1.5小时后过滤烘干,所得到的颗粒粉体即为镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒。
优选的,所述步骤二具体为:
①配备化学沉积液:将浓度为分析纯的乙酸亚铁、三乙酰丙酮铁、三水合草酸铁铵和亚硫酸钠加入去离子水中形成乙酸亚铁、三乙酰丙酮铁、三水合草酸铁铵和亚硫酸钠的浓度分别为35-80g/L、90-270g/L、5-30g/L、20-50g/L的化学沉积液。
②四针ZnOw晶须表面局域铁的化学沉积:将四针ZnOw晶须加入去离子水,使其重量的百分比为30-60%,在室温下以超声波分散0.5-1小时形成稳定的四针ZnOw晶须去离子水分散体系A;取该分散体系300-500mL加入500mL所述化学沉积液中并充分混合,反应10-30分钟后即实现四针ZnOw晶须表面金属铁的局域沉积。
优选的,所述步骤三具体为:
①配制沉积基础液:将浓度为分析纯的硝酸铁、乙酸亚铁、乙二胺四乙酸铁铵、硫酸氢钠和硅酸钠加入去离子水中形成硝酸铁、乙酸亚铁、乙二胺四乙酸铁铵、硫酸氢钠和硅酸钠的浓度分别为130-280g/L、90-320g/L、5-20g/L、10-45mL/L和160-310g/L的沉积基础液。
②四针ZnOw晶须表面的复合共沉积:将表面已局域沉积金属的四针ZnOw晶须加入去离子水,使其重量百分比为50%-80%,在室温下以超声波分散10-20分钟形成稳定的四针ZnOw晶须去离子水分散体系B;取该分散体系500mL与500mL沉积基础液充分混合,共沉积0.5-2小时后过过滤烘干,即在四针ZnOw晶须表面形成铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层。
本发明的积极效果:根据本发明方法制备的四针ZnOw晶须表面铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层,一方面充分发挥了四针ZnOw晶须的复介电常数虚部在一定范围内具有较大数值,在用作吸波材料时具有较大介电损耗的特点,另一方面结合了尖晶石型MnxMgyZn1-x-yFe2O4铁氧体具有的宽频带和兼容性好的吸波特性以及镍纳米颗粒优良的磁滞和涡流损耗的优点,因而制备的四针ZnOw晶须表面铁及镍核@MnxMgyZn1-x- yFe2O4铁氧体壳结构复合层是具有优良宽频带和高吸收率的吸波材料。
附图说明
图1是本发明所述复合层制备方法的流程示意图;
图2是本发明所述复合层的结构示意图。
具体实施方式
下面结合附图对本发明的优选实施例进行详细说明。
参照图1至图2,本发明优选实施例提供一种ZnOw晶须表面复合层的制备方法,由以下制备步骤组成:
步骤一:镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒的制备;
步骤二:四针ZnOw晶须表面局域铁的化学沉积;
步骤三:四针ZnOw晶须表面铁与镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒的复合共沉积。
所述步骤一具体为:
①配制反应液:将浓度为分析纯的乙酸锰、硝酸镁和乙酸亚铁加入去离子水中,形成乙酸锰浓度为70g/L、硝酸镁浓度为220g/L和乙酸亚铁浓度为60g/L的混合液,随后向混合液中依次加入60%的磷酸、分析纯的磷酸氢二钠和高锰酸钾,形成60%的磷酸浓度为80mL/L、磷酸氢二钠浓度为40g/L和高锰酸钾浓度为110g/L的反应液。
②制备镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒:将镍纳米颗粒加入去离子水,使其重量百分比为30%,在室温下以超声波分散1小时形成稳定的镍纳米颗粒去离子水分散体系;将80mL前述配制的反应液与1L镍纳米颗粒去离子水分散体系充分混合,反应1.5小时后过滤烘干,所得到的颗粒粉体即为镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒。
所述步骤二具体为:
①配备化学沉积液:将浓度为分析纯的乙酸亚铁、三乙酰丙酮铁、三水合草酸铁铵和亚硫酸钠加入去离子水中形成乙酸亚铁、三乙酰丙酮铁、三水合草酸铁铵和亚硫酸钠的浓度分别为60g/L、130g/L、20g/L、40g/L的化学沉积液。
②四针ZnOw晶须表面局域铁的化学沉积:将四针ZnOw晶须加入去离子水,使其重量的百分比为40%,在室温下以超声波分散1小时形成稳定的四针ZnOw晶须去离子水分散体系A;取该分散体系400mL加入500mL所述化学沉积液中并充分混合,反应20分钟后即实现四针ZnOw晶须表面金属铁的局域沉积。
所述步骤三具体为:
①配制沉积基础液:将浓度为分析纯的硝酸铁、乙酸亚铁、乙二胺四乙酸铁铵、硫酸氢钠和硅酸钠加入去离子水中形成硝酸铁、乙酸亚铁、乙二胺四乙酸铁铵、硫酸氢钠和硅酸钠的浓度分别为150g/L、240g/L、5g/L、25mL/L和170g/L的沉积基础液。
②四针ZnOw晶须表面的复合共沉积:将表面已局域沉积金属的四针ZnOw晶须加入去离子水,使其重量百分比为70%,在室温下以超声波分散15分钟形成稳定的四针ZnOw晶须去离子水分散体系B;取该分散体系500mL与500mL沉积基础液充分混合,共沉积1.5小时后过过滤烘干,即在四针ZnOw晶须表面形成铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层。
