CN106081171A - 空间在轨故障解除操作地面模拟实验*** - Google Patents

空间在轨故障解除操作地面模拟实验*** Download PDF

Info

Publication number
CN106081171A
CN106081171A CN201610397008.5A CN201610397008A CN106081171A CN 106081171 A CN106081171 A CN 106081171A CN 201610397008 A CN201610397008 A CN 201610397008A CN 106081171 A CN106081171 A CN 106081171A
Authority
CN
China
Prior art keywords
spacecraft
subsystem
simulation
orbit
simulated target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610397008.5A
Other languages
English (en)
Other versions
CN106081171B (zh
Inventor
范才智
李东旭
李思侃
刘望
孟云鹤
郝瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201610397008.5A priority Critical patent/CN106081171B/zh
Publication of CN106081171A publication Critical patent/CN106081171A/zh
Application granted granted Critical
Publication of CN106081171B publication Critical patent/CN106081171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种空间在轨故障解除操作地面模拟实验***,包括模拟服务航天器,模拟目标航天器,微重力模拟气浮平台和模拟地面控制站;模拟服务航天器和模拟目标航天器运行在微重力模拟气浮平台上,模拟服务航天器和模拟目标航天器通过无线通信与模拟地面控制进行通信;模拟服务航天器用于模拟具有在轨操作和服务能力的航天器,模拟目标航天器用于模拟具有在轨故障的航天器。本发明能够模拟在轨逼近和在轨抓捕,以及具有自动和人在回路等多种控制模式。

