CN106059427A - 永磁同步电机控制方法和*** - Google Patents

永磁同步电机控制方法和*** Download PDF

Info

Publication number
CN106059427A
CN106059427A CN201610511750.4A CN201610511750A CN106059427A CN 106059427 A CN106059427 A CN 106059427A CN 201610511750 A CN201610511750 A CN 201610511750A CN 106059427 A CN106059427 A CN 106059427A
Authority
CN
China
Prior art keywords
current
electric current
motor
given
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610511750.4A
Other languages
English (en)
Inventor
张宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Hpmont Technology Co Ltd
Original Assignee
Shenzhen Hpmont Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hpmont Technology Co Ltd filed Critical Shenzhen Hpmont Technology Co Ltd
Priority to CN201610511750.4A priority Critical patent/CN106059427A/zh
Publication of CN106059427A publication Critical patent/CN106059427A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种永磁同步电机控制方法和***,通过检测电机定子的输出电流,根据该输出电流计算出电机的反馈励磁电流及反馈转矩电流;再计算出电机的给定转矩电流和给定励磁电流;将上述反馈励磁电流、反馈转矩电流、给定转矩电流和给定励磁电流带入电流环后计算出电流环的励磁电压和转矩电压。将该励磁电压和该转矩电压转换为驱动信号作用于电机上,并采样此时电机上的反馈励磁电流和给定转矩电流。将采样的反馈励磁电流和给定转矩电流重复带入上述过程中,并采样出新的反馈励磁电流和给定转矩电流,直至电机的转矩电流和励磁电流达到动态稳定。因此,上述计算过程采用迭代的方式,仅选取MTPA公式中的一部分,即可达MTPA(最优转矩控制)的效果,减少了程序的运算量,并提高了电机相关***的芯片利用效率。

Description

永磁同步电机控制方法和***
技术领域
本发明涉及电机控制,特别是涉及一种计算量低的永磁同步电机控制方法和***。
背景技术
近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。与传统的电励磁同步电机相比,永磁同步电机,特别是稀土永磁同步电机具有损耗少、效率高、节电效果明显的优点。永磁同步电动机以永磁体提供励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性。
目前MTPA(最优转矩控制)的实现方法有公式计算法、仿真法和实验法。公式计算法是根据永磁电机的转矩公式,利用优化算法,直接计算出一定转矩、磁链下的交、直轴电流给定。公式计算法对电机参数的依赖性强,且实际***运行过程中参数是时变的,因此,公式计算法的计算量大、精度较低。
发明内容
基于此,有必要提供一种计算量低的永磁同步电机控制方法和***。
一种永磁同步电机控制方法,包括以下步骤:
步骤A、检测电机定子的输出电流,根据所述电机定子的输出电流计算出所述电机的反馈励磁电流及反馈转矩电流;
步骤B、计算出所述电机的给定转矩电流,并根据所述给定转矩电流计算出给定励磁电流;
步骤C、将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环,并计算出电流环的励磁电压和转矩电压;
步骤D、将所述励磁电压和所述转矩电压采用空间电压矢量转换为驱动信号,并将所述驱动信号作用于所述电机上,并采样此时电机上产生的反馈励磁电流和给定转矩电流;
步骤E、将步骤D中的反馈励磁电流替代步骤A中的反馈励磁电流,并采用步骤D中给定转矩电流计算步B中的给定励磁电流后,重复步骤C-D后再次采样此时电机上产生的反馈励磁电流和给定转矩电流;
重复上述步骤A-E,直至电机的转矩电流和励磁电流达到动态稳定。
在其中一个实施例中,所述步骤A包括:
根据变频器内置的相电流检测电路检测出电机定子的三相相电流;
将获得的三相相电流通过Clarke变换公式转换为两相静止坐标系下电流;
对同步频率We进行积分得到坐标变换角度;
根据坐标变换角度,计算出正弦值和余弦值;
根据坐标变换角度及对应计算出正弦值和余弦值,将两相静止坐标系下的电流通过park变换转换为M-T旋转坐标系下的所述电机的反馈励磁电流、反馈转矩电流。
在其中一个实施例中,所述步骤B包括:
将所述电机的目标频率与检测频率进行PID调节后,根据速度环的输出计算出所述电机的给定转矩电流;
将所述给定转矩电流带入MTPA公式,并计算出所述给定励磁电流。
在其中一个实施例中,所述将所述给定转矩电流带入MTPA公式,并计算出所述给定励磁电流的步骤包括:
根据公式(1)计算给定励磁电流;
其中,Ψ为电机磁通、Ld为d轴电感、Lq为q轴电感、It为给定转矩电流、Im为给定励磁电流。
在其中一个实施例中,所述步骤C包括:
将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环后,对该电流环进行PID调节。
在其中一个实施例中,所述步骤D包括:
所述励磁电压和所述转矩电压采用空间电压矢量转换为6路驱动信号;
将所述6路驱动信号经过智能功率模块作用于所述电机上;
采样此时所述电机上的反馈励磁电流和给定转矩电流。
一种永磁同步电机控制***,包括检测模块、计算模块、转换模块及采样模块;
所述检测模块用于检测电机定子的输出电流;
所述计算模块用于根据所述电机定子的输出电流计算出所述电机的反馈励磁电流及反馈转矩电流;
所述计算模块还用于计算出所述电机的给定转矩电流,并根据所述给定转矩电流计算出给定励磁电流;
所述计算模块将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环,并计算出电流环的励磁电压和转矩电压;
所述转换模块用于将所述励磁电压和所述转矩电压采用空间电压矢量转换为驱动信号,并将所述驱动信号作用于所述电机上,所述采样模块用于采样此时电机上产生的反馈励磁电流和给定转矩电流;
所述计算模块将采样模块采样的所述反馈励磁电流、所述给定转矩电流,及将再次计算出的所述反馈转矩电流、所述给定励磁电流带入所述电机的电流环,并计算出电流环的励磁电压和转矩电压;所述采样模块用于重复采样该反馈励磁电流和给定转矩电流,直至电机的转矩电流和励磁电流达到动态稳定。
在其中一个实施例中,所述检测模块还用于根据变频器内置的相电流检测电路检测出电机定子的三相相电流;
所述转换模块用于将获得的三相相电流通过Clarke变换公式转换为两相静止坐标系下电流;
所述计算模块用于对同步频率We进行积分得到坐标变换角度;
所述计算模块还用于根据坐标变换角度,计算出正弦值和余弦值;
所述计算模块还用于根据坐标变换角度及对应计算出正弦值和余弦值,将两相静止坐标系下的电流通过park变换转换为M-T旋转坐标系下的所述电机的反馈励磁电流、反馈转矩电流。
在其中一个实施例中,所述计算模块还用于将所述电机的目标频率与检测频率进行PID调节后,根据速度环的输出计算出所述电机的给定转矩电流;
所述计算模块还用于将所述给定转矩电流带入MTPA公式,并计算出所述给定励磁电流;
所述计算模块根据公式(1)计算给定励磁电流;
其中,Ψ为电机磁通、Ld为d轴电感、Lq为q轴电感、It为给定转矩电流、Im为给定励磁电流。
在其中一个实施例中,所述计算模块还用于将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环后,对该电流环进行PID调节。
上述计算量低的永磁同步电机控制方法和***通过检测电机定子的输出电流,根据该输出电流计算出电机的反馈励磁电流及反馈转矩电流;再计算出电机的给定转矩电流和给定励磁电流;将上述反馈励磁电流、反馈转矩电流、给定转矩电流和给定励磁电流带入电流环后计算出电流环的励磁电压和转矩电压。将该励磁电压和该转矩电压转换为驱动信号作用于电机上,并采样此时电机上的反馈励磁电流和给定转矩电流。将采样的反馈励磁电流和给定转矩电流重复带入上述过程中,并采样出新的反馈励磁电流和给定转矩电流,直至电机的转矩电流和励磁电流达到动态稳定。因此,上述计算过程采用迭代的方式,仅选取MTPA公式中的一部分,即可达MTPA(最优转矩控制)的效果,减少了程序的运算量,并提高了电机相关***的芯片利用效率。
附图说明
图1为永磁同步电机控制方法的流程图;
图2为获取反馈励磁电流和反馈转矩电流的流程图;
图3为计算给定励磁电流和给定转矩电流的流程图;
图4为采样电机反馈励磁电流和给定转矩电流的流程图;
图5为永磁同步电机控制***的模块图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,为永磁同步电机控制方法的流程图。
一种永磁同步电机控制方法,包括以下步骤:
步骤A、检测电机定子的输出电流,根据电机定子的输出电流计算出电机的反馈励磁电流及反馈转矩电流。
请结合图2。
步骤A包括:
步骤S210,根据变频器内置的相电流检测电路检测出电机定子的三相相电流。
步骤S212,将获得的三相相电流通过Clarke变换公式转换为两相静止坐标系下电流。
步骤S214,对同步频率We进行积分得到坐标变换角度。
步骤S216,根据坐标变换角度,计算出正弦值和余弦值。
步骤S218,根据坐标变换角度及对应计算出正弦值和余弦值,将两相静止坐标系下的电流通过park变换转换为M-T旋转坐标系下的电机的反馈励磁电流、反馈转矩电流。
在本实施例中,电机的反馈励磁电流和反馈转矩电流需要计算得出。具体为,根据三相相电流总和为零求出第三相电流。然后依次通过Clarke变换、park变换获得M-T旋转坐标系下的反馈励磁电流、反馈转矩电流。
在park换之前,需要求取对应的坐标变换角度和对应的正弦值、余弦值。
步骤B、计算出电机的给定转矩电流,并根据给定转矩电流计算出给定励磁电流。
请结合图3。
步骤B包括:
步骤S310,将电机的目标频率与检测频率进行PID调节后,根据速度环的输出计算出电机的给定转矩电流。
步骤S312,将给定转矩电流带入MTPA公式,并计算出给定励磁电流。
具体的,步骤S310包括:
根据公式(1)计算给定励磁电流;
其中,Ψ为电机磁通、Ld为d轴电感、Lq为q轴电感、It为给定转矩电流、Im为给定励磁电流。
步骤C、将反馈励磁电流、反馈转矩电流、给定转矩电流及给定励磁电流带入电机的电流环,并计算出电流环的励磁电压和转矩电压。
步骤C包括:将反馈励磁电流、反馈转矩电流、给定转矩电流及给定励磁电流带入电机的电流环后,对该电流环进行PID调节。
PID调节(PID regulating)是经典控制理论中控制***的一种基本调节方式.是具有比例、积分和微分作用的一种线性调节规律。PID调节的作用是将给定值r与被控变量的实际量测值y的偏差。
此时,带入电流环的反馈励磁电流、反馈转矩电流、给定转矩电流及给定励磁电流均为电机当前的实时电流。
步骤D、将励磁电压和转矩电压采用空间电压矢量转换为驱动信号,并将驱动信号作用于电机上,并采样此时电机上产生的反馈励磁电流和给定转矩电流。
请结合图4。
步骤D包括:
步骤S410,励磁电压和转矩电压采用空间电压矢量转换为6路驱动信号。
步骤S412,将6路驱动信号经过智能功率模块作用于电机上。
步骤S414,采样此时电机上的反馈励磁电流和给定转矩电流。
步骤E、将步骤D中的反馈励磁电流替代步骤A中的反馈励磁电流,并采用步骤D中给定转矩电流计算步B中的给定励磁电流后,重复步骤C-D后再次采样此时电机上产生的反馈励磁电流和给定转矩电流。
在本实施例中,执行步骤A获取电机当前的反馈转矩电流,并读取步骤E中电机当前的反馈励磁电流。
执行步骤B,利用步骤D中的给定转矩电流计算出当前的给定转矩电流。
将上述当前的反馈励磁电流、反馈转矩电流、给定转矩电流及给定励磁电流带入步骤C中,并执行步骤C-D后,再次采样此时电机上产生的反馈励磁电流和给定转矩电流。
步骤F、重复上述步骤A-E,直至电机的转矩电流和励磁电流达到动态稳定。
按上述执行过程,将采样的反馈励磁电流和给定转矩电流反复迭代如上述方法,最终能够计算出稳定状态的励磁电流和转矩电流,即电机进入稳定状态。
具体的,基于上述实施例,永磁同步电机控制方法的工作原理如下:
首先,执行步骤A-D,其中,步骤A和步骤B没有先后顺序,两者可以任意顺序执行。执行完毕步骤A-D后,会获取电机当前的反馈励磁电流和给定转矩电流。
在步骤E中,会再次执行一遍步骤A-D,但是,需将步骤A-D中的反馈励磁电流和给定转矩电流替换为上次执行步骤D获取的反馈励磁电流和给定转矩电流。即反馈励磁电流、反馈转矩电流、给定转矩电流及给定励磁电流均为电机当前的实时电流。执行步骤E后,会再次获取电机当前的反馈励磁电流和给定转矩电流。
按上述步骤反复迭代,即每次都采用最新采样的反馈励磁电流和给定转矩电流作为计算下次励磁电压和转矩电压的已知量,然后再通过计算出的励磁电压和转矩电压获取电机当前的反馈励磁电流和给定转矩电流。
由此可知,上述方法仅需选取MTPA公式中的一部分,即可达到MTPA的效果,减少了计算量,并提高了电机***的芯片利用效率。
请结合图5。
基于上述所有实施例,一种永磁同步电机控制***,包括检测模块501、计算模块502、转换模块503及采样模块504。
检测模块501用于检测电机定子的输出电流。计算模块502用于根据电机定子的输出电流计算出电机的反馈励磁电流及反馈转矩电流;计算模块502还用于计算出电机的给定转矩电流,并根据给定转矩电流计算出给定励磁电流;计算模块502将反馈励磁电流、反馈转矩电流、给定转矩电流及给定励磁电流带入电机的电流环,并计算出电流环的励磁电压和转矩电压;转换模块503用于将励磁电压和转矩电压采用空间电压矢量转换为驱动信号,并将驱动信号作用于电机上,采样模块504用于采样此时电机上产生的反馈励磁电流和给定转矩电流;计算模块502将采样模块504采样的反馈励磁电流、给定转矩电流,及将再次计算出的反馈转矩电流、给定励磁电流带入电机的电流环,并计算出电流环的励磁电压和转矩电压;采样模块504用于重复采样该反馈励磁电流和给定转矩电流,直至电机的转矩电流和励磁电流达到动态稳定。
检测模块501还用于根据变频器内置的相电流检测电路检测出电机定子的三相相电流。
转换模块503用于将获得的三相相电流通过Clarke变换公式转换为两相静止坐标系下电流。
计算模块502用于对同步频率We进行积分得到坐标变换角度。
计算模块502还用于根据坐标变换角度,计算出正弦值和余弦值。
计算模块502还用于根据坐标变换角度及对应计算出正弦值和余弦值,将两相静止坐标系下的电流通过park变换转换为M-T旋转坐标系下的电机的反馈励磁电流、反馈转矩电流。
计算模块502还用于将电机的目标频率与检测频率进行PID调节后,根据速度环的输出计算出电机的给定转矩电流。
计算模块502还用于将给定转矩电流带入MTPA公式,并计算出给定励磁电流。
计算模块502根据公式(1)计算给定励磁电流;
其中,Ψ为电机磁通、Ld为d轴电感、Lq为q轴电感、It为给定转矩电流、Im为给定励磁电流。
计算模块502还用于将反馈励磁电流、反馈转矩电流、给定转矩电流及给定励磁电流带入电机的电流环后,对该电流环进行PID调节。
上述永磁同步电机控制方法和***通过检测电机定子的输出电流,根据该输出电流计算出电机的反馈励磁电流及反馈转矩电流;再计算出电机的给定转矩电流和给定励磁电流;将上述反馈励磁电流、反馈转矩电流、给定转矩电流和给定励磁电流带入电流环后计算出电流环的励磁电压和转矩电压。将该励磁电压和该转矩电压转换为驱动信号作用于电机上,并采样此时电机上的反馈励磁电流和给定转矩电流。将采样的反馈励磁电流和给定转矩电流重复带入上述过程中,并采样出新的反馈励磁电流和给定转矩电流,直至电机的转矩电流和励磁电流达到动态稳定。因此,上述计算过程采用迭代的方式,仅选取MTPA公式中的一部分,即可达MTPA(最优转矩控制)的效果,减少了程序的运算量,并提高了电机相关***的芯片利用效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种永磁同步电机控制方法,包括以下步骤:
步骤A、检测电机定子的输出电流,根据所述电机定子的输出电流计算出所述电机的反馈励磁电流及反馈转矩电流;
步骤B、计算出所述电机的给定转矩电流,并根据所述给定转矩电流计算出给定励磁电流;
步骤C、将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环,并计算出电流环的励磁电压和转矩电压;
步骤D、将所述励磁电压和所述转矩电压采用空间电压矢量转换为驱动信号,并将所述驱动信号作用于所述电机上,并采样此时电机上产生的反馈励磁电流和给定转矩电流;
步骤E、将步骤D中的反馈励磁电流替代步骤A中的反馈励磁电流,并采用步骤D中给定转矩电流计算步B中的给定励磁电流后,重复步骤C-D后再次采样此时电机上产生的反馈励磁电流和给定转矩电流;
重复上述步骤A-E,直至电机的转矩电流和励磁电流达到动态稳定。
2.根据权利要求1所述的永磁同步电机控制方法,其特征在于,所述步骤A包括:
根据变频器内置的相电流检测电路检测出电机定子的三相相电流;
将获得的三相相电流通过Clarke变换公式转换为两相静止坐标系下电流;
对同步频率We进行积分得到坐标变换角度;
根据坐标变换角度,计算出正弦值和余弦值;
根据坐标变换角度及对应计算出正弦值和余弦值,将两相静止坐标系下的电流通过park变换转换为M-T旋转坐标系下的所述电机的反馈励磁电流、反馈转矩电流。
3.根据权利要求1所述的永磁同步电机控制方法,其特征在于,所述步骤B包括:
将所述电机的目标频率与检测频率进行PID调节后,根据速度环的输出计算出所述电机的给定转矩电流;
将所述给定转矩电流带入MTPA公式,并计算出所述给定励磁电流。
4.根据权利要求3所述的永磁同步电机控制方法,其特征在于,
所述将所述给定转矩电流带入MTPA公式,并计算出所述给定励磁电流的步骤包括:
根据公式(1)计算给定励磁电流;
其中,Ψ为电机磁通、Ld为d轴电感、Lq为q轴电感、It为给定转矩电流、Im为给定励磁电流。
5.根据权利要求1所述的永磁同步电机控制方法,其特征在于,所述步骤C包括:
将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环后,对该电流环进行PID调节。
6.根据权利要求1所述的永磁同步电机控制方法,其特征在于,所述步骤D包括:
所述励磁电压和所述转矩电压采用空间电压矢量转换为6路驱动信号;
将所述6路驱动信号经过智能功率模块作用于所述电机上;
采样此时所述电机上的反馈励磁电流和给定转矩电流。
7.一种永磁同步电机控制***,其特征在于,包括检测模块、计算模块、转换模块及采样模块;
所述检测模块用于检测电机定子的输出电流;
所述计算模块用于根据所述电机定子的输出电流计算出所述电机的反馈励磁电流及反馈转矩电流;
所述计算模块还用于计算出所述电机的给定转矩电流,并根据所述给定转矩电流计算出给定励磁电流;
所述计算模块将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环,并计算出电流环的励磁电压和转矩电压;
所述转换模块用于将所述励磁电压和所述转矩电压采用空间电压矢量转换为驱动信号,并将所述驱动信号作用于所述电机上,所述采样模块用于采样此时电机上产生的反馈励磁电流和给定转矩电流;
所述计算模块将采样模块采样的所述反馈励磁电流、所述给定转矩电流,及将再次计算出的所述反馈转矩电流、所述给定励磁电流带入所述电机的电流环,并计算出电流环的励磁电压和转矩电压;所述采样模块用于重复采样该反馈励磁电流和给定转矩电流,直至电机的转矩电流和励磁电流达到动态稳定。
8.根据权利要求7所述的永磁同步电机控制***,其特征在于,所述检测模块还用于根据变频器内置的相电流检测电路检测出电机定子的三相相电流;
所述转换模块用于将获得的三相相电流通过Clarke变换公式转换为两相静止坐标系下电流;
所述计算模块用于对同步频率We进行积分得到坐标变换角度;
所述计算模块还用于根据坐标变换角度,计算出正弦值和余弦值;
所述计算模块还用于根据坐标变换角度及对应计算出正弦值和余弦值,将两相静止坐标系下的电流通过park变换转换为M-T旋转坐标系下的所述电机的反馈励磁电流、反馈转矩电流。
9.根据权利要求7所述的永磁同步电机控制***,其特征在于,所述计算模块还用于将所述电机的目标频率与检测频率进行PID调节后,根据速度环的输出计算出所述电机的给定转矩电流;
所述计算模块还用于将所述给定转矩电流带入MTPA公式,并计算出所述给定励磁电流;
所述计算模块根据公式(1)计算给定励磁电流;
其中,Ψ为电机磁通、Ld为d轴电感、Lq为q轴电感、It为给定转矩电流、Im为给定励磁电流。
10.根据权利要求7所述的永磁同步电机控制***,其特征在于,所述计算模块还用于将所述反馈励磁电流、所述反馈转矩电流、所述给定转矩电流及所述给定励磁电流带入所述电机的电流环后,对该电流环进行PID调节。
CN201610511750.4A 2016-07-01 2016-07-01 永磁同步电机控制方法和*** Pending CN106059427A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610511750.4A CN106059427A (zh) 2016-07-01 2016-07-01 永磁同步电机控制方法和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610511750.4A CN106059427A (zh) 2016-07-01 2016-07-01 永磁同步电机控制方法和***

Publications (1)

Publication Number Publication Date
CN106059427A true CN106059427A (zh) 2016-10-26

Family

ID=57201495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610511750.4A Pending CN106059427A (zh) 2016-07-01 2016-07-01 永磁同步电机控制方法和***

Country Status (1)

Country Link
CN (1) CN106059427A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602939A (zh) * 2016-11-30 2017-04-26 中冶南方(武汉)自动化有限公司 一种永磁同步电机转矩控制方法
CN108415474A (zh) * 2018-03-12 2018-08-17 深圳市海浦蒙特科技有限公司 应用于压滤机的变频器控制方法及变频器
CN112014732A (zh) * 2020-08-27 2020-12-01 中科新松有限公司 一种扭矩电流检测装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386834A (zh) * 2010-08-27 2012-03-21 永济新时速电机电器有限责任公司 永磁同步电机的矢量控制方法和装置
CN104300866A (zh) * 2014-10-10 2015-01-21 四川长虹电器股份有限公司 一种基于svpwm的电机控制方法
US20150188474A1 (en) * 2014-01-02 2015-07-02 Rahul Kanchan Control system and method for an electric three-phase variable speed motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386834A (zh) * 2010-08-27 2012-03-21 永济新时速电机电器有限责任公司 永磁同步电机的矢量控制方法和装置
US20150188474A1 (en) * 2014-01-02 2015-07-02 Rahul Kanchan Control system and method for an electric three-phase variable speed motor
CN104300866A (zh) * 2014-10-10 2015-01-21 四川长虹电器股份有限公司 一种基于svpwm的电机控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
莫会成等: "《微特电机》", 30 September 2015, 中国电力出版社 *
赵纪龙等: "轴向磁场磁通切换永磁电机矢量控制", 《东南大学学报(自然科学版)》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602939A (zh) * 2016-11-30 2017-04-26 中冶南方(武汉)自动化有限公司 一种永磁同步电机转矩控制方法
CN106602939B (zh) * 2016-11-30 2019-06-18 中冶南方(武汉)自动化有限公司 一种永磁同步电机转矩控制方法
CN108415474A (zh) * 2018-03-12 2018-08-17 深圳市海浦蒙特科技有限公司 应用于压滤机的变频器控制方法及变频器
CN108415474B (zh) * 2018-03-12 2020-04-28 深圳市海浦蒙特科技有限公司 应用于压滤机的变频器控制方法及变频器
CN112014732A (zh) * 2020-08-27 2020-12-01 中科新松有限公司 一种扭矩电流检测装置和方法
CN112014732B (zh) * 2020-08-27 2023-06-02 中科新松有限公司 一种扭矩电流检测装置和方法

Similar Documents

Publication Publication Date Title
Song et al. High-precision sensorless drive for high-speed BLDC motors based on the virtual third harmonic back-EMF
CN105610369B (zh) 一种基于滑模观测器的异步电机磁链观测方法
CN108521242A (zh) 一种永磁同步电机通用控制***及其控制方法
CN106788054B (zh) 一种基于旋转高频注入法的无速度传感器控制方法
CN106059427A (zh) 永磁同步电机控制方法和***
CN104836499B (zh) 永磁同步电机交、直轴电感参数在线辨识方法及***
Chang et al. Type-V exponential regression for online sensorless position estimation of switched reluctance motor
WO2022134661A1 (zh) 可调磁通永磁同步电机全速域效率最优控制磁化状态选择方法及在线控制方法
CN105871281B (zh) 一种改进的永磁同步电机模型预测控制算法
CN110535392A (zh) 一种基于lm算法的永磁同步电机参数辨识方法
Yan et al. Torque estimation and control of PMSM based on deep learning
CN103718454B (zh) 永磁同步电动机的电动机常数计算方法以及电动机常数计算装置
CN115276487A (zh) 一种永磁同步电机控制方法
Sun et al. A 2-D fuzzy logic based MRAS scheme for sensorless control of interior permanent magnet synchronous motor drives with cyclic fluctuating loads
CN110504881A (zh) 一种基于tnpc逆变器的永磁同步电机无传感器控制方法
CN106169895B (zh) 一种永磁直线同步电机电气参数测量方法
CN106788068B (zh) 定子电流轻度失真时估算电机转子转速与位置角的方法
CN112468032B (zh) 永磁同步电机的全速域效率map图生成方法
CN112468036B (zh) 永磁同步电机全速域效率最优控制电流轨迹搜索方法及在线控制方法
CN110383671A (zh) 用于确定电机的直轴电感和交轴电感的方法、对应的计算机程序以及装置
Bober Measurement of objective function for BLDC motor optimization
Matsumoto et al. Position sensorless control of IPMSMs using full-order flux observer based on an algebraic design method
Kang et al. Simple estimation scheme for initial rotor position and inductances for effective MTPA-operation in wind-power systems using an IPMSM
CN114123878A (zh) 一种永磁三相交流电机及其负载的模拟方法及装置
Johansson Evaluation of sensor solutions & motor speed control methods for bldcm/pmsm in aerospace applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026

RJ01 Rejection of invention patent application after publication