将相同质量本实施例制备的ZnOw晶须表面铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层吸波材料与相同质量的普通四针ZnOw晶须加入涂料,加入普通四针ZnOw涂料的吸波带宽实验结果为10-18GHz,而加入本实施例制备的ZnOw晶须表面铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层吸波材料涂料的吸波带宽实验结果为3-18GHz。显然,依据本发明制备的ZnOw晶须表面铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层吸波材料结合了尖晶石型MnxMgyZn1-x-yFe2O4铁氧体具有的宽频带和兼容性好的吸波特性以及镍纳米颗粒优良的磁滞和涡流损耗的优点,具有优良宽频带和高吸收率的吸波性能。
以上所述的仅为本发明的优选实施例,所应理解的是,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,并不用于限定本发明的保护范围,凡在本发明的思想和原则之内所做的任何修改、等同替换等等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种ZnOw晶须表面复合层的制备方法,其特征在于,由以下制备步骤组成:
步骤一:镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒的制备;
步骤二:四针ZnOw晶须表面局域铁的化学沉积;
步骤三:四针ZnOw晶须表面铁与镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒的复合共沉积;
所述步骤一具体为:
①配制反应液:将浓度为分析纯的乙酸锰、硝酸镁和乙酸亚铁加入去离子水中,形成混合液,随后向混合液中依次加入60%的磷酸、分析纯的磷酸氢二钠和高锰酸钾,形成反应液;
②制备镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒:将镍纳米颗粒加入去离子水,使其重量百分比为10%-40%,在室温下以超声波分散1-1.5小时形成稳定的镍纳米颗粒去离子水分散体系;将50-120mL前述配制的反应液与1L镍纳米颗粒去离子水分散体系充分混合,反应1-1.5小时后过滤烘干,所得到的颗粒粉体即为镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构纳米颗粒;
所述步骤二具体为:
①配备化学沉积液:将浓度为分析纯的乙酸亚铁、三乙酰丙酮铁、三水合草酸铁铵和亚硫酸钠加入去离子水中形成化学沉积液;
②四针ZnOw晶须表面局域铁的化学沉积:将四针ZnOw晶须加入去离子水,使其重量的百分比为30-60%,在室温下以超声波分散0.5-1小时形成稳定的四针ZnOw晶须去离子水分散体系A;取该分散体系300-500mL加入500mL所述化学沉积液中并充分混合,反应10-30分钟后即实现四针ZnOw晶须表面金属铁的局域沉积;
所述步骤三具体为:
①配制沉积基础液:将浓度为分析纯的硝酸铁、乙酸亚铁、乙二胺四乙酸铁铵、硫酸氢钠和硅酸钠加入去离子水中形成沉积基础液;
②四针ZnOw晶须表面的复合共沉积:将表面已局域沉积金属的四针ZnOw晶须加入去离子水,使其重量百分比为50%-80%,在室温下以超声波分散10-20分钟形成稳定的四针ZnOw晶须去离子水分散体系B;取该分散体系500mL与500mL沉积基础液充分混合,共沉积0.5-2小时后过滤烘干,即在四针ZnOw晶须表面形成铁及镍核@MnxMgyZn1-x-yFe2O4铁氧体壳结构复合层。
2.根据权利要求1所述的一种ZnOw晶须表面复合层的制备方法,其特征在于:所述混合液中乙酸锰浓度为50-280g/L,硝酸镁浓度为80-320g/L,乙酸亚铁浓度为35-410g/L,所述反应液中60%的磷酸浓度为60-90mL/L,磷酸氢二钠浓度为15-40g/L,高锰酸钾浓度为60-160g/L。
3.根据权利要求1所述的一种ZnOw晶须表面复合层的制备方法,其特征在于:所述化学沉积液中乙酸亚铁、三乙酰丙酮铁、三水合草酸铁铵和亚硫酸钠的浓度分别为35-80g/L、90-270g/L、5-30g/L、20-50g/L。
4.根据权利要求1所述的一种ZnOw晶须表面复合层的制备方法,其特征在于:所述沉积基础液中硝酸铁、乙酸亚铁、乙二胺四乙酸铁铵、硫酸氢钠和硅酸钠的浓度分别为130-280g/L、90-320g/L、5-20g/L、10-45mL/L和160-310g/L。
CN201610628952.7A 2016-08-03 2016-08-03 一种ZnOw晶须表面复合层的制备方法 Active CN106086828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610628952.7A CN106086828B (zh) 2016-08-03 2016-08-03 一种ZnOw晶须表面复合层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610628952.7A CN106086828B (zh) 2016-08-03 2016-08-03 一种ZnOw晶须表面复合层的制备方法