Description

空间在轨故障解除操作地面模拟实验***
技术领域
本发明涉及航天器动力学与控制领域,具体说涉及一种航天器在轨故障解除地面模拟实验***。
背景技术
空间在轨故障解除是在轨服务的重要内容之一,但是直接开展在轨实验需要耗费大量人力物力,而且存在较高风险,因为需要充分开展空间在轨故障解除地面模拟实验。
空间在轨操作地面模拟***根据微重力模拟方式可以分为基于自由落体运动的微重力模拟***、基于抛物线飞行的微重力模拟***、水浮实验***、吊丝配重实验***和平面气浮式实验***几种。
其中基于自由落体运动的微重力模拟***和基于抛物线飞行的微重力模拟***的实验时间短、实验产品外形尺寸受模拟***的限制;
水浮实验***中空间机器人原型样机不能直接在水浮***上进行测试,必须进行专门的设计以避免受到水下环境的影响,以及水的阻力以及惯量会改变空间机器人的动力学特性;
吊丝配重实验***的重力补偿精度不够高,难以辨识悬吊***的动摩擦力并在其控制***中准确补偿,以及由于空间机器人和悬吊***之间存在耦合振动,可能使得整个***不稳定。
而平面气浮式实验***的实验时间不受限制,可靠性及鲁棒性高,以及对实验件的结构没有太多限制,是目前使用最广泛的空间操作地面模拟方式。但是公开报道的平面气浮式实验***中,有的只对机械臂本身进行重力抵消,有的仅有服务航天器而没有目标航天器,控制方式也相对比较单一,不具备模拟在轨逼近和在轨抓捕多种功能,不能较真实地模拟在轨故障,以及没有自动和人在回路等多种控制模式。
发明内容
针对已有实验***功能简单和控制方式单一的不足,本发明提出了一种空间在轨故障解除操作地面模拟实验***,能够模拟在轨逼近和在轨抓捕,以及具有自动和人在回路等多种控制模式。
本发明的技术方案是:
一种空间在轨故障解除操作地面模拟实验***,包括模拟服务航天器,模拟目标航天器,微重力模拟气浮平台和模拟地面控制站;模拟服务航天器和模拟目标航天器运行在微重力模拟气浮平台上,模拟服务航天器和模拟目标航天器通过无线通信与模拟地面控制进行通信;
模拟服务航天器用于模拟具有在轨操作和服务能力的航天器,其通过测量模拟目标航天器之间的相对位姿,实现模拟服务航天器向模拟目标航天器的自主逼近和交会对接,并以自主或遥控操作的方式对模拟目标航天器实施在轨故障解除操作;
模拟目标航天器用于模拟具有在轨故障的航天器,通过对模拟目标航天器运动的控制而模拟不同故障航天器的运动方式,且模拟目标航天器上带有用于模拟太阳翼故障的太阳翼故障模拟单元,提供模拟太阳翼故障给模拟服务航天器实施在轨故障解除操作。
进一步地,本发明中的模拟服务航天器包括结构和机构子***Ⅰ、推进子***Ⅰ、姿轨控制子***Ⅰ、通信子***Ⅰ、操作机构子***和电源子***Ⅰ;
结构和机构子***Ⅰ包括模拟服务航天器的舱体、气浮装置和对接装置,舱体用于承载模拟服务航天器上的各设备及***,气浮装置通过气足喷气让模拟服务航天器漂浮在微重力模拟气浮平台上,对接装置采用电磁和机械相结合方式实现交会对接,在舱体的对接面上分别安装用于与模拟目标航天器对接的对接杆和电磁铁;
推进子***Ⅰ包括飞轮和喷气推进装置,飞轮和喷气推进装置配合使用完成模拟服务航天器的位置和姿态的控制,从而实现模拟在轨逼近和交会;
姿轨控制子***Ⅰ包括相对位姿测量单元和中央处理单元,相对位姿测量单元利用相机检测模拟目标航天器上的靶标,然后通过位姿解算算法得到模拟服务航天器和模拟目标航天器之间的相对位姿,并把解算结果输送给中央处理单元;中央处理单元负责传感器的信息采集、分析和控制指令生成;
通信子***Ⅰ采用无线路由方式模拟天地通信,实现模拟服务航天器和模拟地面控制站之间的信息交互;
操作机构子***包括机械手爪和机械臂,机械臂和机械手爪共同配合完成空间故障解除操作任务;
电源子***Ⅰ包括多功能结构电池、电源变换器和逆变器,所述多功能结构电池为是模拟服务星舱体的一个内嵌有锂电池的舱板,多功能结构电池提供28V电源,电源变换器将多功能结构电池提供的28V电源变换为24V、12V和5V的电压,给模拟服务星的各用电设备提供电源;逆变器是将多功能结构电池提供的28V电源转换为220V交流电给机械臂提供电源。
进一步地,本发明中的机械手爪采用12V直流供电,用于完成模拟在轨操作任务;机械臂采用220V交流供电,用于控制机械手爪的操作位置和姿态。
进一步地,本发明中的模拟服务航天器舱体内设置有储气装置,储气装置为多个相连通的用于储存空气的储气罐,储气装置连接有两条带有减压阀和截止阀的管路,其中一条管路通过气足将储气装置内的压缩空气喷出进而将模拟服务航天器悬浮在微重力模拟气浮平台,模拟微重力环境;所述储气装置上连接的另一条管路用于连接喷管且储气装置与喷管之间的管路上连接有电磁阀,储气装置中的气体通过电磁阀从喷管喷出产生推力从而控制模拟服务航天器的水平运动,所述电磁阀的卡开和关闭由电磁阀控制器控制,喷管和飞轮协作完成模拟服务航天器的运动控制。
进一步地,本发明中的模拟目标航天器包括结构和机构子***Ⅱ、推进子***Ⅱ、姿轨控制子***Ⅱ、通信子***Ⅱ、故障模拟子***和电源子***Ⅱ;
