CN106058193A - Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof - Google Patents
Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof Download PDFInfo
- Publication number
- CN106058193A CN106058193A CN201610575911.6A CN201610575911A CN106058193A CN 106058193 A CN106058193 A CN 106058193A CN 201610575911 A CN201610575911 A CN 201610575911A CN 106058193 A CN106058193 A CN 106058193A
- Authority
- CN
- China
- Prior art keywords
- ion battery
- sodium
- negative electrode
- molybdenum
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001415 sodium ion Inorganic materials 0.000 title claims abstract description 54
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000002105 nanoparticle Substances 0.000 claims abstract description 38
- CNEOGBIICRAWOH-UHFFFAOYSA-N methane;molybdenum Chemical compound C.[Mo] CNEOGBIICRAWOH-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 27
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 18
- 239000011733 molybdenum Substances 0.000 claims abstract description 18
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 238000003763 carbonization Methods 0.000 claims abstract description 15
- 239000011734 sodium Substances 0.000 claims abstract description 15
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 14
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 238000011065 in-situ storage Methods 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims description 21
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000006258 conductive agent Substances 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- CQQNXDUDWPPOEK-UHFFFAOYSA-N [Mo]C1=CC=CC=CC1 Chemical compound [Mo]C1=CC=CC=CC1 CQQNXDUDWPPOEK-UHFFFAOYSA-N 0.000 claims description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 2
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 2
- 239000011609 ammonium molybdate Substances 0.000 claims description 2
- 229940010552 ammonium molybdate Drugs 0.000 claims description 2
- 235000015393 sodium molybdate Nutrition 0.000 claims description 2
- 239000011684 sodium molybdate Substances 0.000 claims description 2
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 2
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 abstract description 10
- 229910039444 MoC Inorganic materials 0.000 abstract description 10
- 239000010405 anode material Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 10
- 238000009831 deintercalation Methods 0.000 abstract description 6
- 230000002441 reversible effect Effects 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 3
- 238000003487 electrochemical reaction Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical group COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 12
- 229960004419 dimethyl fumarate Drugs 0.000 description 12
- 239000012300 argon atmosphere Substances 0.000 description 9
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 235000010413 sodium alginate Nutrition 0.000 description 4
- 239000000661 sodium alginate Substances 0.000 description 4
- 229940005550 sodium alginate Drugs 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000006245 Carbon black Super-P Substances 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 229910021201 NaFSI Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- -1 lithium ions Chemical compound 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013348 molybdenum-based metal-organic framework Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- VCCATSJUUVERFU-UHFFFAOYSA-N sodium bis(fluorosulfonyl)azanide Chemical compound FS(=O)(=O)N([Na])S(F)(=O)=O VCCATSJUUVERFU-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- YLKTWKVVQDCJFL-UHFFFAOYSA-N sodium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Na+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F YLKTWKVVQDCJFL-UHFFFAOYSA-N 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于新能源技术领域,公开了一种新型钠离子电池负极材料及其制备方法和应用。本发明制备方法包括以下步骤:将碳源和钼源溶解在溶剂中,加热反应,得到前驱体Mo3(BTC)2,再进行原位碳化,得到一碳化一钼纳米粒与超薄石墨烯壳层的复合物。本发明的负极材料具体结构为超薄石墨烯壳包覆一碳化一钼纳米粒,其中,一碳化一钼纳米粒的直径为1~10nm。本发明的负极材料在与钠的电化学反应过程中,与钠离子发生转化反应实现钠离子的脱嵌,具有可逆的脱嵌钠容量,良好的储钠性能,较高的可逆容量和较好的循环性能,制备方法简单,成本低廉,环境友好,可应用于钠离子电池中,为钠离子电池负极材料的探索提供了更多的可能。
The invention belongs to the technical field of new energy, and discloses a novel negative electrode material of a sodium ion battery, a preparation method and an application thereof. The preparation method of the present invention includes the following steps: dissolving the carbon source and the molybdenum source in a solvent, heating and reacting to obtain the precursor Mo 3 (BTC) 2 , and then performing in-situ carbonization to obtain molybdenum carbide nanoparticles and ultrathin graphene shell complex. The specific structure of the negative electrode material of the present invention is that the ultrathin graphene shell coats the molybdenum monocarbide nanoparticles, wherein the molybdenum monocarbide nano particles have a diameter of 1-10 nm. During the electrochemical reaction process with sodium, the negative electrode material of the present invention undergoes conversion reaction with sodium ions to realize the deintercalation of sodium ions, has reversible sodium deintercalation capacity, good sodium storage performance, higher reversible capacity and better Excellent cycle performance, simple preparation method, low cost, and environmental friendliness, can be applied to sodium-ion batteries, and provides more possibilities for the exploration of anode materials for sodium-ion batteries.
Description
技术领域technical field
本发明属于新能源技术领域,特别涉及一种新型钠离子电池负极材料及其制备方法和应用。The invention belongs to the technical field of new energy, and in particular relates to a novel negative electrode material for a sodium ion battery, a preparation method and application thereof.
背景技术Background technique
当前各国能源问题日益紧张,而需求量仍在继续增大,近些年来,随着科技的进步和改革创新,电子设备,电力工具,电动汽车等也快速发展,探索高效、便携、安全绿色的储能材料成为发展的必然。锂离子电池由于能量密度大,现已经得到广泛的商业化应用,尤其在动力汽车,便携式电源,电子设备等方面发挥了其优势,但是锂资源有限,价格昂贵,而对锂的需求还在不断增加,成本较高限制了锂离子电池的大规模应用。因此研究者们开始将目光移到了钠离子电池,相比锂(0.006%)而言,钠储量丰富,占2.64%,在大规模储能方面具有很大优势,具有非常广阔的应用前景。At present, the energy problems in various countries are becoming more and more tense, and the demand is still increasing. In recent years, with the advancement of science and technology and reform and innovation, electronic equipment, power tools, electric vehicles, etc. have also developed rapidly. Exploring efficient, portable, safe and green Energy storage materials have become an inevitable development. Due to its high energy density, lithium-ion batteries have been widely used commercially, especially in power vehicles, portable power supplies, electronic devices, etc., but lithium resources are limited and expensive, and the demand for lithium continues The high cost limits the large-scale application of lithium-ion batteries. Therefore, researchers began to turn their attention to sodium-ion batteries. Compared with lithium (0.006%), sodium reserves are abundant, accounting for 2.64%. It has great advantages in large-scale energy storage and has very broad application prospects.
金属钠与锂属于同一主族,具有相似的物理化学性质,因此开发性质优异的钠离子电池具有更大应用前景,从而探索高容量、循环稳定等优异性能的钠离子电池负极材料成为了目前研究领域的热点。然而较大的钠离子半径使得脱嵌钠过程缓慢,目前商业化应用的石墨负极,钠离子不能像在锂离子一样自由的嵌钠,形成NaC64容量很低。合金负极储钠容量较高,但存在很大的体积效应,循环性能差,因此目前仍需要寻找一种具有高容量、稳定性好、安全性好的负极材料。Sodium metal and lithium belong to the same main group and have similar physical and chemical properties. Therefore, the development of sodium-ion batteries with excellent properties has greater application prospects. Therefore, it is currently a research topic to explore anode materials for sodium-ion batteries with excellent performance such as high capacity and cycle stability. field hotspots. However, the large radius of sodium ions makes the process of deintercalation of sodium slow. In the current commercially used graphite negative electrodes, sodium ions cannot freely intercalate sodium like lithium ions, and the capacity of forming NaC 64 is very low. The alloy anode has a high sodium storage capacity, but has a large volume effect and poor cycle performance. Therefore, it is still necessary to find an anode material with high capacity, good stability, and good safety.
一碳化一钼(MoC)作为一种典型的过渡族金属化合物,其作为电池负极材料还未有相关的报道,本发明申请人首次将一碳化一钼(MoC)材料应用于钠离子电池负极材料,其在电池中的反应机理与其他过渡族金属化合物相似,通过与钠离子发生转化反应贡献容量。转化反应为电化学储能形式之一,其他的还包括脱嵌反应、合金化反应。转化反应与其他两种反应机理不同,它是一种可逆的氧化还原反应,因此一碳化一钼(MoC)是一类非常有潜力的钠离子电池负极材料。Molybdenum monocarbide (MoC) is as a kind of typical transition group metal compound, and it does not have relevant report as battery anode material yet, the applicant of the present invention applies molybdenum monocarbide (MoC) material to sodium ion battery anode material for the first time , and its reaction mechanism in the battery is similar to that of other transition metal compounds, contributing to capacity through conversion reactions with sodium ions. The conversion reaction is one of the forms of electrochemical energy storage, and others include deintercalation reactions and alloying reactions. The conversion reaction is different from the other two reaction mechanisms, it is a reversible redox reaction, so molybdenum monocarbide (MoC) is a class of very potential anode materials for sodium ion batteries.
发明内容Contents of the invention
为了克服上述现有技术钠离子电池负极材料的研究现状,存在容量低,循环性能差的缺点与不足,本发明的首要目的在于提供一种新型钠离子电池负极材料。In order to overcome the above-mentioned research status of the negative electrode material of the prior art sodium ion battery, there are the shortcomings and deficiencies of low capacity and poor cycle performance, the primary purpose of the present invention is to provide a new type of negative electrode material for sodium ion battery.
本发明的负极材料为一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS),其中一碳化钼(MoC)纳米粒的直径为1~10nm。The negative electrode material of the present invention is a composite (MoC@GS) of molybdenum carbide nanoparticles and ultra-thin graphene shells, wherein the diameter of the molybdenum carbide (MoC) nanoparticles is 1-10 nm.
本发明另一目的在于提供一种上述新型钠离子电池负极材料的制备方法。Another object of the present invention is to provide a method for preparing the above-mentioned novel negative electrode material for sodium ion batteries.
本发明制备方法采用两步法制备得到负极材料,首先制备前驱体Mo3(BTC)2(一种含钼的金属-有机框架材料,Mo-MOF),然后进行原位碳化得到负极材料。The preparation method of the present invention adopts a two-step method to prepare the negative electrode material. First, the precursor Mo 3 (BTC) 2 (a metal-organic framework material containing molybdenum, Mo-MOF) is prepared, and then the negative electrode material is obtained by in-situ carbonization.
本发明再一目的在于提供上述新型钠离子电池负极材料在钠离子电池中的应用。Another object of the present invention is to provide the application of the above-mentioned novel negative electrode material for sodium ion batteries in sodium ion batteries.
本发明的目的通过下述方案实现:The object of the present invention is achieved through the following solutions:
一种新型钠离子电池负极材料,为一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS),具体结构为超薄石墨烯壳包覆一碳化一钼纳米粒,其中,一碳化一钼(MoC)纳米粒的直径为1~10nm。A new type of negative electrode material for sodium ion batteries, which is a composite of molybdenum carbide nanoparticles and ultra-thin graphene shells (MoC@GS). The specific structure is that ultrathin graphene shells coat molybdenum carbide nanoparticles. , Molybdenum carbide (MoC) nanoparticles have a diameter of 1-10 nm.
本发明还提供一种上述新型钠离子电池负极材料的制备方法,包括以下步骤:The present invention also provides a preparation method of the above-mentioned novel sodium ion battery negative electrode material, comprising the following steps:
将碳源和钼源溶解在溶剂中,加热反应,得到前驱体Mo3(BTC)2,再进行原位碳化,得到一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)。Dissolve the carbon source and the molybdenum source in the solvent, heat the reaction to obtain the precursor Mo 3 (BTC) 2 , and then carry out in-situ carbonization to obtain the composite of molybdenum monocarbide nanoparticles and ultrathin graphene shell (MoC@ GS).
在其中一个实施例中,所述的碳源为均苯三甲酸(H3BTC)、苯胺(C6H7N)和对苯二甲酸(C8H6O4)中的至少一种。In one embodiment, the carbon source is at least one of trimesic acid (H 3 BTC), aniline (C 6 H 7 N) and terephthalic acid (C 8 H 6 O 4 ).
在其中一个实施例中,所述的碳源为均苯三甲酸(H3BTC)。In one embodiment, the carbon source is trimesic acid (H 3 BTC).
在其中一个实施例中,所述的钼源为六羰基钼(Mo(CO)6)、三羰基环庚三烯基钼(C11H14MoO3)、钼酸铵(H8MoN2O4)和钼酸钠(Na2MoO4)中的至少一种。In one embodiment, the molybdenum source is molybdenum hexacarbonyl (Mo(CO) 6 ), cycloheptatrienyl molybdenum tricarbonyl (C 11 H 14 MoO 3 ), ammonium molybdate (H 8 MoN 2 O 4 ) and at least one of sodium molybdate (Na 2 MoO 4 ).
在其中一个实施例中,所述的钼源为六羰基钼(Mo(CO)6)。In one embodiment, the molybdenum source is molybdenum hexacarbonyl (Mo(CO) 6 ).
在其中一个实施例中,所用钼源和碳源的摩尔比1:10~1:15。In one embodiment, the molar ratio of molybdenum source to carbon source is 1:10˜1:15.
在其中一个实施例中,所用钼源和碳源的摩尔比1:13.6。In one of the embodiments, the molar ratio of molybdenum source and carbon source used is 1:13.6.
在其中一个实施例中,所述加热反应的温度为100~200℃。In one embodiment, the temperature of the heating reaction is 100-200°C.
在其中一个实施例中,所述加热反应的温度为150~160℃。In one embodiment, the temperature of the heating reaction is 150-160°C.
在其中一个实施例中,所述加热反应的温度为155℃。In one embodiment, the temperature of the heating reaction is 155°C.
在其中一个实施例中,所述加热反应的时间为3天或3天以上。In one embodiment, the heating reaction time is 3 days or more.
在其中一个实施例中,所述加热反应的时间为5天或5天以上。In one embodiment, the heating reaction time is 5 days or more.
在其中一个实施例中,所述碳化的温度为500~1000℃。In one embodiment, the carbonization temperature is 500-1000°C.
在其中一个实施例中,所述碳化的温度为700~900℃。In one embodiment, the carbonization temperature is 700-900°C.
在其中一个实施例中,所述碳化的时间为2~8h。In one embodiment, the carbonization time is 2-8 hours.
在其中一个实施例中,所述碳化的时间为5h。In one of the embodiments, the carbonization time is 5 hours.
在其中一个实施例中,所述溶剂选自酯类的有机溶剂中的一种或多种。In one embodiment, the solvent is selected from one or more of ester organic solvents.
在其中一个实施例中,所述溶剂为富马酸二甲酯(DMF)。In one embodiment, the solvent is dimethyl fumarate (DMF).
在其中一个实施例中,所述溶剂为除氧的富马酸二甲酯(DMF)。In one embodiment, the solvent is deoxygenated dimethyl fumarate (DMF).
所述原位碳化后得到的产物,可利用溶剂洗涤后再干燥得到纯化的产物。所述洗涤的溶剂优选为除氧的富马酸二甲酯(DMF)。所述干燥的温度为100℃或以上,优选135℃。The product obtained after the in-situ carbonization can be washed with a solvent and then dried to obtain a purified product. The washing solvent is preferably deoxygenated dimethyl fumarate (DMF). The drying temperature is 100°C or above, preferably 135°C.
本发明还提供一种基于上述负极材料的钠离子电池负极,该负极包括所述新型钠离子电池负极材料、粘结剂和导电剂;所述负极通过将所述新型钠离子电池负极材料、粘结剂和导电剂在溶剂中混合制成浆料,涂覆、干燥,得到电极。The present invention also provides a negative electrode of a sodium ion battery based on the above-mentioned negative electrode material, the negative electrode includes the novel sodium ion battery negative electrode material, a binding agent and a conductive agent; A binder and a conductive agent are mixed in a solvent to form a slurry, which is coated and dried to obtain an electrode.
在其中一个实施例中,所述的粘结剂为聚偏氟乙烯(PVDF)、聚丙烯酸(PAA)、羧甲基纤维素钠(CMC)、海藻酸钠(SA)、丁苯橡胶(SBR)中的至少一种。In one of the embodiments, the binder is polyvinylidene fluoride (PVDF), polyacrylic acid (PAA), sodium carboxymethylcellulose (CMC), sodium alginate (SA), styrene-butadiene rubber (SBR ) at least one of.
在其中一个实施例中,所述的溶剂为水和N-甲基吡咯烷酮(NMP)中的至少一种。In one embodiment, the solvent is at least one of water and N-methylpyrrolidone (NMP).
在其中一个实施例中,所用导电剂为炭黑、Super-P、科琴黑中的至少一种。In one embodiment, the conductive agent used is at least one of carbon black, Super-P, and Ketjen Black.
在其中一个实施例中,所述钠离子电池负极还包括有其他添加剂。In one of the embodiments, the negative electrode of the sodium ion battery also includes other additives.
本发明还提供一种基于上述钠离子电池负极的钠离子电池,包括所述钠离子电池负极、对电极金属钠、电解液体系三个部分。The present invention also provides a sodium-ion battery based on the negative electrode of the above-mentioned sodium-ion battery, comprising three parts: the negative electrode of the sodium-ion battery, the metal sodium of the counter electrode, and the electrolyte system.
在其中一个实施例中,所述的电解液体系为有机溶剂电解液或聚合物电解液。In one embodiment, the electrolyte system is an organic solvent electrolyte or a polymer electrolyte.
在其中一个实施例中,所述的电解液体系为有机溶剂电解液。In one of the embodiments, the electrolyte system is an organic solvent electrolyte.
在其中一个实施例中,所述的电解液体系为钠盐的有机溶剂电解液。In one of the embodiments, the electrolyte system is an organic solvent electrolyte of sodium salt.
在其中一个实施例中,所述的电解液体系中钠盐的浓度为1M。In one of the embodiments, the concentration of sodium salt in the electrolyte system is 1M.
在其中一个实施例中,所述的钠盐为NaPF6、NaClO4、NaBF4、NaTf、NaFSI和NaTFSI中的至少一种,优选为NaPF6、NaClO4。In one embodiment, the sodium salt is at least one of NaPF 6 , NaClO 4 , NaBF 4 , NaTf, NaFSI and NaTFSI, preferably NaPF 6 and NaClO 4 .
在其中一个实施例中,所述的有机溶剂为PC、EC、DMC、DME、DEC、THF和三甘醇二甲醚中的至少一种,优选为PC与EC的混合溶剂。In one embodiment, the organic solvent is at least one of PC, EC, DMC, DME, DEC, THF and triglyme, preferably a mixed solvent of PC and EC.
在其中一个实施例中,所述的电解液体系还含有添加剂。In one of the embodiments, the electrolyte system also contains additives.
本发明的新型钠离子电池负极材料可应用于钠离子电池中。The novel negative electrode material of the sodium ion battery of the invention can be applied in the sodium ion battery.
本发明的新型钠离子电池负极材料在与钠的电化学反应过程中,与钠离子发生转化反应实现钠离子的脱嵌,且电化学数据表明其具有可逆的脱嵌钠容量。且本发明的负极材料具有良好的储钠性能,具有较高的可逆容量和较好的循环性能,制备方法简单,成本低廉,环境友好,为以后的钠离子电池负极材料的探索提供了更多的可能。During the electrochemical reaction process with sodium, the novel sodium ion battery negative electrode material of the present invention undergoes a conversion reaction with sodium ions to realize deintercalation of sodium ions, and electrochemical data show that it has reversible sodium deintercalation capacity. Moreover, the negative electrode material of the present invention has good sodium storage performance, high reversible capacity and good cycle performance, simple preparation method, low cost, and environmental friendliness, and provides more for the exploration of negative electrode materials for sodium ion batteries in the future. possible.
附图说明Description of drawings
图1是实施例1的一碳化一钼(MoC)纳米粒与超薄石墨烯壳层的复合物(MoC@GS)的X射线衍射图。Fig. 1 is the X-ray diffraction diagram of the compound (MoC@GS) of the molybdenum monocarbide (MoC) nanoparticle and the ultrathin graphene shell layer of embodiment 1.
图2是实施例1的一碳化一钼(MoC)纳米粒与超薄石墨烯壳层的复合物(MoC@GS)的扫描电镜图。2 is a scanning electron microscope image of the composite (MoC@GS) of the molybdenum monocarbide (MoC) nanoparticles and the ultrathin graphene shell layer in Example 1.
图3是实施例1的一碳化一钼(MoC)纳米粒与超薄石墨烯壳层的复合物(MoC@GS)的透射电镜图。3 is a transmission electron microscope image of the composite (MoC@GS) of molybdenum monocarbide (MoC) nanoparticles and ultrathin graphene shells in Example 1.
图4是实施例1的一碳化一钼(MoC)纳米粒与超薄石墨烯壳层的复合物(MoC@GS)的循环曲线。Fig. 4 is the cycle curve of the compound (MoC@GS) of the monomolybdenum carbide (MoC) nanoparticle and the ultrathin graphene shell of Example 1.
图5是实施例1的一碳化一钼(MoC)纳米粒与超薄石墨烯壳层的复合物(MoC@GS)的首次充放电曲线。Fig. 5 is the first charge and discharge curve of the composite (MoC@GS) of molybdenum carbide (MoC) nanoparticles and ultrathin graphene shell layer in Example 1.
具体实施方式detailed description
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below with reference to the examples and drawings, but the implementation of the present invention is not limited thereto.
下述实施例中,所述试剂与材料均可从商业途径获得。In the following examples, the reagents and materials can be obtained from commercial sources.
实施例1Example 1
通过两步法合成一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)负极材料。首先制备前驱体Mo3(BTC)2,然后将前驱体产物在石英管中氩气气氛下进行原位碳化,得到最终产物一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS),纳米粒直径为1~10nm。A composite of molybdenum carbide nanoparticles and ultrathin graphene shell (MoC@GS) anode material was synthesized by a two-step method. First, the precursor Mo 3 (BTC) 2 was prepared, and then the precursor product was in-situ carbonized in a quartz tube under an argon atmosphere to obtain the final product—a composite of molybdenum carbide nanoparticles and ultrathin graphene shells (MoC @GS), the diameter of nanoparticles is 1~10nm.
具体操作如下:The specific operation is as follows:
将摩尔比1:13.6的六羰基钼、均苯三甲酸溶解在富马酸二甲酯中,在氩气气氛下155℃下回流反应5天以上,经过滤、洗涤、干燥后,得到前驱体Mo3(BTC)2,再将前驱体置于石英管中氩气气氛下700~900℃原位碳化5h,冷却至室温,利用富马酸二甲酯洗涤、干燥后,得到一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)。Dissolve molybdenum hexacarbonyl and trimesic acid at a molar ratio of 1:13.6 in dimethyl fumarate, reflux reaction at 155°C under an argon atmosphere for more than 5 days, filter, wash and dry to obtain the precursor Mo 3 (BTC) 2 , and then place the precursor in a quartz tube under an argon atmosphere for in-situ carbonization at 700-900°C for 5 hours, cool to room temperature, wash with dimethyl fumarate, and dry to obtain molybdenum monocarbide Composite of nanoparticles with ultrathin graphene shells (MoC@GS).
实施例2Example 2
通过两步法合成一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)负极材料。首先制备前驱体Mo3(BTC)2,然后将前驱体产物在石英管中氩气气氛下进行原位碳化,得到最终产物一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS),纳米粒直径为1~10nm。A composite of molybdenum carbide nanoparticles and ultrathin graphene shell (MoC@GS) anode material was synthesized by a two-step method. First, the precursor Mo 3 (BTC) 2 was prepared, and then the precursor product was in-situ carbonized in a quartz tube under an argon atmosphere to obtain the final product—a composite of molybdenum carbide nanoparticles and ultrathin graphene shells (MoC @GS), the diameter of nanoparticles is 1~10nm.
具体操作如下:The specific operation is as follows:
将摩尔比1:10的六羰基钼、均苯三甲酸溶解在富马酸二甲酯中,在氩气气氛下100℃下回流反应5天以上,经过滤、洗涤、干燥后,得到前驱体Mo3(BTC)2,再将前驱体置于石英管中氩气气氛下500~1000℃原位碳化2h,冷却至室温,利用富马酸二甲酯洗涤、干燥后,得到一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)。Dissolve molybdenum hexacarbonyl and trimesic acid at a molar ratio of 1:10 in dimethyl fumarate, reflux reaction at 100°C under an argon atmosphere for more than 5 days, filter, wash and dry to obtain the precursor Mo 3 (BTC) 2 , and then place the precursor in a quartz tube under an argon atmosphere for in-situ carbonization at 500-1000°C for 2 hours, cool to room temperature, wash with dimethyl fumarate and dry to obtain molybdenum monocarbide Composite of nanoparticles with ultrathin graphene shells (MoC@GS).
实施例3Example 3
通过两步法合成一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)负极材料。首先制备前驱体Mo3(BTC)2,然后将前驱体产物在石英管中氩气气氛下进行原位碳化,得到最终产物一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS),纳米粒直径为1~10nm。A composite of molybdenum carbide nanoparticles and ultrathin graphene shell (MoC@GS) anode material was synthesized by a two-step method. First, the precursor Mo 3 (BTC) 2 was prepared, and then the precursor product was in-situ carbonized in a quartz tube under an argon atmosphere to obtain the final product—a composite of molybdenum carbide nanoparticles and ultrathin graphene shells (MoC @GS), the diameter of nanoparticles is 1~10nm.
具体操作如下:The specific operation is as follows:
将摩尔比1:15的六羰基钼、均苯三甲酸溶解在富马酸二甲酯中,在氩气气氛下200℃下回流反应3天以上,经过滤、洗涤、干燥后,得到前驱体Mo3(BTC)2,再将前驱体置于石英管中氩气气氛下500~1000℃原位碳化8h,冷却至室温,利用富马酸二甲酯洗涤、干燥后,得到一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)。Dissolve molybdenum hexacarbonyl and trimesic acid at a molar ratio of 1:15 in dimethyl fumarate, reflux reaction at 200°C for more than 3 days under an argon atmosphere, filter, wash, and dry to obtain a precursor Mo 3 (BTC) 2 , and then place the precursor in a quartz tube under an argon atmosphere for in-situ carbonization at 500-1000°C for 8 hours, cool to room temperature, wash with dimethyl fumarate, and dry to obtain molybdenum monocarbide Composite of nanoparticles with ultrathin graphene shells (MoC@GS).
实施例4:性能表征Embodiment 4: Performance Characterization
按照常规钠离子电池的制备方法,将实施例1制备得到的一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)与金属钠组装成钠离子电池,在电流密度为500mA/g时,其首次放电容量为288.1mAh/g。According to the preparation method of the conventional sodium ion battery, the compound (MoC@GS) of the molybdenum monocarbide nanoparticle and the ultrathin graphene shell layer prepared in Example 1 is assembled into a sodium ion battery with metallic sodium, and the current density is At 500mA/g, its initial discharge capacity is 288.1mAh/g.
通过X射线衍射分析仪(Bruker D8,Cu Kα射线)进行结构表征,XRD测试结果如图1所示,产物为较纯的一碳化一钼(MoC)。Structural characterization was carried out by X-ray diffraction analyzer (Bruker D8, Cu Kα ray). The XRD test results are shown in Figure 1, and the product is relatively pure molybdenum monocarbide (MoC).
用扫描电子显微镜(SEM)对一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)进行表面形貌特征进行表征,结果如图2所示,一碳化一钼(MoC)纳米粒子直径为1~10nm。The composite of molybdenum monocarbide nanoparticles and ultrathin graphene shells (MoC@GS) was characterized by scanning electron microscopy (SEM). The results are shown in Figure 2. Molybdenum monocarbide (MoC@GS) ) Nanoparticles have a diameter of 1 to 10 nm.
用透射电子显微镜(TEM)对一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)进行更具体的形态结构表征,结果如图3所示,一碳化一钼(MoC)纳米粒子直径为1~10nm,石墨烯薄层的层数为1~3层。The composite of molybdenum monocarbide nanoparticles and ultrathin graphene shell (MoC@GS) was characterized by transmission electron microscopy (TEM). The results are shown in Figure 3. Molybdenum monocarbide (MoC@GS) ) The diameter of the nanoparticles is 1-10 nm, and the number of layers of the graphene thin layer is 1-3 layers.
一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)负极材料的电化学性能表征:Electrochemical performance characterization of the composite of molybdenum monocarbide nanoparticles and ultrathin graphene shell (MoC@GS) anode materials:
将制备得到的一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)与Super-P、海藻酸钠(SA)按质量比8:1:1均匀混合,溶剂为去离子水,制成浆料均匀涂覆在铜箔集流体上,真空干燥后制成极片,金属钠为对电极,玻璃纤维滤膜(英国Whatman公司GF/D)作为隔膜,电解液为1M NaClO4EC:PC=1:1(体积比),5%FEC为添加剂,在手套箱中装配得到CR2016纽扣电池。The prepared composite of molybdenum monocarbide nanoparticles and ultrathin graphene shell (MoC@GS) was uniformly mixed with Super-P and sodium alginate (SA) at a mass ratio of 8:1:1, and the solvent was de Ionized water is made into a slurry and evenly coated on the copper foil current collector. After vacuum drying, it is made into a pole piece. Metal sodium is used as the counter electrode. NaClO 4 EC:PC=1:1 (volume ratio), 5% FEC as an additive, and assembled in a glove box to obtain a CR2016 button battery.
将上述装配的电池在LAND充放电测试仪上进行恒流充放电测试,充放电区间为3~0.01V。The battery assembled above was subjected to a constant current charge and discharge test on a LAND charge and discharge tester, and the charge and discharge range was 3-0.01V.
充放电测试的结果如图4和图5所示,电池具有较高首次放电容量和较好的循环稳定性。在电流密度为500mA/g时,其首次放电容量为288.1mAh/g,库伦效率为48.8%,循环200次后,放电容量仍保持在105.8mAh/g。可以得出,本发明中制备的一碳化一钼纳米粒与超薄石墨烯壳层的复合物(MoC@GS)作为钠离子电池负极材料,具有良好的电化学性能。The results of charge and discharge tests are shown in Figure 4 and Figure 5, the battery has a high initial discharge capacity and good cycle stability. When the current density is 500mA/g, the initial discharge capacity is 288.1mAh/g, the Coulombic efficiency is 48.8%, and the discharge capacity remains at 105.8mAh/g after 200 cycles. It can be concluded that the composite of molybdenum monocarbide nanoparticles and ultra-thin graphene shell (MoC@GS) prepared in the present invention has good electrochemical performance as the negative electrode material of sodium ion battery.
实施例5Example 5
与实施例4不同在于,本实施例的充放电电流密度为100mA/g,其他条件均相同,组装钠离子电池测试其电化学性能,其首次放电容量为495.4mAh/g,库伦效率为46.4%,循环40次后,放电容量仍保持在188.1mAh/g。The difference from Example 4 is that the charge and discharge current density of this example is 100mA/g, and other conditions are the same, and the electrochemical performance of the assembled sodium ion battery is tested. Its initial discharge capacity is 495.4mAh/g, and the Coulombic efficiency is 46.4%. , after 40 cycles, the discharge capacity remained at 188.1mAh/g.
实施例6Example 6
与实施例4不同在于,本实施例的充放电电流密度为1A/g,其他条件均相同,其首次放电容量为268.2mAh/g,库伦效率为56.8%,循环450次后,放电容量仍保持在87.6mAh/g,结果表明不同的电流密度下都具有优异的电化学性能,而且在大电流时仍具有较好的电化学活性。The difference from Example 4 is that the charge and discharge current density of this example is 1A/g, and other conditions are the same, its initial discharge capacity is 268.2mAh/g, the Coulombic efficiency is 56.8%, and after 450 cycles, the discharge capacity still remains At 87.6mAh/g, the results show that it has excellent electrochemical performance at different current densities, and it still has good electrochemical activity at high currents.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610575911.6A CN106058193A (en) | 2016-07-20 | 2016-07-20 | Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610575911.6A CN106058193A (en) | 2016-07-20 | 2016-07-20 | Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106058193A true CN106058193A (en) | 2016-10-26 |
Family
ID=57188578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610575911.6A Pending CN106058193A (en) | 2016-07-20 | 2016-07-20 | Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106058193A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107195877A (en) * | 2017-05-04 | 2017-09-22 | 大连理工大学 | A kind of sodium-ion battery graphene/Sb2S3The preparation method of/carbon composite |
JP2018092831A (en) * | 2016-12-06 | 2018-06-14 | 日本電信電話株式会社 | Separator and lithium air secondary battery |
CN108232116A (en) * | 2017-12-15 | 2018-06-29 | 江苏大学 | A kind of preparation method of nitrogen, phosphor codoping Graphene gel electrochemistry storage sodium electrode |
CN110112401A (en) * | 2019-05-23 | 2019-08-09 | 合肥工业大学 | A kind of preparation method and applications of N doping porous carbon@niobium nitride or niobium carbide core-shell structure |
CN110498446A (en) * | 2019-08-20 | 2019-11-26 | 东北大学 | Sodium dimolybdate and electrode material based on sodium dimolybdate and its preparation method and application |
WO2024114128A1 (en) * | 2022-11-29 | 2024-06-06 | 深圳新宙邦科技股份有限公司 | Sodium-ion battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104835945A (en) * | 2015-05-21 | 2015-08-12 | 哈尔滨理工大学 | Preparation method of graphene/molybdenum carbide composite cathode material |
CN105529474A (en) * | 2016-01-22 | 2016-04-27 | 复旦大学 | Graphene-wrapped ultra-dispersed nanomolybdenum carbide electrocatalytic hydrogen production catalyst and preparation method thereof |
CN105591077A (en) * | 2015-12-17 | 2016-05-18 | 中南大学 | Preparation method of molybdenum carbide/nitrogen-sulfur codoped spongy graphene cathode composite for sodium-ion battery |
-
2016
- 2016-07-20 CN CN201610575911.6A patent/CN106058193A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104835945A (en) * | 2015-05-21 | 2015-08-12 | 哈尔滨理工大学 | Preparation method of graphene/molybdenum carbide composite cathode material |
CN105591077A (en) * | 2015-12-17 | 2016-05-18 | 中南大学 | Preparation method of molybdenum carbide/nitrogen-sulfur codoped spongy graphene cathode composite for sodium-ion battery |
CN105529474A (en) * | 2016-01-22 | 2016-04-27 | 复旦大学 | Graphene-wrapped ultra-dispersed nanomolybdenum carbide electrocatalytic hydrogen production catalyst and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
DENIZ CAKIR ET AL.: ""Mo2C as a high capacity anode material:a first-principles study"", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
MARKUS KRAMER ET AL.: ""Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1)"", 《JOURNAL OF MATERAILS CHEMISTRY》 * |
QILONG SUN ET AL.: ""Ab Initio prediction and characterization of Mo2C monolayer as anode for lithium-ion and sodium-ion batteries"", 《PHYSICAL CHEMISTRY LATTERS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018092831A (en) * | 2016-12-06 | 2018-06-14 | 日本電信電話株式会社 | Separator and lithium air secondary battery |
CN107195877A (en) * | 2017-05-04 | 2017-09-22 | 大连理工大学 | A kind of sodium-ion battery graphene/Sb2S3The preparation method of/carbon composite |
CN108232116A (en) * | 2017-12-15 | 2018-06-29 | 江苏大学 | A kind of preparation method of nitrogen, phosphor codoping Graphene gel electrochemistry storage sodium electrode |
CN110112401A (en) * | 2019-05-23 | 2019-08-09 | 合肥工业大学 | A kind of preparation method and applications of N doping porous carbon@niobium nitride or niobium carbide core-shell structure |
CN110498446A (en) * | 2019-08-20 | 2019-11-26 | 东北大学 | Sodium dimolybdate and electrode material based on sodium dimolybdate and its preparation method and application |
CN110498446B (en) * | 2019-08-20 | 2020-06-02 | 东北大学 | Sodium dimolybdate and electrode material based on sodium dimolybdate and preparation method and application thereof |
WO2021031218A1 (en) * | 2019-08-20 | 2021-02-25 | 东北大学 | Sodium dimolybdate and electrode material based on sodium dimolybdate, preparation method and application thereof |
WO2024114128A1 (en) * | 2022-11-29 | 2024-06-06 | 深圳新宙邦科技股份有限公司 | Sodium-ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Constructing SbOC bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries | |
CN110224129B (en) | MOFs derivative coated NCM ternary positive electrode material and preparation method thereof | |
CN107425185B (en) | Preparation method of carbon nanotube-loaded molybdenum carbide material and application of carbon nanotube-loaded molybdenum carbide material in lithium-sulfur battery positive electrode material | |
CN106058193A (en) | Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof | |
CN105552366B (en) | A kind of preparation method of lithium cell cathode material-N doping SnS/C composite nano materials | |
CN111362254A (en) | Preparation method and application of nitrogen-doped carbon nanotube-supported phosphorus-doped cobalt tetroxide composite material | |
Zhang et al. | Performance of Al-doped LiNi1/3Co1/3Mn1/3O2 synthesized from spent lithium ion batteries by sol-gel method | |
CN106299304A (en) | A kind of carbon cladding molybdenum sulfide composite and preparation method and application and a kind of sodium-ion battery | |
CN109768260B (en) | A kind of cobalt phosphide/carbon composite material and its preparation method and use | |
CN107611360B (en) | Silicon monoxide graphene composite nano material, preparation method thereof and application thereof in lithium ion battery | |
CN110649271A (en) | Co-N/C @ MoS2Composite material, preparation method thereof and application thereof in lithium air battery | |
Qin et al. | High performance of yolk-shell structured MnO@ nitrogen doped carbon microspheres as lithium ion battery anode materials and their in operando X-ray diffraction study | |
CN111517298A (en) | Amorphous cobalt phosphide/nano carbon composite material, preparation method and application thereof | |
CN106374101A (en) | Preparation method and application of a Co3O4@Co@carbon nanocage | |
CN110890528B (en) | Cobalt fluoride/ferric oxide composite material and application thereof | |
CN105118966B (en) | A kind of high nitrogen-containing tin carbon composite for cathode of lithium battery and preparation method | |
CN114050265B (en) | Nickel selenide/manganese selenide nanocomposite loaded by crosslinked nano carbon sheet, preparation method of nickel selenide/manganese selenide nanocomposite and sodium ion battery negative electrode | |
CN113299893A (en) | Molybdenum disulfide @ graphite alkyne composite material, and preparation method and application thereof | |
CN106099081A (en) | A kind of cobalt oxide/graphene nano composite material and preparation method thereof, lithium ion battery negative, lithium ion battery | |
CN104638257A (en) | Nano-scale manganous oxide-conductive carbon black composite material and synthetic method thereof | |
Chen et al. | Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability | |
CN104577126A (en) | Preparation method of a MWCNT@a-C@Co9S8 composite electrode material with uniform morphology and its application in lithium batteries | |
CN107887590B (en) | A kind of sulfur-loaded composite cathode material, preparation method and application thereof | |
CN111403736A (en) | Anthraquinone-2-copper carboxylate/graphene nano-composite and preparation and application thereof | |
CN109037623B (en) | A kind of positive electrode material of magnesium secondary battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161026 |
|
RJ01 | Rejection of invention patent application after publication |