Publications (2)

Publication Number Publication Date
CN106086828A CN106086828A (zh) 2016-11-09
CN106086828B true CN106086828B (zh) 2018-04-13

Family

ID=57453878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610628952.7A Active CN106086828B (zh) 2016-08-03 2016-08-03 一种ZnOw晶须表面复合层的制备方法

Country Status (1)

Country Link
CN (1) CN106086828B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209135A1 (en) * 2000-11-28 2002-05-29 Minebea Co., Ltd. Production process of recycled Mn-Zn ferrite
CN1655296A (zh) * 2003-02-14 2005-08-17 美蓓亚株式会社 由Mn-Zn铁氧体制成的电磁波吸收体
CN101928985A (zh) * 2010-07-23 2010-12-29 北京航空航天大学 一种四角状氧化锌/镍铁氧体材料及其制备方法
CN105274555A (zh) * 2015-11-12 2016-01-27 中国海洋大学 一种NiO@PANI@ZnO三维纳米复合材料及其制备方法
CN105374491A (zh) * 2014-08-18 2016-03-02 南京理工大学 Fe3O4@SiO2@ZnO三元异质核壳纳米微球及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806528B2 (ja) * 1988-05-28 1998-09-30 富士電気化学株式会社 電波吸収体用マグネシウム−亜鉛系フェライト材
JP2001053483A (ja) * 1999-08-04 2001-02-23 Fuji Elelctrochem Co Ltd ニッケル−亜鉛系フェライト電波吸収体
JP2002338339A (ja) * 2001-05-17 2002-11-27 Fdk Corp 酸化物磁性材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209135A1 (en) * 2000-11-28 2002-05-29 Minebea Co., Ltd. Production process of recycled Mn-Zn ferrite
CN1655296A (zh) * 2003-02-14 2005-08-17 美蓓亚株式会社 由Mn-Zn铁氧体制成的电磁波吸收体
CN101928985A (zh) * 2010-07-23 2010-12-29 北京航空航天大学 一种四角状氧化锌/镍铁氧体材料及其制备方法
CN105374491A (zh) * 2014-08-18 2016-03-02 南京理工大学 Fe3O4@SiO2@ZnO三元异质核壳纳米微球及其制备方法
CN105274555A (zh) * 2015-11-12 2016-01-27 中国海洋大学 一种NiO@PANI@ZnO三维纳米复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Nanocrystalline spinel ferrite (MFe2O4, M=Ni,Co,Mn,Mg,Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route";Santi Phumying et al.;《Materials Research Bulletin》;20130228;第48卷;第2060-2065页 *

Also Published As

Publication number Publication date
CN106086828A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
Liu et al. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance
Li et al. Synthesis of u-channelled spherical Fe x (Co y Ni 1− y) 100− x Janus colloidal particles with excellent electromagnetic wave absorption performance
CN103450845B (zh) 一种吸波材料的制备方法
Hekmatara et al. Synthesis and microwave absorption characterization of SiO 2 coated Fe 3 O 4–MWCNT composites
Shu et al. Size-morphology control, surface reaction mechanism and excellent electromagnetic wave absorption characteristics of Fe3O4 hollow spheres
CN100355939C (zh) 镍或镍合金粉末表面包覆蜂窝状金属钴或钴合金的方法
CN103342982A (zh) 一种空心球形四氧化三铁/石墨烯复合吸波材料及其制备方法
Han et al. Complex permeability and microwave absorbing properties of planar anisotropy carbonyl-iron/Ni0. 5Zn0. 5Fe2O4 composite in quasimicrowave band
JP2014029024A (ja) シリカシェルを有する鉄コバルト三成分合金ナノ粒子
CN107418513A (zh) 一种石墨烯泡沫负载纳米Fe3O4磁性粒子复合吸波材料及其制备方法
Liao et al. Fabrication of one-dimensional CoFe 2/C@ MoS 2 composites as efficient electromagnetic wave absorption materials
CN101941076A (zh) 用于电磁波吸收材料的多层空心金属微球的制备方法
Wang et al. State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective
CN103390479B (zh) 一种高电磁屏蔽效能的无机复合微粉及其制备方法
CN102568733A (zh) 一种薄膜复合宽频抗电磁干扰磁粉及制备方法
Zheng et al. Bimetallic nanocubes embedded in biomass-derived porous carbon to construct magnetic/carbon dual-mechanism layered structures for efficient microwave absorption
Hu et al. Manganese phosphate coated flaky FeSiAl powders with enhanced microwave absorbing properties and improved corrosion resistance
Wu et al. Porous Fe hollow structures with optimized impedance matching as highly efficient, ultrathin, and lightweight electromagnetic wave absorbers
Zeng et al. Enhanced dielectric loss and magnetic loss properties of copper oxide-nanowire-covered carbon fiber composites by porous nickel film
CN106086828B (zh) 一种ZnOw晶须表面复合层的制备方法
He et al. Magnetic needles enable tunable microwave absorption from S to Ku band via collective orientation
Ruixiang et al. Adjustable electromagnetic response of ultralight 3D Ti3C2Tx composite via control of crystal defects
CN103602310A (zh) 一种用于无线射频识别的铁氧体复合吸波材料
CN106350004B (zh) 一种三明治结构型中空复合吸波材料及其制备方法
CN105670558A (zh) 一种RGO/CoFe2O4/Y3Fe5O12复合粉体及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191118

Address after: 313000 1-B, building 1, No. 656, Qixing Road, high tech Zone, Wuxing District, Huzhou City, Zhejiang Province

Patentee after: Huzhou Qiqi Electromechanical Technology Co.,Ltd.

Address before: 100000 Beijing Haidian District Huayuan Road No. 2 peony building 4 floor 1424 room

Patentee before: Beijing Zhonglian Technology Service Co.,Ltd.

Effective date of registration: 20191118

Address after: 100000 Beijing Haidian District Huayuan Road No. 2 peony building 4 floor 1424 room

Patentee after: Beijing Zhonglian Technology Service Co.,Ltd.

Address before: 100144 Beijing City, Shijingshan District Jin Yuan Zhuang Road No. 5

Patentee before: NORTH CHINA University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210425

Address after: Haimen City Jiangsu city of Nantong province is more than 226100 Zhenan Bridge Village nine Group No. 101

Patentee after: Haimen Chuanghao Industrial Design Co.,Ltd.

Address before: 313000 1-B, building 1, No. 656, Qixing Road, high tech Zone, Wuxing District, Huzhou City, Zhejiang Province

Patentee before: Huzhou Qiqi Electromechanical Technology Co.,Ltd.