结构和机构子***Ⅱ包括模拟目标航天器的舱体、气浮装置和对接装置,舱体用于承载模拟目标航天器的各种设备,气浮装置通过气足喷气让模拟目标航天器漂浮在微重力模拟气浮平台上,对接装置采用电磁和机械相结合方式实现模拟目标航天器和模拟服务航天器的交会对接,在模拟目标航天器的舱体对接面上分别安装对接锥和吸块;模拟服务航天器与模拟目标航天器交会对接过程中,模拟服务航天器上的对接杆***模拟目标航天器的对接锥中,然后模拟服务航天器上的电磁单元产生吸力和模拟目标航天器上的吸块吸合锁紧;
推进子***Ⅱ包括了飞轮和喷气推进装置,飞轮和喷气推进装置配合使用完成模拟目标航天器的位置和姿态的控制,从而实现模拟在轨故障航天器的运动;
姿轨控制子***Ⅱ包括相对位姿测量标志和中央处理单元,相对位姿测量标志给模拟服务航天器提供检测标志,从而使模拟服务航天器能够解算相对位姿;中央处理单元负责传感器的信息采集、分析和控制指令生成;
通信子***Ⅱ采用无线路由方式模拟天地通信,实现模拟目标航天器和模拟地面控制站之间的信息交互;
所述故障模拟子***包括包括模拟太阳翼、故障模拟检测单元、模拟太阳翼驱动装置;模拟太阳翼能够模拟意外锁住未展开的太阳翼故障并能够在故障解除后在模拟太阳翼驱动装置的驱动下展开;所述故障模拟检测单元检测模拟太阳翼的故障是否解除;
电源子***Ⅱ包括多功能结构电池和电源变换器,多功能结构电池为是模拟目标服务器舱体上的一个内嵌有锂电池的舱板,多功能结构电池提供28V电源,电源变换器将多功能结构电池提供的28V电源变换为24V、12V和5V的电压,给模拟服务星的各用电设备提供电源。
进一步地,本发明中的相对位姿测量标志是采用正交构型的四个LED灯做成标志架,给模拟服务航天器提供检测标志。
进一步地,本发明中的模拟目标航天器的舱体内设置有储气装置,储气装置为多个相连通的用于储存空气的储气罐,储气装置连接有两条带有减压阀和截止阀的管路,其中一条管路通过气足将储气装置内的压缩空气喷出进而将模拟目标航天器悬浮在微重力模拟气浮平台,模拟微重力环境;所述储气装置上连接的另一条管路用于连接喷管且储气装置与喷管之间的管路上连接有电磁阀,储气装置中的气体通过电磁阀从喷管喷出产生推力从而控制模拟目标航天器的水平运动,所述电磁阀的卡开和关闭由电磁阀控制器控制,喷管和飞轮协作完成模拟目标航天器的运动控制。
进一步地,本发明中的模拟地面控制站用于模拟地面监控设备,监视模拟服务航天器和模拟目标航天器的工作状态,并且可以实时发送对模拟服务航天器和模拟目标航天器的控制指令。
进一步地,本发明中的模拟地面控制站包括通信子***、监视子***和控制子***,通信子***采用无线路由器方式模拟天地通信,实现与模拟服务航天器和模拟目标航天器之间的实时通信;
监视子***是将所需要显示的参数在显示单元中进行显示;
控制子***包括人机交互单元和中央处理单元,人机交互单元可以实时引入人的操作,提供人在回路操作方式,中央处理单元负责***的信息采集、分析处理和生产控制指令。
本发明的有益效果是:
1、在模拟服务航天器上:其在微重力模拟卫星平台基础上集成了操作机构子***,在一个平面上模拟了在轨卫星本体和机械臂之间的耦合运动,可用于验证微重力环境下在轨服务技术;
2、在模拟目标服务器上:在微重力模拟卫星平台基础上集成了故障模拟子***,可用于验证微重力环境下被服务航天器的接受在轨服务的能力;
3、首次在微重力模拟卫星平台上设计并使用了多功能结构技术,采用多功能结构电池独立供电,克服了传统的外接供电电缆对模拟服务星运动的干扰,更加真实的模拟了在轨环境下服务航天器以及目标航天器的动力学特性。
本发明提供一种空间在轨抓捕操作地面模拟试验***,能够模拟在轨逼近和在轨抓捕,以及具有自动和人在回路等多种控制模式。
附图说明
图1是本发明的结构示意图。
图2是模拟服务航天器的***组成示意图。
图3是模拟目标航天器的***组成示意图。
图4是模拟地面控制站的***组成示意图。
具体实施方式
下面结合附图对本发明进行详细说明。
如图1所示,本发明提供一种空间在轨故障解除操作地面模拟实验***,包括模拟服务航天器,模拟目标航天器,微重力模拟气浮平台和模拟地面控制站,其中模拟服务航天器和模拟目标航天器运行在微重力模拟气浮平台上,二者通过无线通信与模拟地面控制进行通信;
模拟服务航天器用于模拟具有在轨操作和服务能力的航天器,它通过测量模拟目标航天器之间的相对位姿,实现自主逼近和交会对接,并以自主或遥操作方式控制机械臂实施在轨故障解除。
如图2所示,模拟服务航天器包括结构和机构子***、推进子***、姿轨控制子***、通信子***、操作机构子***和电源子***。结构和机构子***包括模拟服务航天的舱体、气浮装置和对接装置,舱体用于设备承载,气浮装置通过气足喷气让模拟服务航天器漂浮在气浮平台上,对接装置采用电磁和机械相结合方式实现交会对接,在舱体对接面上分别安装对接杆和电磁铁;推进子***包括了飞轮和喷气推进装置,飞轮和喷气推进装置配合使用完成模拟服务航天器的位置和姿态的控制,从而实现模拟在轨逼近和交会等功能;姿轨控制子***包括相对位姿测量单元和中央处理单元,相对位姿测量单元利用相机检测目标航天器上的靶标,然后通过位姿解算算法得到服务航天器和目标航天器之间的相对位姿,并把解算结果输送给中央处理单元;中央处理单元负责传感器的信息采集、分析和控制指令生成;通信子***采用无线路由方式模拟天地通信,实现和模拟地面控制站之间的信息交互。操作机构子***包括机械手爪和机械臂,其中机械手爪采用直流12V供电,用于精细任务操作,机械臂采用220V交流供电,用于控制机械手爪的操作位置和姿态,机械臂和机械手爪共同配合完成空间故障解除操作任务;电源子***包括了多功能结构电池、电源变换器和逆变器,多功能结构电池是模拟服务航天器舱体的一部分,而且内嵌锂电池可以提供28V电源(根据电量不同电压在26V至30V之间变化),电源变换器是利用锂电池28V变换为24V、12V和5V的电压,给不同类型设备提供电源,逆变器是利用锂电池28V转换为220V给机械臂提供电源,避免机械臂外接市电电缆影响实验效果。
模拟目标航天器用于模拟具有在轨故障的航天器,它通过控制航天器的运动可以模拟不同故障航天器运动方式,并且带有太阳翼故障模拟单元,用于模拟太阳翼故障,提供给模拟服务航天器操作对象。
如图3所示,模拟服务航天器包括结构和机构子***、推进子***、姿轨控制子***、通信子***、故障模拟子***和电源子***。结构和机构子***包括模拟服务航天的舱体、气浮装置和对接装置,舱体用于设备承载,气浮装置通过气足喷气让模拟服务航天器漂浮在气浮平台上,对接装置采用电磁和机械相结合方式实现交会对接,在舱体对接面上分别安装对接锥和吸块;推进子***包括了飞轮和喷气推进装置,飞轮和喷气推进装置配合使用完成模拟目标航天器的位置和姿态的控制,从而实现模拟故障航天器的运动;姿轨控制子***包括相对位姿测量标志和中央处理单元,相对位姿测量标志是采用正交构型的四个LED灯做成标志架,给模拟服务航天器提供检测标志,从而解算相对位姿;中央处理单元负责传感器的信息采集、分析和控制指令生成;通信子***采用无线路由方式模拟天地通信,实现和模拟地面控制站之间的信息交互。故障模拟子***采用意外锁住未展开太阳翼来模拟太阳翼故障,机械手爪对其解锁后太阳翼可以正常展开。电源子***包括了多功能结构电池和电源变换器,多功能结构电池是模拟服务航天器舱体的一部分,而且内嵌锂电池可以提供28V电源(根据电量不同电压在26V至30V之间变化),电源变换器是利用锂电池28V变换为24V、12V和5V的电压,给不同类型设备提供电源。
模拟地面控制站用于模拟地面监控设备,可以监视模拟服务航天器和模拟目标航天器的工作状态,并且可以实时发送控制指令,包括通信子***、监视子***和控制子***,通信子***采用无线路由器方式模拟天地通信,实现与模拟服务航天器和模拟目标航天器之间的实时通信,监视子***是将所需要显示的参数在显示单元中进行显示,控制子***包括人机交互单元和中央处理单元,人机交互单元可以实时引入人的操作,提供人在回路操作方式,中央处理单元负责***的信息采集、分析处理和生产控制指令。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种空间在轨故障解除操作地面模拟实验***,其特征在于,包括模拟服务航天器,模拟目标航天器,微重力模拟气浮平台和模拟地面控制站;模拟服务航天器和模拟目标航天器运行在微重力模拟气浮平台上,模拟服务航天器和模拟目标航天器通过无线通信与模拟地面控制进行通信;
模拟服务航天器用于模拟具有在轨操作和服务能力的航天器,其通过测量模拟目标航天器之间的相对位姿,实现模拟服务航天器向模拟目标航天器的自主逼近和交会对接,并以自主或遥控操作的方式对模拟目标航天器实施在轨故障解除操作;
模拟目标航天器用于模拟具有在轨故障的航天器,通过对模拟目标航天器运动的控制而模拟不同故障航天器的运动方式,且模拟目标航天器上带有用于模拟太阳翼故障的太阳翼故障模拟单元,提供模拟太阳翼故障给模拟服务航天器实施在轨故障解除操作。
2.根据权利要求1所述的空间在轨故障解除操作地面模拟实验***,其特征在于,模拟服务航天器包括结构和机构子***Ⅰ、推进子***Ⅰ、姿轨控制子***Ⅰ、通信子***Ⅰ、操作机构子***和电源子***Ⅰ;
结构和机构子***Ⅰ包括模拟服务航天器的舱体、气浮装置和对接装置,舱体用于承载模拟服务航天器上的各设备及***,气浮装置通过气足喷气让模拟服务航天器漂浮在微重力模拟气浮平台上,对接装置采用电磁和机械相结合方式实现交会对接,在舱体的对接面上分别安装用于与模拟目标航天器对接的对接杆和电磁铁;
推进子***Ⅰ包括飞轮和喷气推进装置,飞轮和喷气推进装置配合使用完成模拟服务航天器的位置和姿态的控制,从而实现模拟在轨逼近和交会;
姿轨控制子***Ⅰ包括相对位姿测量单元和中央处理单元,相对位姿测量单元利用相机检测模拟目标航天器上的靶标,然后通过位姿解算算法得到模拟服务航天器和模拟目标航天器之间的相对位姿,并把解算结果输送给中央处理单元;中央处理单元负责传感器的信息采集、分析和控制指令生成;
通信子***Ⅰ采用无线路由方式模拟天地通信,实现模拟服务航天器和模拟地面控制站之间的信息交互;
操作机构子***包括机械手爪和机械臂,机械臂和机械手爪共同配合完成空间故障解除操作任务;
电源子***Ⅰ包括多功能结构电池、电源变换器和逆变器,所述多功能结构电池为是模拟服务星舱体的一个内嵌有锂电池的舱板,多功能结构电池提供28V电源,电源变换器将多功能结构电池提供的28V电源变换为24V、12V和5V的电压,给模拟服务星的各用电设备提供电源;逆变器是将多功能结构电池提供的28V电源转换为220V交流电给机械臂提供电源。
3.根据权利要求2所述的空间在轨故障解除操作地面模拟实验***,其特征在于,机械手爪采用12V直流供电,用于完成模拟在轨操作任务;机械臂采用220V交流供电,用于控制机械手爪的操作位置和姿态。
4.根据权利要求2所述的空间在轨故障解除操作地面模拟实验***,其特征在于,模拟服务航天器舱体内设置有储气装置,储气装置为多个相连通的用于储存空气的储气罐,储气装置连接有两条带有减压阀和截止阀的管路,其中一条管路通过气足将储气装置内的压缩空气喷出进而将模拟服务航天器悬浮在微重力模拟气浮平台,模拟微重力环境;所述储气装置上连接的另一条管路用于连接喷管且储气装置与喷管之间的管路上连接有电磁阀,储气装置中的气体通过电磁阀从喷管喷出产生推力从而控制模拟服务航天器的水平运动,所述电磁阀的卡开和关闭由电磁阀控制器控制,喷管和飞轮协作完成模拟服务航天器的运动控制。
5.根据权利要求2所述的空间在轨故障解除操作地面模拟实验***,其特征在于,模拟目标航天器包括结构和机构子***Ⅱ、推进子***Ⅱ、姿轨控制子***Ⅱ、通信子***Ⅱ、故障模拟子***和电源子***Ⅱ;
结构和机构子***Ⅱ包括模拟目标航天器的舱体、气浮装置和对接装置,舱体用于承载模拟目标航天器的各种设备,气浮装置通过气足喷气让模拟目标航天器漂浮在微重力模拟气浮平台上,对接装置采用电磁和机械相结合方式实现模拟目标航天器和模拟服务航天器的交会对接,在模拟目标航天器的舱体对接面上分别安装对接锥和吸块;模拟服务航天器与模拟目标航天器交会对接过程中,模拟服务航天器上的对接杆***模拟目标航天器的对接锥中,然后模拟服务航天器上的电磁单元产生吸力和模拟目标航天器上的吸块吸合锁紧;
推进子***Ⅱ包括了飞轮和喷气推进装置,飞轮和喷气推进装置配合使用完成模拟目标航天器的位置和姿态的控制,从而实现模拟在轨故障航天器的运动;
姿轨控制子***Ⅱ包括相对位姿测量标志和中央处理单元,相对位姿测量标志给模拟服务航天器提供检测标志,从而使模拟服务航天器能够解算相对位姿;中央处理单元负责传感器的信息采集、分析和控制指令生成;
通信子***Ⅱ采用无线路由方式模拟天地通信,实现模拟目标航天器和模拟地面控制站之间的信息交互;
所述故障模拟子***包括包括模拟太阳翼、故障模拟检测单元、模拟太阳翼驱动装置;模拟太阳翼能够模拟意外锁住未展开的太阳翼故障并能够在故障解除后在模拟太阳翼驱动装置的驱动下展开;所述故障模拟检测单元检测模拟太阳翼的故障是否解除;
电源子***Ⅱ包括多功能结构电池和电源变换器,多功能结构电池为是模拟目标服务器舱体上的一个内嵌有锂电池的舱板,多功能结构电池提供28V电源,电源变换器将多功能结构电池提供的28V电源变换为24V、12V和5V的电压,给模拟服务星的各用电设备提供电源。
6.根据权利要求5所述的空间在轨故障解除操作地面模拟实验***,其特征在于,相对位姿测量标志是采用正交构型的四个LED灯做成标志架,给模拟服务航天器提供检测标志。
7.根据权利要求5所述的空间在轨故障解除操作地面模拟实验***,其特征在于,模拟目标航天器的舱体内设置有储气装置,储气装置为多个相连通的用于储存空气的储气罐,储气装置连接有两条带有减压阀和截止阀的管路,其中一条管路通过气足将储气装置内的压缩空气喷出进而将模拟目标航天器悬浮在微重力模拟气浮平台,模拟微重力环境;所述储气装置上连接的另一条管路用于连接喷管且储气装置与喷管之间的管路上连接有电磁阀,储气装置中的气体通过电磁阀从喷管喷出产生推力从而控制模拟目标航天器的水平运动,所述电磁阀的卡开和关闭由电磁阀控制器控制,喷管和飞轮协作完成模拟目标航天器的运动控制。
8.根据权利要求1所述的空间在轨故障解除操作地面模拟实验***,其特征在于,模拟地面控制站用于模拟地面监控设备,监视模拟服务航天器和模拟目标航天器的工作状态,并且可以实时发送对模拟服务航天器和模拟目标航天器的控制指令。
9.根据权利要求8所述的空间在轨故障解除操作地面模拟实验***,其特征在于,模拟地面控制站包括通信子***、监视子***和控制子***,通信子***采用无线路由器方式模拟天地通信,实现与模拟服务航天器和模拟目标航天器之间的实时通信;
监视子***是将所需要显示的参数在显示单元中进行显示;
控制子***包括人机交互单元和中央处理单元,人机交互单元可以实时引入人的操作,提供人在回路操作方式,中央处理单元负责***的信息采集、分析处理和生产控制指令。
CN201610397008.5A 2016-06-07 2016-06-07 空间在轨故障解除操作地面模拟实验*** Active CN106081171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610397008.5A CN106081171B (zh) 2016-06-07 2016-06-07 空间在轨故障解除操作地面模拟实验***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610397008.5A CN106081171B (zh) 2016-06-07 2016-06-07 空间在轨故障解除操作地面模拟实验***

Publications (2)

Publication Number Publication Date
CN106081171A true CN106081171A (zh) 2016-11-09
CN106081171B CN106081171B (zh) 2018-04-17

Family

ID=57448491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610397008.5A Active CN106081171B (zh) 2016-06-07 2016-06-07 空间在轨故障解除操作地面模拟实验***

Country Status (1)

Country Link
CN (1) CN106081171B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106886665A (zh) * 2017-04-06 2017-06-23 中国人民解放军国防科学技术大学 新概念航天多功能结构地面模拟演示验证***
CN107244432A (zh) * 2017-06-07 2017-10-13 北京航空航天大学 自由基座空间合作任务运动再现实验***
CN108082540A (zh) * 2017-12-14 2018-05-29 哈尔滨工业大学 一种结合刀式凸轮恒力弹簧和气浮止推轴承的三维零重力模拟装置
CN108263645A (zh) * 2018-03-15 2018-07-10 哈尔滨工业大学 针对空间自旋目标抓捕及消旋的地面物理仿真试验***
CN109367828A (zh) * 2018-11-29 2019-02-22 北京精密机电控制设备研究所 一种空间机器人臂载抛射的地面物理验证***及应用方法
CN109515765A (zh) * 2018-12-30 2019-03-26 中国科学院沈阳自动化研究所 一种空间电磁对接装置
CN109625347A (zh) * 2018-11-29 2019-04-16 宁波天擎航天科技有限公司 一种航天推进***的地面试验***
CN109740186A (zh) * 2018-12-10 2019-05-10 北京空间飞行器总体设计部 一种针对航天器大型附件在轨未展开的故障处置方法
CN109733649A (zh) * 2018-12-11 2019-05-10 上海航天控制技术研究所 空间组合体航天器的非完全连接约束状态地面模拟方法
CN109760860A (zh) * 2018-12-11 2019-05-17 上海航天控制技术研究所 一种双臂协同抓捕非合作旋转目标的地面试验***
CN110053786A (zh) * 2019-03-22 2019-07-26 上海卫星工程研究所 太阳观测卫星地面试验装置及其***
CN110356595A (zh) * 2019-06-11 2019-10-22 北京空间飞行器总体设计部 一种用于航天器轨道动态测试的干扰场景模拟***
CN110480657A (zh) * 2019-08-13 2019-11-22 北京控制工程研究所 一种复杂结构环境空间机器人天地遥操作***
CN110510157A (zh) * 2019-08-21 2019-11-29 中国科学院力学研究所 一种低轨道地磁蓄能地面实验***及方法
CN110542440A (zh) * 2019-10-16 2019-12-06 哈尔滨工业大学 一种惯性器件残余力矩测量装置及方法
CN110697092A (zh) * 2019-11-22 2020-01-17 北京理工大学 一种磁气悬浮吊挂装置
CN111252270A (zh) * 2020-02-20 2020-06-09 哈尔滨工业大学 气浮机器人位姿控制装置及方法
CN111252271A (zh) * 2020-02-20 2020-06-09 哈尔滨工业大学 一种可长时工作的气浮机器人装置及方法
CN111284733A (zh) * 2019-12-30 2020-06-16 南京理工大学 一种地面模拟航天器的气浮装置
CN112815847A (zh) * 2021-01-29 2021-05-18 中国科学院沈阳自动化研究所 一种微重力环境模拟驱动机构
CN113848751A (zh) * 2021-09-22 2021-12-28 中山大学 一种无拖曳航天器的地面模拟***
CN114603603A (zh) * 2022-03-03 2022-06-10 深圳技术大学 空间机械臂在轨操作的地面模拟装置及模拟方法
LU503146B1 (en) * 2022-12-07 2024-06-07 Univ Luxembourg Pneumatic floating systems for performing zero-gravity experiments

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003258A2 (en) * 2010-06-30 2012-01-05 Conax Florida Corporation Interface assembly for space vehicles
CN102636998A (zh) * 2011-12-20 2012-08-15 北京卫星环境工程研究所 一套用于空间环境模拟器抽气的自动控制方法及自动控制***
CN102735264A (zh) * 2012-06-18 2012-10-17 北京控制工程研究所 一种星敏感器故障模拟***
JP2014053757A (ja) * 2012-09-07 2014-03-20 Aero Asahi Corp 災害時の情報伝達システム
US20140222255A1 (en) * 2013-02-01 2014-08-07 Electronics And Telecommunications Research Institute Apparatus and method for monitoring status of satellite
CN105588581A (zh) * 2015-12-16 2016-05-18 南京航空航天大学 一种在轨服务相对导航实验平台及工作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003258A2 (en) * 2010-06-30 2012-01-05 Conax Florida Corporation Interface assembly for space vehicles
CN102636998A (zh) * 2011-12-20 2012-08-15 北京卫星环境工程研究所 一套用于空间环境模拟器抽气的自动控制方法及自动控制***
CN102735264A (zh) * 2012-06-18 2012-10-17 北京控制工程研究所 一种星敏感器故障模拟***
JP2014053757A (ja) * 2012-09-07 2014-03-20 Aero Asahi Corp 災害時の情報伝達システム
US20140222255A1 (en) * 2013-02-01 2014-08-07 Electronics And Telecommunications Research Institute Apparatus and method for monitoring status of satellite
CN105588581A (zh) * 2015-12-16 2016-05-18 南京航空航天大学 一种在轨服务相对导航实验平台及工作方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106886665A (zh) * 2017-04-06 2017-06-23 中国人民解放军国防科学技术大学 新概念航天多功能结构地面模拟演示验证***
CN106886665B (zh) * 2017-04-06 2018-01-19 中国人民解放军国防科学技术大学 航天多功能结构地面模拟演示验证***
CN107244432A (zh) * 2017-06-07 2017-10-13 北京航空航天大学 自由基座空间合作任务运动再现实验***
CN107244432B (zh) * 2017-06-07 2019-05-07 北京航空航天大学 自由基座空间合作任务运动再现实验***
CN108082540A (zh) * 2017-12-14 2018-05-29 哈尔滨工业大学 一种结合刀式凸轮恒力弹簧和气浮止推轴承的三维零重力模拟装置
CN108082540B (zh) * 2017-12-14 2020-08-07 哈尔滨工业大学 一种结合刀式凸轮恒力弹簧和气浮止推轴承的三维零重力模拟装置
CN108263645A (zh) * 2018-03-15 2018-07-10 哈尔滨工业大学 针对空间自旋目标抓捕及消旋的地面物理仿真试验***
CN108263645B (zh) * 2018-03-15 2020-11-10 哈尔滨工业大学 针对空间自旋目标抓捕及消旋的地面物理仿真试验***
CN109367828A (zh) * 2018-11-29 2019-02-22 北京精密机电控制设备研究所 一种空间机器人臂载抛射的地面物理验证***及应用方法
CN109625347A (zh) * 2018-11-29 2019-04-16 宁波天擎航天科技有限公司 一种航天推进***的地面试验***
CN109740186A (zh) * 2018-12-10 2019-05-10 北京空间飞行器总体设计部 一种针对航天器大型附件在轨未展开的故障处置方法
CN109733649A (zh) * 2018-12-11 2019-05-10 上海航天控制技术研究所 空间组合体航天器的非完全连接约束状态地面模拟方法
CN109760860A (zh) * 2018-12-11 2019-05-17 上海航天控制技术研究所 一种双臂协同抓捕非合作旋转目标的地面试验***
CN109760860B (zh) * 2018-12-11 2022-04-05 上海航天控制技术研究所 一种双臂协同抓捕非合作旋转目标的地面试验***
CN109733649B (zh) * 2018-12-11 2022-02-22 上海航天控制技术研究所 空间组合体航天器的非完全连接约束状态地面模拟方法
CN109515765A (zh) * 2018-12-30 2019-03-26 中国科学院沈阳自动化研究所 一种空间电磁对接装置
CN110053786A (zh) * 2019-03-22 2019-07-26 上海卫星工程研究所 太阳观测卫星地面试验装置及其***
CN110356595A (zh) * 2019-06-11 2019-10-22 北京空间飞行器总体设计部 一种用于航天器轨道动态测试的干扰场景模拟***
CN110356595B (zh) * 2019-06-11 2020-12-11 北京空间飞行器总体设计部 一种用于航天器轨道动态测试的干扰场景模拟***
CN110480657A (zh) * 2019-08-13 2019-11-22 北京控制工程研究所 一种复杂结构环境空间机器人天地遥操作***
CN110510157A (zh) * 2019-08-21 2019-11-29 中国科学院力学研究所 一种低轨道地磁蓄能地面实验***及方法
CN110542440A (zh) * 2019-10-16 2019-12-06 哈尔滨工业大学 一种惯性器件残余力矩测量装置及方法
CN110542440B (zh) * 2019-10-16 2022-11-22 哈尔滨工业大学 一种惯性器件残余力矩测量装置及方法
CN110697092A (zh) * 2019-11-22 2020-01-17 北京理工大学 一种磁气悬浮吊挂装置
CN111284733A (zh) * 2019-12-30 2020-06-16 南京理工大学 一种地面模拟航天器的气浮装置
CN111252271A (zh) * 2020-02-20 2020-06-09 哈尔滨工业大学 一种可长时工作的气浮机器人装置及方法
CN111252270A (zh) * 2020-02-20 2020-06-09 哈尔滨工业大学 气浮机器人位姿控制装置及方法
CN112815847A (zh) * 2021-01-29 2021-05-18 中国科学院沈阳自动化研究所 一种微重力环境模拟驱动机构
CN112815847B (zh) * 2021-01-29 2021-10-29 中国科学院沈阳自动化研究所 一种微重力环境模拟驱动机构
CN113848751A (zh) * 2021-09-22 2021-12-28 中山大学 一种无拖曳航天器的地面模拟***
CN114603603A (zh) * 2022-03-03 2022-06-10 深圳技术大学 空间机械臂在轨操作的地面模拟装置及模拟方法
US11938623B2 (en) 2022-03-03 2024-03-26 Shenzhen Technology University Ground simulation device and method for on-orbit manipulation of space manipulator
LU503146B1 (en) * 2022-12-07 2024-06-07 Univ Luxembourg Pneumatic floating systems for performing zero-gravity experiments

Also Published As

Publication number Publication date
CN106081171B (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
CN106081171A (zh) 空间在轨故障解除操作地面模拟实验***
Augugliaro et al. The flight assembled architecture installation: Cooperative construction with flying machines
US10589858B2 (en) Method of using a device capable of controlled flight
Flores-Abad et al. A review of space robotics technologies for on-orbit servicing
US11359604B2 (en) Method for reducing oscillations in wind turbine blades
CN104898668B (zh) 一种基于巡游机器人的在轨故障检测及维护方法
CN105966644B (zh) 用于在轨服务技术验证的模拟服务星
CN102650851B (zh) 室内多旋翼飞行机器人试验平台
CN107792393A (zh) 主从非接触内含式卫星地面验证***及其验证方法
CN106516182A (zh) 双五自由度气浮主从非接触式双超卫星地面原理验证***
CN106055107B (zh) 基于人在回路的空间遥操作技术地面验证***
CN110450990B (zh) 基于微纳卫星集群的空间非合作目标捕获***及捕获方法
CN102880193A (zh) 航天器开发试验台***
CN112650076B (zh) 一种星群协同控制地面仿真***
Yoshida Space robot dynamics and control: to orbit, from orbit, and future
CN105955285B (zh) 用于在轨服务技术验证的模拟目标星
Lopez-Lora et al. MHYRO: Modular HYbrid RObot for contact inspection and maintenance in oil & gas plants
Gallardo et al. Six degrees of freedom experimental platform for testing autonomous satellites operations
Flores-Abad et al. A review of robotics technologies for on-orbit services
CN106585963A (zh) 空中机器人
CN115364255B (zh) 一种适用范围广且消毒稳定的病毒消杀装置及控制方法
CN201993601U (zh) 一种室内多旋翼飞行机器人试验平台
Eun et al. Design and development of ground-based 5-dof spacecraft formation flying testbed
Liu et al. A method of ground verification for energy optimization in trajectory planning for six DOF space manipulator
Mulgaonkar Small, Safe Quadrotors for Autonomous Flight

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant