CN106063214A - 用于发送和接收信道状态信息的方法和其设备 - Google Patents

用于发送和接收信道状态信息的方法和其设备 Download PDF

Info

Publication number
CN106063214A
CN106063214A CN201580006948.0A CN201580006948A CN106063214A CN 106063214 A CN106063214 A CN 106063214A CN 201580006948 A CN201580006948 A CN 201580006948A CN 106063214 A CN106063214 A CN 106063214A
Authority
CN
China
Prior art keywords
cqi
cqi index
modulation
index value
256qam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580006948.0A
Other languages
English (en)
Other versions
CN106063214B (zh
Inventor
姜承显
崔宇辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KT Corp
Original Assignee
KT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54143403&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN106063214(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1020140175190A external-priority patent/KR101722300B1/ko
Application filed by KT Corp filed Critical KT Corp
Priority to CN201910480118.1A priority Critical patent/CN110149169B/zh
Publication of CN106063214A publication Critical patent/CN106063214A/zh
Application granted granted Critical
Publication of CN106063214B publication Critical patent/CN106063214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本信息涉及用于收发支持256状态正交幅度调制(256QAM)的终端的信道状态信息的方法和设备。更具体地,本发明涉及用于收发包括用于支持除了正交相移键控(QPSK)、16状态正交幅度调制(16QAM)和64状态正交幅度调制(64QAM)的之前利用的三种调制方法之外的256QAM的信道质量指示符(CQI)的信道状态信息的方法和设备。具体地,本发明提供针对用于发送信道状态信息的终端的方法和设备,该方法包括以下步骤:从基站接收用于测量信道质量的参考信号;基于参考信号来测量信道质量,并且基于信道质量的测量结果从包括针对256QAM调制的CQI索引值的预先配置的CQI索引表中选择一个CQI索引值;并且将包括所选择的CQI索引值的信道状态信息发送到基站。

Description

用于发送和接收信道状态信息的方法和其设备
技术领域
本公开内容涉及一种用于发送和接收支持256状态正交幅度调制(256QAM)的终端的信道状态信息的设备和方法,并且更具体地,涉及一种用于发送和接收包括信道质量指示符(CQI)以便支持除了三种典型调制方法(即,正交相移键控(QPSK)、16状态正交幅度调制(16QAM)和64状态正交幅度调制(64QAM))之外的256QAM的信道状态信息的设备和方法。
背景技术
信息可以使用诸如信号的强度、位移、频率和相位的信号属性通过信号来传输。调制是根据传输介质的信道特性来将这样的信号属性转变成恰当波形的过程。数字信号可以用于通过将数字信息映射到位流和经数字化的模拟信号(经采样的或经模数转换的信号)中的一个来发送数字信息。数字调制是根据传输介质的信道特性来将这样的数字信号(例如数字符号序列)转变为恰当信号的过程。具有高带宽效率的典型调制方法之一是被表示为2M QAM的M进制QAM方法,例如QPSK(或4QAM)、16QAM和64QAM。
QPSK、16QAM和64QAM的调制方法用于在诸如长期演进(LTE)或高级LTE的无线通信***中的下行链路数据传输。基站使用这样的调制方法来将数据发送到终端,并且该终端通过解调所发送的信号来接收数据。
最近,在终端与相关联的基站之间发送的和接收的数据量已经由于用户终端的数目和数据使用量的剧烈增加而骤然增加。这需要能够快速处理大量数据流量的调制方法。
同时,基站通过考虑下行链路信道状态来选择调制方法中的一个,并且使用下行链路控制信息(DCI)来将所选择的调制方法通知给相关联的终端。终端识别接收到的下行链路控制信息,并且执行与调制方法对应的数据的解调以由此接收数据。
为此,终端测量下行链路信道状态,并将关于所测量的信道状态的信息发送到基站。同时,终端将在信道状态信息信号中包含的利用QPSK、16QAM和64QAM被映射的CQI信息发送到基站。然而,由于数据流量和速度的增加已经需要新调制方法。另外,还已经需要用于在具有有限大小的CQI信息中指示这样的新调制方法的方法。
发明内容
为了解决以上提到的需求,本公开内容提供一种用于在采用256QAM作为新定义的调制方法的情况下新配置CQI索引表的设备和方法。
另外,本公开内容提供一种用于发送包括新定义的CQI索引表的信道状态信息信号的设备和方法。
根据本公开内容的一个方面,可以提供一种用于通过用户设备(UE)发送信道状态信息的方法。该方法可以包括:从基站接收用于测量信道质量的参考信号;基于所述参考信号来测量信道质量,并且基于信道质量的测量结果从包括针对256QAM调制的CQI索引值的预定CQI索引表中选择CQI索引值;并且将包括所选择的CQI索引值的信道状态信息发送到所述基站。
根据本公开内容的另一方面,可以提供一种用于通过基站接收信道状态信息的方法。该方法可以包括:创建用于测量信道质量的参考信号;将参考信号发送到用户设备;并且基于信道质量的测量结果从用户设备接收包括从包括针对256QAM调制的CQI索引值的预定CQI索引表中选择的CQI索引的信道状态信息。
根据本公开内容的另一方面,可以提供一种用于发送信道状态信息的用户设备。该用户设备可以包括接收器、控制器和发送器。接收器可以被配置为从基站接收用于测量信道质量的参考信号。控制器可以被配置为基于参考信号来测量信道质量,并且基于信道质量的测量结果从包括针对256QAM调制的CQI索引值的预定CQI索引表中选择CQI索引值。发送器可以被配置为将包括所选择的CQI索引值的信道状态信息发送到基站。
根据本公开内容的另一方面,可以提供一种用于发送信道状态信息的基站。该基站可以包括:控制器、发送器和接收器。控制器可以被配置为创建用于测量信道质量的参考信号。发送器可以被配置为将参考信号发送到用户设备。接收器可以被配置为基于信道质量的测量结果从用户设备接收包括从包括针对256QAM调制的CQI索引值的预定CQI索引表中选择的CQI索引值的信道状态信息。
根据本公开内容的至少一个实施例,一种用于在采用256QAM的情况下新配置CQI索引表的设备和方法可以被提供为新定义的调制方法。
另外,根据本公开内容的至少一个实施例,可以提供一种用于发送包括新定义的CQI索引表的信道状态信息信号的设备和方法。
附图说明
本公开内容的以上目的、特征和优点和其他目的、特征和优点将从结合附图进行的下面的详细描述中变得更加显而易见,在附图中:
图1是示出在调制阶数、MCS索引和TBS索引之间的关系的表;
图2是示出CQI块错误率(BLER)性能的示意图;
图3示出典型的CQI索引表;
图4是典型CQI索引表、MCS索引和TBS索引的映射表;
图5是示出在EPA 3km/h的信道模型中在5.333、5.460和5.587的发送效率处的64QAM和256QAM的BLER性能的示意图;
图6是示出取决于64QAM和256QAM的发送效率的在10%的BLER的所需要信噪比(SNR)的示意图;
图7是示出64QAM的发送效率和图6中的所需要的SNR值的示例的表;
图8是示出256QAM的发送效率和图6中的所需要的SNR值的示例的表;
图9是示出根据本公开内容的实施例的UE和基站的操作的信号流程图;
图10是示出根据本公开内容的第一实施例的CQI索引值的目标SNR的表;
图11示出根据本公开内容的第一实施例的CQI索引表的示例;
图12示出根据本公开内容的第一实施例的CQI索引表的另一示例;
图13示出根据本公开内容的第二实施例的被重新用于64QAM的新CQI索引的MCS索引的示例;
图14示出根据本公开内容的第二实施例的CQI索引表的示例;
图15示出根据本公开内容的第二实施例的CQI索引表的另一示例;
图16示出根据本公开内容的第三实施例的达到64QAM的CQI索引表的示例;
图17示出根据本公开内容的第三实施例的256QAM调制方法中的目标SNR的示例;
图18示出根据本公开内容的第三实施例的256QAM调制方法中的CQI索引表的示例;
图19示出根据本公开内容的第三实施例的256QAM调制方法中的目标SNR的另一示例;
图20示出根据本公开内容的第三实施例的256QAM调制方法中的CQI索引表的另一示例;
图21示出根据本公开内容的第三实施例的256QAM调制方法中的CQI索引表的又一示例;
图22是示出根据本公开内容的另一实施例的UE的操作的流程图;
图23是示出根据本公开内容的另一实施例的基站的操作的流程图;
图24是示出根据本公开内容的另一实施例的UE的配置的示意图;
图25是示出根据本公开内容的另一实施例的基站的配置的示意图。
具体实施方式
在下文中,将参考附图来详细描述本公开内容的各种实施例。在下面的描述中,尽管相同的元件被示出在不同附图中,但是它们将由相同的附图标记来指代。另外,在本公开内容的下面的描述中,并入本文的已知功能和配置的详细描述将在其使本公开内容的主题更不清楚时被省略。
在本说明书中,MTC UE是指低成本的(或不太复杂的)UE,支持覆盖增强的UE等。在本说明书中,MTC UE是指支持低成本(或低复杂度)和覆盖增强的UE。备选地,在本说明书中,MTC UE是指被定义为用于维持低成本(或低复杂度)和/或覆盖增强的预定种类的UE。
换言之,在本说明书中,MTC UE是指新定义的3GPP Release 13低成本(或低复杂度)UE种类/类型,其执行基于LTE的MTC相关的操作。备选地,在本说明书中,MTC UE可以是指在3GPP Release 12中或之前定义的与现有LTE覆盖相比较支持增强覆盖或者支持低功耗的UE种类/类型,或者可以是指新定义的Release 13低成本(或低复杂度)UE种类/类型。
无线通信***可以被广泛安装从而提供各种通信服务,例如语音服务、分组数据服务等。无线通信***可以包括用户设备(UE)和基站(BS或eNB)。在本说明书中,用户设备可以是指示在无线通信中利用的用户终端的包容性概念,包括宽带码分多址(WCDMA)、长期演进(LTE)、高速分组接入(HSPA)、等中的UE(用户设备)以及全球移动通信***中的移动站(MS)、用户终端(UT)、用户站(SS)、无线设备等。
基站或或小区可以一般称为在其中执行与用户设备(UE)的通信的站,并且还可以被称为节点B、经演变的节点B(eNB)、扇区、站点、基站收发器***(BTS)、接入点、中继节点、射频拉远头(RRH)、射频单元(RU)等。
也就是说,基站20或小区可以被理解为指示由CDMA中的基站控制器(BSC)、WCDMA中的节点B、LTE中的eNB或扇区(站点)等覆盖的区域的部分的包容性概念,并且该概念可以包括各种覆盖区域,例如大小区、宏小区、微小区、微微小区、毫微微小区、中继节点的通信范围等。
以上提到的各种小区中的每一个具有控制对应小区的基站,并且因此基站可以以两种方式来理解:i)基站可以是提供与无线区域相关联的大小区、宏小区、微小区、微微小区、毫微微小区和小型小区的设备本身,或者ii)基站可以指示无线区域本身。在i)中,彼此交互从而使得设备能够提供由相同实体控制的预定无线区域或协同地配置无线区域的所有设备可以被指示为基站。基于无线区域的配置类型,eNB、RRH、天线、RU、低功率节点(LPN)、点、发送/接收点、发送点、接收点等可以是基站的实施例。在ii)中,从UE或相邻基站的角度接收或发送信号的无线区域本身可以被指示为基站。
因此,大小区、宏小区、微小区、微微小区、毫微微小区、小型小区、RRH、天线、RU、LPN、点、eNB、发送/接收点、发送点和接收点共同被称为基站。
在本说明书中,用户设备和基站用作实现在本说明书中描述的技术和技术概念的两个包容性收发主体,并且可以不限于预定术语或词语。用户设备和基站用作实现在本说明书中描述的技术和技术概念的两个包容性收发主体(上行链路和下行链路),并且可以不限于预定术语或词语。这里,上行链路(UL)是指使UE将数据发送到基站和从基站接收数据的方案,并且下行链路(DL)是指使基站将数据发送到UE和从UE接收数据的方案。
多种接入方案可以不受限制地应用到无线通信***。无线通信***可以利用不同的多种接入方案,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、OFDM-FDMA、OFDM-TDMA、OFDM-CDMA等。本公开内容的实施例可以适用于在通过GSM、WCDMA和HSPA发展为LTE和高级LTE的异步无线通信方案中的资源分配,并且可以适用于在通过CDMA和CDMA-2000发展为UMB的同步无线通信方案中的资源分配。本公开内容可以不限于具体无线通信领域,并且可以包括本公开内容的技术构思适用的所有技术领域。
上行链路传输和下行链路传输可以基于时分复用(TDD)方案或者频分复用(FDD)方案来执行,其中TDD方案基于不同的时间来执行传输,FDD方案基于不同的频率来执行传输。
另外,在诸如LTE和LTE-A的***中,标准可以通过基于单个载波或载波对配置上行链路和下行链路来发展。上行链路和下行链路可以通过诸如物理下行链路控制信道(PDCCH)、物理控制格式指示符信道(PCFICH)、物理混合式ARQ指示符信道(PHICH)、物理上行链路控制信道(PUCCH)、增强物理下行链路控制信道(EPDCCH)等的控制信道来发送控制信息,并且可以被配置为诸如物理下行链路共享信道(PDSCH)、物理上行链路共享信道(PUSCH)等的数据信道,从而发送数据。
控制信息可以使用增强PDCCH或扩展PDCCH(EPDCCH)来发送。
在本说明书中,小区可以是指从发送/接收点发送的信号的覆盖范围、具有从发送/接收点(发送点或发送/接收点)发送的信号的覆盖范围的分量载波、或者发送/接收点本身。
应用本公开内容的实施例的无线通信***可以是其中两个或更多个协同的发送/接收点发送信号的协同多点发送/接收***(CoMP***)、协同多天线发送***或协同多小区通信***。CoMP***可以包括至少两个多发送/接收点和UE。
多发送/接收点可以是通过光学线缆或光纤连接到基站或宏小区(在下文中,被称为“eNB”)以被控制的并且具有宏小区内的高发送功率或低发送功率的至少一个RRH。
在下文中,术语“下行链路”意指从多个发送/接收点到UE的通信或通信路径,并且术语“上行链路”意指从UE到多个发送/接收点的通信或通信路径。在下行链路中,发送器可以是多个发送/接收点的一部分,并且接收器可以是UE的一部分。在上行链路中,发送器可以是UE的一部分,并且接收器可以是多个发送/接收点的一部分。
在下文中,其中通过PUCCH、PUSCH、PDCCH、PDSCH等发送和接收信号的情形可以通过语句“发送或接收PUCCH、PUSCH、PDCCH或PDSCH”来描述。
另外,在下文中,语句“发送或接收PDCCH或者通过PDCCH发送或接收信号”包括“发送或接收EPDCCH或者通过EPDCCH发送或接收信号”。
也就是说,本文中使用的下行链路控制信道可以指示PDCCH或EPDCCH,并且可以指示包括PDCCH和EPDCCH两者的意义。
另外,为便于描述,对应于本公开内容的实施例的EPDCCH可以应用到使用PDCCH描述的部分并应用到使用EPDCCH描述的部分。
在下文中,较高层的信号传送包括发送包括RRC参数的RRC信息的RRC信号传送。
eNB执行到UE的下行链路传输。eNB 110可以发送物理下行链路共享信道(PDSCH)(其是用于单播传输的主要物理信道)。eNB 110可以发送用于发送下行链路控制信息的物理下行链路控制信道(PDCCH),下行链路控制信息例如接收PDSCH所需要的调度和用于发送上行链路数据信道(例如,物理上行链路共享信道(PUSCH))的调度许可信息。在下文中,通过每个信道对信号的发送和接收将被描述为对对应的信号的发送和接收。
调制是指将诸如信号的强度、位移、频率、相位等的信号信息转变成适合于传输介质的信道特性的预定波形。另外,数字调制是指与各种可用信号(信号集)中的一个相对应地将用于发送数字信息的数字信号(例如数字符号序列)转变成适合于信道特性的信号。作为具有高带宽效率的代表性数字调制方案,诸如QPSK(或4QAM)、16QAM和64QAM的由2M QAM表示的M进制QAM调制方案被使用。这里,M表示调制阶数,其指示针对每个时间调制的数字符号的编号,并且QPSK、16QAM、64QAM和256QAM的调制阶数分别是2、4、6和8。
用于3GPP LTE中的下行链路数据传输的调制方案包括QPSK、16QAM和64QAM。基站基于下行链路信道状态来选择上述调制方案中的一种,并且使用下行链路控制信息(DCI)将所述选择的调制方案通知给UE。
图1是示出在调制阶数、MCS索引和TBS索引之间的关系的表。
在DCI中包含的调制和编码方案(MCS)索引包括5位。MCS索引可以通知UE用于发送的调制方案,其是如图1所示的三种调制方法之一。在图1中,MCS索引0到MCS索引28可以用于指示混合自动重传请求(HARQ)的初始发送,并且MCS索引29到MCS索引31可以用于指示HARQ的再次发送。
更具体地,MCS索引0到MCS索引9可以用于指示QPSK调制方法用于下行链路数据发送,并且MCS索引10到MCS索引16可以用于指示16QAM调制方法用于下行链路数据发送。另外,MCS索引17到MCS索引28可以用于指示64QAM调制方法用于下行链路数据发送。
如以上所描述的,多个MCS索引可以指示相同的调制方法,并且每个MCS索引可以表示能够使用不同编码速率的编码字来发送数据。在良好信道状态中,基站使用高MCS索引来增大带宽效率,并且在差的信道状态中,基站使用低MCS索引来执行鲁棒传输以便处理信道状态。也就是说,MCS可以根据信道状态来调节。这样的操作可以被称为“链路自适应”。换言之,链路自适应表示通过补偿取决于时间而变化的无线信道特性来调节MCS索引以便使***处理速率最大化的操作。
当MCS索引0到MCS索引28可以用于指示HARQ的初始发送时,MCS索引29、MCS索引30和MCS索引31可以用于区分用于HARQ的再次发送的调制方案。也就是说,MCS索引29、MCS索引30和MCS索引31可以分别指示QPSK调制、16QAM和64QAM被用于指示HARQ的再次发送。
参考图1,每个MCS索引IMCS分别被映射到相关联的传输块大小(TBS)索引ITBS。考虑根据3GP TS 36.213文献的定义从一对物理资源块(PRB)到110对PRB的发送资源大小能够被分配给UE,根据每个TBS索引ITBS,TBS被定义为具有能够发送110个物理资源块(PRB)对的信息位的大小。
图2是示出CQI块错误率(BLER)性能的图形,并且图3是典型CQI索引表。
UE应当将关于信道状态的信息反馈回基站以用于基站根据UE的信道状态的链路自适应。由UE反馈回基站的信息被称为信道状态信息(CSI)。信道状态信息(CSI)包括预编码矩阵指示符(PMI)、排序指示符(RI)和信道质量指示符(CQI)。这里,PMI和RI是与多输入多输出(MIMO)传输相关的信道状态信息,CQI指示调制方法、编码速率值(编码速率x1024)和发送效率(=调制阶数x编码速率值),其可以根据UE的信道状态来使用。在良好信道状态中,UE将指示高发送效率的CQI索引反馈回基站,并且在差的信道状态中,UE将指示低发送效率的CQI索引反馈回基站。
典型CQI反馈信息的大小是4位。典型CQI反馈信息示出16种发送效率。图2示出取决于图3的CQI的性能的满足相对于发送效率的10%的块错误率(BLER)的所需要的SNR值,在实验环境中,在加性白高斯噪声(AWGN)信道环境中考虑单个发送天线和两个接收天线。在图2中,典型的CQI索引中的在10%的BLER处的所需要的SNR值具有从约-10dB到17dB的范围。每个CQI索引被赋以发送效率以具有SNR的均匀间隙,例如1.9dB的均匀间隔。
图4示出包括MCS索引和TBS索引的典型CQI索引表的映射表。
基站识别从UE接收到的CQI索引。基站基于接收到的CQI索引来确定要分配给UE的资源量和要用于发送的MCS索引。此时,图1中阐述的MCS索引和图3的CQI索引具有如图4中示出的关系。
参考图4、MCS索引(IMCS)0、2、4、6、8、11、13、15、18、20、22、24、26和28可以被配置为具有分别与CQI索引2、3、4、5、6、7、8、9、10、11、12、13、14和15的发送效率相同的发送效率。另外,位于两个连续的CQI索引之间的MCS索引被配置为具有两个CQI索引的发送效率值之间的中间发送效率值。
然而,通过其调制阶数从QPSK被改变为16QAM的MCS索引9和MCS索引10具有相同的发送效率值,并且通过其调制阶数从16QAM被改变为64QAM的MCS索引16和MCS索引17也具有相同的发送效率。另外,由于具有不同调制阶数的MCS索引被配置为具有相同的TBS索引,所以相同的TBS可以相对于相同量的发送资源来发送。
基站通过从UE接收到CQI索引来识别信道状态,并且基于接收到的CQI索引来选择分配给UE的发送资源的大小和要在对应的发送资源中使用的MCS。此时,对MCS的编码速率值的确定与对TBS的确定相同,TBS是要通过对应的发送资源发送的信息位的大小。
本公开内容提出了一种用于发送和接收信道状态信息的设备和方法,在256QAM被添加到诸如QPSK、16QAM和64QAM的典型三种调制方法以便增大发送流量和发送速度的情况下将信道状态信息从UE发送到基站。更具体地,本公开内容建议一种用于配置在信道状态信息中包含的CQI索引的设备和方法。
由于典型调制方法不具有指示256QAM的CQI索引,所以需要定义与256QAM的调制方法对应的CQI索引以便使用256QAM来发送数据。也就是说,当以相同发送效率使用64QAM和256QAM时,针对256QAM的CQI索引需要被定义使得256QAM以在其处256QAM的BLER性能等于或好于64QAM的性能的发送效率值。
图5是示出在扩展的行人A模型(EPA)3km/h的信道模型中在5.333、5.460和5.587的发送效率处的64QAM和256QAM的BLER性能的图形。
参考图5,64QAM的BLER性能与256QAM的BLER在5.587的发送效率值处相同。因此,在本公开内容中,考虑图3中的典型CQI索引表中的最大发送效率值是5.5547,使用256QAM的调制方法的新CQI索引被配置为支持等于或大于典型发送效率值5.5547的发送效率值。
为了利用维持的典型CQI反馈信息的大小(即,4位)来定义支持256QAM的新CQI索引,典型CQI索引中的一些应当被移除以由此定义新发送效率。
根据本公开内容的实施例,考虑TBS索引被配置为支持典型TBS表中的从ITBS 0到ITBS 16的VoIP服务,与ITBS 16对应的CQI索引0到的CQI索引10可以不被移除以定义新的CQI索引。也就是说,为了不影响VoIP服务,典型CQI索引0到10可以被重新使用,并且CQI索引11到15可以利用支持64QAM和256QAM的发送效率来定义。
在另一个实施例中,典型CQI索引0到10可以被新定义,并且针对64QAM和256QAM的CQI索引11到15也可以被新定义。
图6是示出取决于64QAM和256QAM的发送效率的在10%的BLER的所需要信噪比(SNR)的图形;
图7是示出64QAM的发送效率和图6中的所需要的SNR值的示例的表;
图8是示出256QAM的发送效率和图6中的所需要的SNR值的示例的表;
图7示出64QAM的发送效率和图6中的所需要的SNR值,并且图8示出256QAM的发送效率和图6中的所需要的SNR值。
在本公开内容中,为了计算取决于发送效率的所估计的所需要的SNR,等式1用于使用64QAM的发送效率,并且等式2用于使用256QAM的发送效率。在下面的等式1和2中,R=编码速率x2014。另外,在本说明书中,R由编码速率值表示。
等式1
如果R≤888,
所估计的所需要的SNR=0.0187*R-1.504
否则,
所估计的所需要的SNR=4.164532*10-5*R2-0.0514*R+27.906
等式2
如果R≤874,
所估计的所需要的=0.0213*R+1.5599
否则,
所估计的所需要的=3.196*10-5*R2-0.0303*R+22.24
如图6、图7和图8所示,在使用以上的等式1和等式2估计的所需要的SNR值与在以上阐述的实验环境中测得的实际值之间存在很小差别。也就是说,图7和8示出“估计的所需要的SNR–评估的所需要的SNR”接近为零。
现在,将描述一种用于发送和接收包括新CQI索引的信道状态信息的方法。
图9是示出根据本公开内容的实施例的UE和基站的操作的信号流程图。
根据本公开内容的实施例,一种用于通过UE发送信道状态信息的方法可以包括:从基站接收用于测量信道质量的参考信号;基于参考信号来测量信道质量,并且基于信道质量的测量结果从包括针对256QAM调制的CQI索引值的预定CQI索引表中选择CQI索引值;并且将包括所选择的CQI索引值的信道状态信息发送到所述基站。
根据本公开内容的实施例,一种用于通过基站接收信道状态信息的方法可以包括:创建用于测量信道质量的参考信号;将参考信号发送到UE;并且基于信道质量的测量结果从UE接收包括从包括针对256QAM调制的CQI索引值的CQI索引表中选择的CQI索引的信道状态信息。
参考图9,本公开内容的基站900需要识别关于基站900和UE 910的下行链路信道特性的信息以便将下行链路数据发送到UE 910。为此,基站900可以创建用于测量下行链路信道特征的参考信号,并且可以将该参考信号发送到UE 910(S910)。用于测量下行链路信道特征的参考信号可以是CRS或CSI-RS,但是其不限于此。
UE 910可以从基站900接收参考信号,并且可以测量信道质量。然后,根据信道质量的测量结果,UE 910可以使用CQI索引表来选择与信道质量的测量结果对应的CQI索引值(S930)。
UE 910可以将包括所选择的CQI索引值的信道状态信息发送到基站900。如以上所提到的,信道状态信息(CSI)可以包括PMI、RI和CQI,并且CQI可以具有4位的大小。
基站900可以使用接收到的信道状态信息来确定资源分配的量,并且可以确定符合信道特性的MCS以由此将下行链路数据发送到UE 910。
同时,在选择CQI索引值中,本公开内容的UE 910可以从包括256QAM的CQI索引表而非典型CQI索引表中选择与信道质量的测量结果对应的CQI索引值。因此,与典型CQI索引表不同的新CQI索引表需要被配置,并且以便高效地处理数据流量并增大发送速度,高效地配置包括针对256QAM的CQI索引值的CQI索引表是非常重要的。
因此,根据本公开内容的各种实施例,将在下文中详细描述用于配置包括UE涉及的256QAM的CQI索引值的CQI索引表的方法。
第一实施例
根据本公开内容的第一实施例的用于配置CQI索引表的方法可以通过定义针对基于典型CQI索引10添加的五个新CQI索引的发送效率来配置CQI索引表。
在第一详细方法中,发送效率可以被配置为具有在来自CQI索引10的在10%的BLER的两个相邻CQI索引之间的所需要的SNR的均匀差异。假设用于新CQI索引的最大发送效率的编码速率值被表示为“R”,“R”的最大值可以被定义为如图3所示的948。
在这种情况下,CQI索引10的所需要的SNR可以用作最小SNR,并且通过以上阐述的等式2在R=948处计算的所需要的SNR可以用作最大SNR。因此,在相邻CQI索引之间的SNR间隔可以从以下等式3中获得。
等式3
SNR间隔=(最大SNR-最小SNR)/5
=(22.2382-7.2095)/5=3.0057
图10是根据本公开内容的第一实施例的分别被赋以CQI索引值的目标SNR的表。
目标SNR可以使用根据等式3计算的SNR间隔值从如图10所示的CQI索引11到CQI索引15中定义。
在下文中,几乎逼近图10中的CQI索引的目标SNR的“R”值可以通过考虑两种调制方法(即,64QAM和256QAM)来计算。在64QAM的情况下,使用等式1相对于特定“R”值来计算SNR值,并且之后将所计算的SNR值与目标SNR值进行比较以获得它们之间的差值。在256QAM的情况下,使用等式2相对于特定“R”值来计算SNR值,并且之后将所计算的SNR值与目标SNR值进行比较以获得在它们之间的差值。此时,952用作64QAM中的最大“R”值,并且714用作256QAM中的最小“R”值。
换言之,可以使用等式1和等式2相对于特定“R”值来计算SNR值,并且可以将所计算的值与目标SNR值进行比较以获得差值。在那之后,与最小差值和在计算SNR中考虑的调制方法对应的“R”值可以被定义为新CQI的发送效率。图11示出从CQI索引11到CQI索引15的发送效率,其根据以上提到的方法被定义使得在相邻CQI索引之间的所需要的SNR的差几乎相同。图11示出根据本公开内容的第一实施例的CQI索引表的示例。
图12示出根据本公开内容的第一实施例的CQI索引表的另一示例。
在第二详细方法中,要用于新CQI的最大发送效率的“R”的最大值可以被定义为952,考虑已经在配置经典TBS中使用的最大编码速率,即0.93≒952/1024。在这种情况下,以与其中在相邻CQI索引之间的所需要的SNR的差异几乎相同的第一详细方法中相同的方式来定义的CQI索引11到CQI索引15的发送效率被示出在图12中。
第二实施例
根据本公开内容的第一实施例的用于配置CQI索引表的方法提供用于配置基于典型CQI索引10添加的五个新CQI索引的发送效率的方法。
第一详细方法提供用于重新使用已经被用于64QAM的典型MCS索引的方法。MCS索引可以被选择使得在从在已经在以上描述的图4中用于典型QAM的MCS索引18到MCS索引28之中的包括CQI索引10(或MCS索引18)的相邻CQI索引之间的在10%的BLER处的所估计的所需要的SNR的差异几乎相同。
图13示出根据本公开内容的第二实施例的被重新用于64QAM的新CQI索引的MCS索引的示例。
以上新定义的CQI索引可以在定义支持256QAM的新MCS表时被映射为新MCS索引。此时,由于满足新定义的CQI索引的发送效率的TBS索引已经被定义在TBS表中,所以与第一实施例相比,典型TBS索引能够在没有再次定义新TBS索引的情况下被重新使用。
针对64QAM的CQI索引可以以上述方面来定义,并且剩余的两个索引可以被定义具有在256QAM中使用的发送效率。
图14示出根据本公开内容的第二实施例的CQI索引表的示例。
在第一实施例中,如以上所描述的,图13的CQI索引13的所需要的SNR可以用作最小SNR,并且在以上阐述的等式2中使用R=948计算的所需要的SNR可以用作最大SNR。因此,CQI索引14和CQI索引15的发送效率以与第一实施例相同的方式来定义使得在相邻CQI索引之间的所需要的SNR的差异几乎相同,如图14所示。
图15示出根据本公开内容的第二实施例的CQI索引表的另一示例。
作为第二详细方法,图13的CQI索引13的所需要的SNR可以用作最小SNR,并且在以上阐述的等式2中使用R=952计算的所需要的SNR可以用作最大SNR。在这种情况下,CQI索引14和CQI索引15的发送效率以与第一实施例相同的方式来定义使得在相邻CQI索引之间的所需要的SNR的差异几乎相同,如图15所示。
作为第三详细方法,当图11和图15的CQI索引10到CQI索引14保持不变时,CQI索引15的“R”值可以在将其改变为952之后被使用。
作为第四详细方法,当图12和图15的CQI索引10到CQI索引14保持不变时,CQI索引15的“R”值可以在将其改变为948之后被使用。
以上描述的第一实施例和第二实施例不影响典型VoIP TBS索引。在这种情况下,在使用QPSK和16QAM的低SNR区段中的相邻CQI索引之间的所需要的SNR的差异被配置为相对小。然而,在使用64QAM和256QAM的高SNR区段中的相邻CQI索引之间的所需要的SNR的差异被配置为相对大。
在下文中,将参考附图来描述其中在相邻CQI索引之间的所需要的SNR的差异被配置为在使用64QAM和256QAM的高SNR区段中相对小的本公开内容的第三实施例。
第三实施例
本公开内容的第三实施例示出用于配置CQI索引表的方法,在CQI索引表中在使用64QAM和256QAM的高SNR区段中的相邻CQI索引之间的所需要的SNR的差异通过消除低SNR区段中的CQI索引中的一些而被配置为相对小。
图16示出根据本公开内容的第三实施例的达到64QAM的CQI索引表的示例。
首先,图3中的CQI索引中的一些可以被消除使得在相邻CQI索引之间的所需要的SNR的差异几乎与在针对QPSK的典型CQI索引之中恒定。例如,图3的CQI索引2、CQI索引3和CQI索引6可以被消除。
另外,除了相对于如图5所示的相同发送效率的示出与256QAM相同的BLER的CQI索引15的CQI条目可以利用新CQI条目来替换。以这样的方式配置的新CQI表部分地被示出在图16中。
也就是说,包括由UE选择的针对256QAM调制的预定CQI索引值的CQI索引表可以包括针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值、针对64QAM调制的五个CQI索引值和针对256QAM调制的四个CQI索引值。
接下来,为了配置本公开内容的CQI索引表,将描述用于定义对应于CQI索引12、13、14和15的R12、R13、R14和R15的各种详细方法。
在用于定义R12、R13、R14和R15的第一详细方法中,图16中的CQI索引11的所需要的SNR可以用作最小SNR,并且在以上阐述的等式2中使用R=948计算的所需要的SNR可以用作最大SNR。使用第一详细方法计算的SNR间隔值可以被表示为等式4。
等式4
SNR间隔=(最大SNR–最小间隔)/4
=(22.2382-14.8204)/4=1.8544
目标SNR可以使用通过等式4计算的SNR间隔值来定义,如图17所示。图17示出了根据本公开内容的第三实施例的256QAM调制方法中的目标SNR的另一示例。
图18示出根据本公开内容的第三实施例的256QAM调制方法中的CQI索引表的示例。
使用图17的所需要的SNR和等式2来确定“R”值使得在相邻的CQI索引之间的所需要的SNR的差异几乎相同。因此,满足目标SNR的“R”值可以被计算为如图18所示。
图19示出根据本公开内容的第三实施例的256QAM调制方法中的目标SNR的另一示例。
根据第二详细方法,在由本公开内容提供的CQI索引表中,考虑已经用于配置经典TBS的最大编码速率是0.93≒952/1024,要用于新CQI索引的最大发送效率的“R”的最大值可以被定义为952。
在这种情况下,图16中的CQI索引11的所需要的SNR可以用作最小SNR,并且通过在以上阐述的等式2中使用R=952计算的所需要的SNR可以用作最大SNR。相对于CQI索引12、13、14和15的目标SNR可以被定义为如图19所示。
图20示出根据本公开内容的第三实施例的256QAM调制方法中的CQI索引表的另一示例。
使用图19的所需要的SNR和等式2来确定“R”值使得在相邻的CQI索引之间的所需要的SNR的差异几乎相同。因此,满足目标SNR的“R”值可以被计算为如图20所示。
在根据本公开内容的另一实施例的第三详细方法中,在图18的CQI索引12到14保持不变时,CQI索引15的“R”值可以被改变为952。
在根据本公开内容的另一实施例的第四详细方法中,在图20的CQI索引12到14保持不变时,CQI索引15的“R”值可以被改变为948。
在根据本公开内容的另一实施例的第五详细方法中,在针对256QAM的CQI索引之中的具有最低发送效率的CQI索引可以被配置为与具有最高发送效率的典型CQI索引具有相同的发送效率。也就是说,在图18的CQI索引13到15保持不变时,CQI索引12的“R”值可以被改变为711,如图21所示。图21示出根据本公开内容的第三实施例的256QAM调制方法中的CQI索引表的又一示例。
UE可以使用如以上所描述的新配置的CQI索引表来选择CQI索引值。在下文中,将参考图22和图23来描述根据以上第三实施例的第五详细方法中的UE和基站的操作。
图22是示出根据本公开内容的另一实施例的UE的操作的流程图。
根据本公开内容的用于通过UE发送信道状态信息的方法可以包括:从基站接收用于测量信道质量的参考信号;基于参考信号来测量信道质量,并且基于信道质量的测量结果从包括针对256QAM调制的CQI索引值的预定CQI索引表中选择CQI索引值;并且将包括所选择的CQI索引值的信道状态信息发送到基站。
参考图22,UE可以从基站接收用于测量信道质量的参考信号(S2200)。用于测量信道质量的参考信号可以是诸如CRS或CSI-RS的信号,但是其不限于此。
UE可以基于参考信号来测量信道质量,并且可以基于信道质量的测量结果从包括针对256QAM调制的预定CQI索引值的CQI索引表中选择CQI索引值(S2210)。也就是说,UE可以使用参考信号来测量下行链路信道质量。然后,UE可以使用所测量的下行链路信道质量和预定CQI索引表来选择与该信道质量对应的CQI索引值。
CQI索引表可以如在以上的实施例中所描述的不同地配置。
例如,CQI索引表可以包括针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值、针对64QAM调制的五个CQI索引值和针对256QAM调制的四个CQI索引值。也就是说,能够被新定义的支持256QAM的CQI索引值可以被添加有针对维持的CQI信息的4位。
更具体地,CQI索引表可以被配置使得在分别针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值和针对64QAM调制的五个CQI索引值中的相邻CQI索引值之间的所需要的SNR的差异在如图16中的预定错误率内几乎相同。
另外,针对四个256QAM索引的编码速率值(R)可以根据如以上所阐述的第三实施例的每个详细方法来计算。
例如,针对256QAM调制的CQI索引值中的一个可以被配置为具有支持与不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率相同的发送效率的编码速率值。例如,图21的CQI索引12可以被配置为具有与最大发送效率(即图3的5.5547)对应的编码速率值711。也就是说,编码速率值可以使用“编码速率x1024”而被计算为711。
例如,针对256QAM调制的CQI索引值中的一个可以被配置为具有与支持与不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率相同的发送效率的编码速率值相同的编码速率值。例如,图21的CQI索引12可以被配置为具有与具有图3的最大发送效率的编码速率值相同的编码速率值948。也就是说,编码速率值可以被定义为“编码速率x1024”,并且可以被配置为948。
例如,针对256QAM调制的CQI索引值中的一个可以由编码速率值来配置,编码速率值由使用最小SNR和最大SNR计算的SNR间隔来确定,最小SNR是具有在CQI索引表的针对64QAM调制的CQI索引值之中的最大编码速率值的CQI索引的所需要的SNR,最大SNR是具有在CQI索引表的针对256QAM调制的CQI索引值之中的最大编码速率值的CQI索引的所需要的SNR。例如,最小SNR可以是图16的CQI索引11的所需要的SNR,并且最大SNR可以是使用等式2和R=948计算的所需要的SNR。目标SNR可以使用通过将最小SNR和最大SNR应用到等式4确定的SNR间隔值来获得,如图17所示,并且编码速率值(R)可以被配置使得使用所需要的SNR和等式2在相邻CQI索引之间的所需要的SNR的差异几乎相同。SNR间隔可以通过从最大SNR减去最小SNR并且之后将减法结果除以4来计算。以这样的方式配置的编码速率值可以被配置为797,如图18或图21中的CQI索引13。也就是说,编码速率值可以被定义为“编码速率x1024”并且可以被配置为797。
如以上所描述的,新定义的包括256QAM的CQI索引表可以包括使用上述方法的每个CQI索引。
UE可以将包括CQI索引值的信道状态信息发送到基站(S2220)。也就是说,UE可以包括由以上的方法在信道状态信息中选择的CQI索引值并将所选择的CQI索引值发送到基站。
然后,UE可以从基站接收所确定的MCS值和下行链路数据并可以对其进行解调。
图23是根据本公开内容的另一个实施例的基站的操作的流程图。
参考图23,根据本公开内容的一种用于通过基站接收信道状态信息的方法可以包括:创建用于测量信道质量的参考信号;将参考信号发送到UE;并且基于信道质量的测量结果从UE接收包括从包括针对256QAM调制的CQI索引值的预定CQI索引表中选择的CQI索引的信道状态信息。
参考图23,基站可以创建用于测量信道质量的参考信号(S2300)。基站可以将参考信号发送到UE(S2310)。用于测量信道质量的参考信号可以是诸如CRS或CSI-RS的信号,但是其不限于此。
然后,基站可以从UE接收包括从包括针对256QAM调制的预定CQI索引值的CQI索引表中基于信道质量的测量结果选择的CQI索引值的信道状态信息(S2320)。
CQI索引表可以如在以上的实施例中所描述的不同地配置。
例如,CQI索引表可以包括针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值、针对64QAM调制的五个CQI索引值和针对256QAM调制的四个CQI索引值。也就是说,能够被新定义的支持256QAM的CQI索引值可以被添加有针对维持的CQI信息的4位。
更具体地,CQI索引表可以被配置使得在分别针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值和针对64QAM调制的五个CQI索引值中的相邻CQI索引值之间的所需要的SNR的差异在如图16中的预定错误率内几乎相同。
另外,针对四个256QAM索引的编码速率值(R)可以根据如以上所阐述的第三实施例的每个详细方法来计算。
例如,针对256QAM调制的CQI索引值中的一个可以被配置为具有支持与不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率相同的发送效率的编码速率值。例如,图21的CQI索引12可以被配置为具有与最大发送效率(即图3的5.5547)对应的编码速率值711。也就是说,编码速率值可以使用“编码速率x1024”而被计算为711。
例如,针对256QAM调制的CQI索引值中的一个可以被配置为具有与支持与不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率相同的发送效率的编码速率值相同的编码速率值。例如,图21的CQI索引12可以被配置为具有与具有图3的最大发送效率的编码速率值相同的编码速率值948。也就是说,编码速率值可以被定义为“编码速率x1024”,并且可以被配置为948。
例如,针对256QAM调制的CQI索引值中的一个由编码速率值来配置,编码速率值由使用最小SNR和最大SNR计算的SNR间隔来确定,最小SNR是具有在CQI索引表的针对64QAM调制的CQI索引值之中的最大编码速率值的CQI索引的所需要的SNR,最大SNR是具有在CQI索引表的针对256QAM调制的CQI索引值之中的最大编码速率值的CQI索引的所需要的SNR。例如,最小SNR可以是图16的CQI索引11的所需要的SNR,并且最大SNR可以是使用等式2和R=948计算的所需要的SNR。目标SNR可以使用通过将最小SNR和最大SNR应用到等式4确定的SNR间隔值来获得,如图17所示,并且编码速率值(R)可以被配置使得使用所需要的SNR和等式2在相邻CQI索引之间的所需要的SNR的差异几乎相同。SNR间隔可以通过从最大SNR减去最小SNR并且之后将减法结果除以4来计算。以这样的方式配置的编码速率值可以被配置为797,如图18或图21中的CQI索引13。也就是说,编码速率值可以被定义为“编码速率x1024”并且可以被配置为797。
如以上所描述的,新定义的包括256QAM的CQI索引表可以包括使用上述方法的每个CQI索引。
如以上所描述的配置的CQI索引表可以被存储在UE和基站两者中。因此,UE和基站可以通过4位的CQI索引信息共享关于信道状态的信息。
在下文中,将参考图24和图25来描述可以通过其执行本公开内容的UE和基站的配置。
图24是示出根据本公开内容的另一个实施例的UE的配置的示意图。
参考图24,本公开内容的UE 2400可以包括接收器2430、控制器2410和发送器2420。接收器2430从基站接收用于测量信道质量的参考信号。控制器2410基于参考信号来测量信道质量,并且基于信道质量的测量结果从包括针对256QAM调制的预定CQI索引值的CQI索引表中选择CQI索引值。发送器2420将包括所选择的CQI索引值的信道状态信息发送到基站。
接收器2430可以从基站接收用于测量信道质量的参考信号。参考信号可以是如针对上文设置的CRS或CSI-RS,但其不限于此并且可以包括预定用于测量信道质量的信号。另外,接收器2430可以通过对应的信道从基站接收下行链路控制信息、数据和消息。
控制器2410可以基于参考信号来测量信道质量。另外,控制器2410可以基于信道质量的测量结果从包括针对256QAM调制的预定CQI索引值的CQI索引表中选择CQI索引值。包括针对256QAM调制的预定CQI索引值的CQI索引表可以以如以上所描述的第一实施例到第三实施例的方法或以图22中描述的方法来配置。
另外,控制器2410可以控制UE的总体操作以用于根据本公开内容发送信道状态信息。
发送器2420可以将包括所选择的CQI索引值的信道状态信息发送到基站。另外,发送器2420可以通过对应的信道将上行链路控制信息、数据和消息发送到基站。
图25是根据本公开内容的另一个实施例的基站的配置的示意图。
参考图25,本公开内容的基站2500可以包括控制器2510、发送器2520和接收器2530。控制器2510创建用于测量信道质量的参考信号。发送器2520将参考信号发送到UE。接收器2530基于信道质量的测量结果从UE接收包括从包括针对256QAM调制的预定CQI索引值的CQI索引表中选择的CQI索引值的信道状态信息。
控制器2510可以创建用于测量信道质量的参考信号,并且可以控制基站在执行本公开内容中的操作。
发送器2520可以将参考信号发送到UE。另外,发送器2520可以将对于本公开内容的操作必要的信号、消息和数据发送到UE。
接收器2530可以基于信道质量的测量结果从UE接收包括从包括针对256QAM调制的预定CQI索引值的CQI索引表中选择的CQI索引值的信道状态信息。包括针对256QAM调制的预定CQI索引值的CQI索引表可以以如以上所描述的第一实施例到第三实施例的方法或以图22中描述的方法来配置。
另外,接收器2530可以从UE接收对于本公开内容的操作必要的信号、消息和数据。
尽管已经出于说明性目的描述了本公开内容到的实施例,但是本领域技术人员将认识到能够在不脱离本公开内容的范围和精神的情况下进行各种修改、添加和替代。因此,本公开内容中公开的实施例旨在说明本公开内容的技术构思的范围,但是本公开内容的范围不受实施例限制。本公开内容的范围应当基于附图以使得被包含在等价于权利要求的范围内的全部技术构思属于本公开内容的方式来理解。
相关申请的交叉引用
本申请基于35U.S.C.§119(a)要求分别于2014年3月21日、2014年3月25日、2014年3月31日和2014年12月8日提交的韩国专利申请No.10-2014-0033579、10-2014-0034955、10-2014-0037394和10-2014-0175190的优先权和权益,出于所有目的通过引用将其并入本文,如同本文完全阐述。

Claims (24)

1.一种用于通过用户设备(UE)发送信道状态信息的方法,所述方法包括:
从基站接收用于测量信道质量的参考信号;
基于所述参考信号来测量所述信道质量,并且基于所述信道质量的测量结果从包括针对256正交幅度调制(QAM)调制的信道质量指示符(CQI)索引值的预定CQI索引表中选择CQI索引值;并且
将包括所选择的CQI索引值的信道状态信息发送到所述基站。
2.根据权利要求1所述的方法,其中,所述CQI索引表包括针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值、针对64QAM调制的五个CQI索引值和针对256QAM调制的四个CQI索引值。
3.根据权利要求1所述的方法,其中,针对256QAM调制的所述CQI索引值中的一个被配置为具有支持与不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率相同的发送效率的编码速率值。
4.根据权利要求3所述的方法,其中,所述编码速率值使用“编码速率x1024”而被计算为711。
5.根据权利要求1所述的方法,其中,针对256QAM调制的所述CQI索引值中的一个被配置为具有与具有不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率的所述编码速率值相同的编码速率值。
6.根据权利要求5所述的方法,其中,所述编码速率值被定义为“编码速率x1024”,并且所述编码速率值是948。
7.根据权利要求1所述的方法,其中:
针对256QAM调制的所述CQI索引值中的一个被配置为由使用最小SNR和最大SNR计算的SNR间隔确定的编码速率值;
所述最小SNR是所述CQI索引表的具有在针对64QAM调制的CQI索引值之中的最大编码速率值的CQI索引的所需要的SNR;并且
所述最大SNR是所述CQI索引表的具有在针对256QAM调制的CQI索引值之中的所述最大编码速率值的CQI索引的所需要的SNR。
8.根据权利要求7所述的方法,其中:
所述SNR间隔通过从所述最大SNR减去所述最小SNR并且之后将减法结果除以4来计算;并且
针对256QAM调制的所述CQI索引值中的一个的所述编码速率值被定义为“编码速率x1024”,并且所述编码速率值是797。
9.根据权利要求1所述的方法,其中,所述CQI索引表被配置为包括在分别针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值和针对64QAM调制的五个CQI索引值中的相邻CQI索引值之间的所需要的SNR以具有在预定错误率内的相同差异,如下表所示:
10.一种用于通过基站接收信道状态信息的方法,所述方法包括:
创建用于测量信道质量的参考信号;
将所述参考信号发送到用户设备(UE);并且
基于所述信道质量的测量结果从所述用户设备接收包括从包括针对256正交幅度调制(QAM)调制的信道质量指示符(CQI)索引值的预定CQI索引表中选择的CQI索引的信道状态信息。
11.根据权利要求10所述的方法,其中,所述CQI索引表包括针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值、针对64QAM调制的五个CQI索引值和针对256QAM调制的四个CQI索引值。
12.根据权利要求10所述的方法,其中,针对256QAM调制的所述CQI索引值中的一个被配置为具有支持与不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率相同的发送效率的编码速率值。
13.根据权利要求12所述的方法,其中,所述编码速率值使用“编码速率x1024”而被计算为711。
14.根据权利要求10所述的方法,其中,针对256QAM调制的所述CQI索引值中的一个被配置为具有与具有不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率的所述编码速率值相同的编码速率值。
15.根据权利要求14所述的方法,其中,所述编码速率值被定义为“编码速率x1024”,并且所述编码速率值是948。
16.根据权利要求10所述的方法,其中:
针对256QAM调制的所述CQI索引值中的一个通过由使用最小SNR和最大SNR计算的SNR间隔确定的编码速率值来配置;
所述最小SNR是所述CQI索引表的具有在针对64QAM调制的CQI索引值之中的最大编码速率值的CQI索引的所需要的SNR;并且
所述最大SNR是所述CQI索引表的具有在针对256QAM调制的CQI索引值之中的所述最大编码速率值的CQI索引的所需要的SNR。
17.根据权利要求16所述的方法,其中:
所述SNR间隔通过从所述最大SNR减去所述最小SNR并且之后将减法结果除以4来计算;并且
针对256QAM调制的所述CQI索引值中的一个的所述编码速率值被定义为“编码速率x1024”,并且所述编码速率值是797。
18.根据权利要求10所述的方法,其中,所述CQI索引表被配置为包括在分别针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值和针对64QAM调制的五个CQI索引值中的相邻CQI索引值之间的所需要的SNR以具有在预定错误率内的相同差异,如下表所示:
19.一种用于发送信道状态信息的用户设备(UE),包括:
接收器,其被配置为从基站接收用于测量信道质量的参考信号;
控制器,其被配置为基于所述参考信号来测量所述信道质量,并且基于所述信道质量的测量结果从包括针对256正交幅度调制(QAM)调制的信道质量指示符(CQI)索引值的预定CQI索引表中选择CQI索引值;并且
发送器,其被配置为将包括所选择的CQI索引值的信道状态信息发送到所述基站。
20.根据权利要求19所述的用户设备,其中,所述CQI索引表包括针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值、针对64QAM调制的五个CQI索引值和针对256QAM调制的四个CQI索引值。
21.根据权利要求19所述的用户设备,其中,针对256QAM调制的所述CQI索引值中的一个被配置为具有支持与不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率相同的发送效率的编码速率值。
22.根据权利要求19所述的用户设备,其中,针对256QAM调制的所述CQI索引值中的一个被配置为具有与具有不包括针对256QAM调制的CQI索引值的CQI索引表的最大发送效率的所述编码速率值相同的编码速率值。
23.根据权利要求19所述的用户设备,其中,针对256QAM调制的所述CQI索引值中的一个通过由使用最小SNR和最大SNR计算的SNR间隔确定的编码速率值来配置;
所述最小SNR是所述CQI索引表的具有在针对64QAM调制的CQI索引值之中的最大编码速率值的CQI索引的所需要的SNR;并且
所述最大SNR是所述CQI索引表的具有在针对256QAM调制的CQI索引值之中的所述最大编码速率值的CQI索引的所需要的SNR。
24.根据权利要求19所述的用户设备,其中,所述CQI索引表被配置为包括在分别针对QPSK调制的三个CQI索引值、针对16QAM调制的三个CQI索引值和针对64QAM调制的五个CQI索引值中的相邻CQI索引值之间的所需要的SNR以具有在预定错误率内的相同差异,如下表所示:
CN201580006948.0A 2014-03-21 2015-03-03 用于发送和接收信道状态信息的方法和其设备 Active CN106063214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910480118.1A CN110149169B (zh) 2014-03-21 2015-03-03 用于发送和接收信道状态信息的方法和其设备

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
KR20140033579 2014-03-21
KR10-2014-0033579 2014-03-21
KR10-2014-0034955 2014-03-25
KR20140034955 2014-03-25
KR10-2014-0037394 2014-03-31
KR20140037394 2014-03-31
KR10-2014-0175190 2014-12-08
KR1020140175190A KR101722300B1 (ko) 2014-03-21 2014-12-08 채널 상태 정보 송수신 방법 및 장치
PCT/KR2015/002021 WO2015141959A1 (ko) 2014-03-21 2015-03-03 채널 상태 정보 송수신 방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910480118.1A Division CN110149169B (zh) 2014-03-21 2015-03-03 用于发送和接收信道状态信息的方法和其设备

Publications (2)

Publication Number Publication Date
CN106063214A true CN106063214A (zh) 2016-10-26
CN106063214B CN106063214B (zh) 2019-07-02

Family

ID=54143403

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910480118.1A Active CN110149169B (zh) 2014-03-21 2015-03-03 用于发送和接收信道状态信息的方法和其设备
CN201580006948.0A Active CN106063214B (zh) 2014-03-21 2015-03-03 用于发送和接收信道状态信息的方法和其设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910480118.1A Active CN110149169B (zh) 2014-03-21 2015-03-03 用于发送和接收信道状态信息的方法和其设备

Country Status (3)

Country Link
US (2) US9629010B2 (zh)
CN (2) CN110149169B (zh)
WO (1) WO2015141959A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632196A (zh) * 2017-03-21 2018-10-09 三星电子株式会社 无线通信方法
WO2019191979A1 (en) * 2018-04-04 2019-10-10 Zte Corporation Channel quality indicator information transmission and reception
CN111373816A (zh) * 2017-11-16 2020-07-03 索尼公司 方法、基础设施设备以及通信装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194534A1 (zh) * 2013-06-08 2014-12-11 华为技术有限公司 一种信道质量指示及调制编码方案的通知方法、装置
WO2015064921A1 (ko) * 2013-10-30 2015-05-07 엘지전자 주식회사 채널 품질 지시자를 피드백하는 방법 및 사용자 장치
WO2015141959A1 (ko) * 2014-03-21 2015-09-24 주식회사 케이티 채널 상태 정보 송수신 방법 및 장치
US9667362B2 (en) * 2014-09-19 2017-05-30 Samsung Electronics Co., Ltd. Apparatus and method for selecting channel quality indicator in communication system
US10135562B2 (en) * 2015-05-28 2018-11-20 Huawei Technologies Co., Ltd. Apparatus and method for link adaptation in uplink grant-less random access
KR102142363B1 (ko) * 2016-09-28 2020-08-07 후지쯔 가부시끼가이샤 기지국 장치, 단말 장치, 무선 통신 시스템 및 무선 통신 시스템 제어 방법
CN108512632B (zh) * 2017-02-28 2021-06-01 华为技术有限公司 数据处理方法及装置
WO2018230967A1 (ko) * 2017-06-15 2018-12-20 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 이를 위한 장치
CN112039647B (zh) * 2017-06-16 2024-05-24 华为技术有限公司 信道质量反馈方法及装置
CN110999366B (zh) * 2017-08-11 2022-04-05 中兴通讯股份有限公司 用于确定信道质量指示符(cqi)索引值的***和方法
KR102484328B1 (ko) * 2017-11-17 2023-01-03 삼성전자주식회사 통신 시스템에서 제어 정보를 송신하기 위한 장치 및 방법
CN111263391B (zh) * 2018-11-30 2021-08-13 华为技术有限公司 信号处理方法、设备及基站
WO2021007809A1 (zh) * 2019-07-17 2021-01-21 华为技术有限公司 信道质量上报方法、装置及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499878A (zh) * 2008-01-31 2009-08-05 展讯通信(上海)有限公司 一种td-scdma***hsdpa中高阶调制上行信令传输方法
CN102624501A (zh) * 2011-01-31 2012-08-01 中兴通讯股份有限公司 一种发送信道质量指示的方法和装置
WO2013123961A1 (en) * 2012-02-20 2013-08-29 Nokia Siemens Networks Oy Controlling a modulation and coding scheme for a transmission between a base station and a user equipment
CN103297181A (zh) * 2012-03-02 2013-09-11 华为技术有限公司 信息传输方法和设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070270103A1 (en) * 2006-05-16 2007-11-22 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving uncompressed audio/video data
US9479300B2 (en) * 2011-10-11 2016-10-25 Lg Electronics Inc. Feedback method in coordinated multi-point communication system and apparatus thereof
GB2499671B (en) * 2012-02-27 2014-04-09 Broadcom Corp Apparatus and method for communication
US9648601B2 (en) * 2012-08-24 2017-05-09 Sun Patent Trust Communication method, base station and user equipment using a set of legacy or aggressive CQI table and legacy or aggressive MCS table
EP4075714A1 (en) * 2012-09-28 2022-10-19 BlackBerry Limited Method for enabling further l1 enhancements in lte heterogeneous networks
US9407417B2 (en) * 2013-01-09 2016-08-02 Qualcomm Incorporated Identifying modulation and coding schemes and channel quality indicators
EP2944062B1 (en) * 2013-01-11 2019-10-30 Interdigital Patent Holdings, Inc. System and method for adaptive modulation
CN103944855B (zh) * 2013-01-18 2018-08-17 中兴通讯股份有限公司 调制处理方法及装置
CN110061810B (zh) * 2013-08-09 2022-04-12 瑞典爱立信有限公司 在与用户设备通信中实现高阶调制的方法及无线电节点
KR102347644B1 (ko) * 2013-09-03 2022-01-07 삼성전자주식회사 다운링크 전송 방법 및 사용자 단말 장치
EP3047586B1 (en) * 2013-09-20 2018-04-25 Telefonaktiebolaget LM Ericsson (publ) Network node, user equipment and methods for obtaining a modulation and coding scheme
WO2015050416A1 (ko) * 2013-10-04 2015-04-09 엘지전자 주식회사 무선접속 시스템에서 256qam 지원을 위한 채널상태정보 송수신 방법 및 장치
WO2015064921A1 (ko) * 2013-10-30 2015-05-07 엘지전자 주식회사 채널 품질 지시자를 피드백하는 방법 및 사용자 장치
EP3054613B1 (en) * 2013-10-31 2018-01-10 Huawei Technologies Co., Ltd. Method and device for information announcement and reporting and data reception
JP2017022427A (ja) * 2013-11-07 2017-01-26 シャープ株式会社 通信システム、基地局装置、および端末装置
CN105850066B (zh) * 2013-12-27 2019-07-19 Lg电子株式会社 报告信道状态信息的方法和装置
EP3089512A4 (en) * 2013-12-27 2017-01-25 Sharp Kabushiki Kaisha Terminal device and base station device
CN105659509B (zh) * 2013-12-29 2019-02-19 Lg 电子株式会社 在无线通信***中反馈信道质量指示符的方法及其设备
US9860091B2 (en) * 2014-01-30 2018-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Table design for 256 quadrature amplitude modulation
WO2015141960A1 (ko) * 2014-03-21 2015-09-24 주식회사 케이티 하향링크 제어정보 송수신 방법 및 장치
WO2015141959A1 (ko) * 2014-03-21 2015-09-24 주식회사 케이티 채널 상태 정보 송수신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499878A (zh) * 2008-01-31 2009-08-05 展讯通信(上海)有限公司 一种td-scdma***hsdpa中高阶调制上行信令传输方法
CN102624501A (zh) * 2011-01-31 2012-08-01 中兴通讯股份有限公司 一种发送信道质量指示的方法和装置
WO2013123961A1 (en) * 2012-02-20 2013-08-29 Nokia Siemens Networks Oy Controlling a modulation and coding scheme for a transmission between a base station and a user equipment
CN103297181A (zh) * 2012-03-02 2013-09-11 华为技术有限公司 信息传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Standard impacts of 256QAM", 《3GPP TSG RAN WG1 MEETING #74BIS R1-134061》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632196A (zh) * 2017-03-21 2018-10-09 三星电子株式会社 无线通信方法
CN108632196B (zh) * 2017-03-21 2022-07-19 三星电子株式会社 无线通信方法
US11838155B2 (en) 2017-03-21 2023-12-05 Samsung Electronics Co., Ltd. Method and apparatus for wireless communication using modulation, coding schemes, and channel quality indicators
CN111373816A (zh) * 2017-11-16 2020-07-03 索尼公司 方法、基础设施设备以及通信装置
CN111373816B (zh) * 2017-11-16 2024-04-16 索尼公司 数据发送方法、基础设施设备以及通信装置
WO2019191979A1 (en) * 2018-04-04 2019-10-10 Zte Corporation Channel quality indicator information transmission and reception
CN111937469A (zh) * 2018-04-04 2020-11-13 中兴通讯股份有限公司 信道质量指示信息发送和接收
US11496239B2 (en) 2018-04-04 2022-11-08 Zte Corporation Channel quality indicator information transmission and reception

Also Published As

Publication number Publication date
US20170180102A1 (en) 2017-06-22
CN106063214B (zh) 2019-07-02
US20150271693A1 (en) 2015-09-24
US10009161B2 (en) 2018-06-26
CN110149169B (zh) 2021-12-14
WO2015141959A1 (ko) 2015-09-24
CN110149169A (zh) 2019-08-20
US9629010B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
CN106063214A (zh) 用于发送和接收信道状态信息的方法和其设备
CN106464647B (zh) 用于发送和接收下行链路控制信息的方法和设备
CN110519017B (zh) 确定传输块大小的方法和其设备
CN110460409B (zh) 用于发送和接收下行链路控制信息的方法和设备
JP6755092B2 (ja) 無線通信システムでチャンネル状態情報送受信方法及び装置
AU2013324548B2 (en) Method and apparatus for transmitting/receiving channel state information
CN105960787B (zh) 确定传输块大小的方法和其设备
CN105766021B (zh) 终端装置以及基站装置
US9344240B2 (en) 256QAM signal transmission/reception method and apparatus for use in mobile communication system
CN107005376B (zh) 用于单载波传输的下行链路控制信道的方法和装置
EP3520284B1 (en) Telecommunications apparatus and methods
CN111357220B (zh) 用于在通信***中传输控制信息的装置和方法
EP2888831B1 (en) Transmission adaptation
WO2021190870A1 (en) Multiple modulation scheme signalling in a single resource allocation
KR101722300B1 (ko) 채널 상태 정보 송수신 방법 및 장치
WO2020222896A1 (en) Methods and apparatus for resource pool switching and pilot adaptation
KR102091714B1 (ko) 무선이동통신 시스템에서 256qam을 송수신하는 방법 및 장치
EP2809123A1 (en) Method and system for reducing interference in a wireless network and computer program thereof
US11985661B2 (en) Systems and methods for PDSCH based CSI measurement
KR20190114290A (ko) 혼합 변조 방법
WO2016170477A1 (en) Providing information regarding transport formats based on aclr and/or evm and related methods and communication nodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant