CN106054900A - 基于深度摄像头的机器人临时避障方法 - Google Patents

基于深度摄像头的机器人临时避障方法 Download PDF

Info

Publication number
CN106054900A
CN106054900A CN201610643767.5A CN201610643767A CN106054900A CN 106054900 A CN106054900 A CN 106054900A CN 201610643767 A CN201610643767 A CN 201610643767A CN 106054900 A CN106054900 A CN 106054900A
Authority
CN
China
Prior art keywords
detours
robot
point
feasible point
feasible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610643767.5A
Other languages
English (en)
Other versions
CN106054900B (zh
Inventor
程洪
王富奎
郑亚莉
陈诗南
骆佩佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610643767.5A priority Critical patent/CN106054900B/zh
Publication of CN106054900A publication Critical patent/CN106054900A/zh
Application granted granted Critical
Publication of CN106054900B publication Critical patent/CN106054900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/242Means based on the reflection of waves generated by the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/246Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • G05D1/622Obstacle avoidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals
    • G05D2111/17Coherent light, e.g. laser signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/20Acoustic signals, e.g. ultrasonic signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种基于深度摄像头的机器人临时避障方法,机器人在沿既定的全局导航路径行进的过程中如果检测到障碍物,则采用安装在机器人上的深度摄像头偏转左、右两个角度拍摄得到深度图,处理得到局部环境地图,在局部环境地图中检测障碍物左、右两侧的行进空间,选择宽度较大的一侧作为绕行行进空间,绘制绕行移动范围矩形,在绕行移动范围矩形内生成绕行可行点,从中选择绕行点,生成绕行路径,再将绕行路径映射到全局地图中,将映射后绕行路径的末点与原始全局导航路径上的下一个行进节点连接,完成临时避障。本发明可以高效、准确地完成机器人临时避障,并在绕行避障后返回原始全局导航路径,提高机器人的智能性。

Description

基于深度摄像头的机器人临时避障方法
技术领域
本发明属于机器人与计算机视觉技术领域,更为具体地讲,涉及一种基于深度摄像头的机器人临时避障方法。
背景技术
移动机器人是机器人领域一个重要分支,智能导航与临时避障是移动机器人最核心的技术之一。机器人导航是指机器人在已知或者未知环境下自主的规划出一条从起点到目标地点的移动路径,让机器人沿着这条路径能顺利的到达终点;机器人临时避障是指机器人在移动过程中根据采集到的实时的环境信息,发现环境中新的障碍物,按照一定的方法有效的避开障碍物,使导航能顺利进行。传统的机器人避障方法主要有可视图法、栅格法、拓扑法、人工势场法,另外还有基于神经网络、遗传等算法的避障方法。
对于已有的机器人避障方法,主要缺陷如下:
1)可视图法缺乏灵活性,在障碍物较多的时候搜索时间长,并且要求障碍物形状不能接近圆形,限制了其实际应用。
2)栅格法是目前研究较多的避障方法,但是其中栅格的大小影响环境信息的存储量和计算时间,栅格越大,分辨率越低,在复杂环境下避障效果越差,栅格越小,避障效果越好,但计算量增加。
3)拓扑法的主要问题在于构建拓扑网络的过程相当复杂,特别是在增加障碍物的时候如何有效的修改拓扑关系还有待解决。
4)人工势场法把移动机器人在环境中的运动视为在一种抽象的人造受力场中的运动,目标点对机器人有吸引力,障碍物对机器人有排斥力,最终通过合力来控制机器人的运动,其缺点是忽略了障碍物的结构外形信息,模型的建立容易产生误差并且陷入到局部最小值。
5)对于利用神经网络、遗传等算法进行避障,其主要缺陷在于算法过于复杂,对机器人计算能力的要求非常高,推广性较弱。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于深度摄像头的机器人临时避障方法,采用深度摄像头获取局部环境地图生成绕行路径,然后映射到全局地图中,高效、准确地完成机器人临时避障,并在绕行避障后返回原始全局导航路径,提高机器人的智能性。
为实现上述发明目的,本发明基于深度摄像头的机器人临时避障方法,其步骤包括:
S1:机器人在沿既定的全局导航路径行进的过程中,对行进方向上的障碍物进行检测,一旦检测到障碍物,进入步骤S2;
S2:在检测到障碍物后,机器人上所安装的深度摄像头分别向左、右偏转一定角度,拍摄得到两幅深度图,将两幅深度图转换为3D点云图,分层压缩得到2D局部点云地图,将两幅2D局部点云地图进行旋转拼接,得到局部环境地图;
S3:在步骤S2得到的局部环境地图中,以机器人当前位置为坐标原点、正前方为X轴、左边为Y轴建立坐标系,然后检测得到障碍物点云的上、下、左、右边界,并且检测得到障碍物左、右两侧的行进空间;
S4:判断是否有左、右两侧任意一侧行进空间宽度大于机器人直径D,如果是,进入步骤S5,否则机器人停止前进;
S5:选择障碍物左、右两侧行进空间宽度较大的一侧作为绕行行进空间,在局部环境地图中沿机器人在全局导航路径的行进方向上绘制一个标识绕行移动范围的矩形,该矩形包含机器人、障碍物和绕行行进空间,且在机器人后方和障碍物前方根据预设尺寸预留空余范围;
S6:在绕行移动范围矩形内,采用绕行可行点搜索算法生成绕行可行点;
S7:在步骤S6得到的绕行可行点中选择绕行点,生成绕行路径;
S8:根据机器人当前位置在全局地图中的坐标,将步骤S7中得到的绕行路径所经过的绕行点坐标映射到全局地图中,将映射后绕行路径的末点与原始全局导航路径上的下一个行进节点连接,机器人根据绕行路径行进。
本发明基于深度摄像头的机器人临时避障方法,机器人在沿既定的全局导航路径行进的过程中如果检测到障碍物,则采用安装在机器人上的深度摄像头偏转左、右两个角度拍摄得到深度图,处理得到局部环境地图,在局部环境地图中检测障碍物左、右两侧的行进空间,选择宽度较大的一侧作为绕行行进空间,绘制绕行移动范围矩形,在在绕行移动范围矩形内生成绕行可行点,从中选择绕行点,生成绕行路径,再将绕行路径映射到全局地图中,将映射后绕行路径的末点与原始全局导航路径上的下一个行进节点连接,完成临时避障。
本发明具有以下技术效果:
1)将避障与导航融合到一起,避障结束之后机器人并不会丢失掉自己原始的导航路径,而是在避障绕行后回到原始全局导航路径,因此任何新出现的障碍物都不会影响机器人对整个环境的理解,提高机器人的智能性;
2)避障方法简单易行,计算量小,并且所需配置的深度摄像机在机器人上也易于安装和扩展,有利于工程应用推广。
附图说明
图1是本发明基于深度摄像头的机器人临时避障方法流程图;
图2是本实施例中机器人的全局导航路径示意图;
图3是本实施例中障碍物示例图;
图4是基于作圆法的绕行可行点搜索算法;
图5是绕行可行点搜索示例图;
图6是本实施例中所获取的绕行可行点示意图;
图7是本实施例中绕行路径生成方法的流程图;
图8是本实施例中绕行路径映射至全局地图的绕行路径图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明基于深度摄像头的机器人临时避障方法流程图。如图1所示,本发明基于深度摄像头的机器人临时避障方法包括以下步骤:
S101:障碍物检测:
机器人在沿既定的全局导航路径行进的过程中,对行进方向上的障碍物进行检测,一旦检测到障碍物,进入步骤S102。
障碍物检测所使用的具体设备和算法可以根据实际需要来选择。本发明中由于机器人配置了深度摄像头,因此本实施例中采用深度摄像头和超声波传感器结合进行障碍物检测,其具体方法为:
在机器人行进过程中,超声波传感器采用超声波检测机器行进方向上的障碍物,超声波检测器的检测范围可以根据实际需要来设置,当检测到存在障碍物时,机器人后退若干米,直到障碍物进行深度摄像对的可视范围,然后由深度摄像头拍摄机器人正前方的深度图,将深度图转化为3D点云,对于每一帧3D点云图,将其分层压缩成2D局部点云地图,在2D局部点云地图上建立以机器人当前位置为坐标原点、正前方为X轴、左边为Y轴的坐标系,判断在{(x,y)|x∈(-a,a),y∈(0,b)}范围内是否有点云,如果在该范围内有点云,则判断存在障碍物,否则判断不存在障碍物。其中a、b根据实际情况设置,用于标识机器人的通过路径。
图2是本实施例中机器人的全局导航路径示意图。如图2所示,白色实线条为本实施例中机器人的全局导航路径,是室内路径。
图3是本实施例中障碍物示例图。如图3所示,图中灰色实线包围部分为障碍物。根据图3标示可知,在{(x,y)|x∈(-a,a),y∈(0,b)}存在代表障碍物的点云,从而检测得到障碍物。
S102:获取局部环境地图:
在检测到障碍物后,机器人上所安装的深度摄像头分别向左、右偏转一定角度,拍摄得到两幅深度图,将两幅深度图转换为3D点云图,分层压缩得到2D局部点云地图,将两幅2D局部点云地图进行旋转拼接,得到局部环境地图。
本实施例中深度摄像头安装在机器人的头部,向下倾斜30度,在左、右偏转时,偏转角度为30度。旋转拼接是图像处理领域的常用技术手段,在本实施例中旋转拼接的过程如下:
设点a(x,y)为相机绕Y轴正方向旋转30度得到一个点,此时相机坐标系相对于原始相机位置坐标系的旋转矩阵为:
M = c o s ( θ ) - s i n ( θ ) s i n ( θ ) cos ( θ )
其中,将点a(x,y)旋转到原始坐标系下,其对应坐标a*(x*,y*)为:
(x*,y*)=(x,y)×M
对于相机绕Y轴负方向旋转30所得到的点云,同样按照上述公式计算即可。将两帧2D点云转换到统一坐标系下并进行点云叠加,即可得到包含完整局部信息的局部环境地图。
S103:障碍物边界和行进空间检测:
为了对当前障碍物的结构信息有一个更为清晰的认识,需要在步骤S2得到的局部环境地图中,以机器人当前位置为坐标原点、正前方为X轴、左边为Y轴建立坐标系,然后检测得到障碍物点云的上、下、左、右边界,并且检测得到障碍物左、右两侧的行进空间。本实施例中采用的边界和行进空间检测的具体方法为:
在步骤S102得到的局部环境地图中,以机器人当前位置为坐标原点、正前方为X轴、左边为Y轴建立坐标系,任意选取障碍物点云中一个点记为H,分别向左、向右按列遍历局部环境地图,当某一列整列都没有点云时,则将其作为该方向的障碍物边界,将该边界作为行进空间边界,然后继续遍历,当某一列存在点云时,则将该列作为行进空间的另一侧边界,获取行进空间的宽度。在左、右边界内,以点H开始,分别向上、向下按行遍历局部环境地图,如果某一行整列都没有点云时,则将其作为访方向的障碍物边界。
以图3所示的障碍物为例,A、B、C、D为障碍物点云的端点,x1和x2分别表示障碍物的左、右边界。
S104:判断是否有左、右两侧任意一侧行进空间宽度大于机器人直径D,如果是,说明当前行进空间可以使机器人通过,进入步骤S105,否则进入机器人停止前进,此时机器人无法绕行,可以根据预设的策略来进行处理,例如将相关消息发送给服务器,然后由服务器重新规划全局导航路径等等。
S105:确定绕行移动范围:
选择障碍物左、右两侧行进空间宽度较大的一侧作为绕行行进空间,在局部环境地图中沿机器人在全局导航路径的行进方向上绘制一个标识绕行移动范围的矩形,该矩形包含机器人、障碍物和绕行行进空间,且在机器人后方和障碍物前方根据预设尺寸预留空余范围。空余范围的大小可以根据实际需要进行确定,主要是为了让机器人有一定的路线调整空间。
S106:生成绕行可行点:
在绕行移动范围矩形内,采用绕行可行点搜索算法生成绕行可行点。本实施例中采用基于作圆法的绕行可行点搜索算法来生成绕行可行点。图4是基于作圆法的绕行可行点搜索算法。如图4所示,基于作圆法的绕行可行点搜索算法的具体步骤为:
S401:初始化:
以机器人当前位置作为圆点、大于机器人半径的预设半径r为半径作圆,机器人半径是指机器人的最大半径,并将圆进行K等分,对等分点进行编号,将位于绕行移动范围内的等分点作为第1代候选可行点。本实施例中K=16。令可行点代数i=1,初始化绕行可行点集合
S402:搜索第i代绕行可行点:
从第i代候选可行点中,依次计算每个候选可行点到最近障碍物点的距离h,如果r<h<λr,其中λ>1,则将该候选可行点作为本代的绕行可行点,放入第i代绕行可行点集合si和绕行可行点集合S,否则不作为绕行可行点。λ用于保证绕行可行点与障碍物不至于相隔太远,以免绕行太远,降低机器人行进效率。根据实验统计可知,λ的取值范围为2≤λ≤5时可以达到较好的效果。
S403:判断是否si为空集,即第i代绕行可行点数量为零,如果是,则说明已经无法搜索到新的绕行可行点,搜索结束,否则进入步骤S404。
S404:获取第i+1代候选可行点:
从第i代绕行可行点集合si中取出1个绕行可行点,以该绕行可行点为圆心、该绕行可行点到最近障碍物点的距离h为半径作圆,并将圆进行K等分,筛选位于绕行移动范围内、之前所绘制的所有历史圆的覆盖范围以外的等分点作为候选可行点,将绕行可行点集合S中位于该绕行可行点所绘制圆以内的绕行可行点删除,并将该绕行可行点和位于该绕行可行点所绘制圆以内的绕行可行点从第i代绕行可行点集合si中删除,然后从第i代绕行可行点集合si中重新取出1个绕行可行点搜索第i+1代候选可行点,直到第i代绕行可行点集合si为空。
也就是说,在选择候选可行点的时候,还会对之前产生的绕行可行点进行再次筛选,从而减少冗余点,提高算法效率。
S405:令i=i+1,返回步骤S402。
图5是绕行可行点搜索示例图。如图5所示,方块点表示最近障碍物点,灰色圆点表示绕行可行点和候选可行点,黑色圆点表示被排除的点。其中(a)表示以机器人当前位置为圆心的第1个圆,此时假定所有的等分点都在绕行移动范围内,那么所有等分点均作为第1代候选可行点。在图5中(b)中,该点至最近障碍物点的距离满足要求,因此将该点作为绕行可行点。然后以该绕行可行点作圆,该圆的等分点中位于第1个圆内的点不作为候选可行点,而原来第1个圆中位于该绕行可行点所绘制圆内部的可行点也被排除了。在图5中(c)中,新绘制圆所对应的点至最近障碍物点的距离不满足要求,不能作为绕行可行点。在图5中(d)中,新绘制圆所对应的点至最近障碍物点的距离满足要求,因此以该绕行可行点作圆,该圆的等分点中位于第1个圆和第2个圆内的点不作为候选可行点,而原来第1个圆和第2个圆内中位于该绕行可行点所绘制圆内部的可行点也被排除了。
图6是本实施例中所获取的绕行可行点示意图。如图6所示,本实施例中,共计得到了10个绕行可行点。
S107:生成绕行路径:
在获取绕行移动范围内的绕行可行点之后,需要在绕行可行点中选择绕行点,生成绕行路径。
图7是本实施例中绕行路径生成方法的流程图。如图7所示,本实施例中所采用的绕行路径生成方法具体步骤为:
S701:生成绕行点集合:
分别求取步骤S109得到的每个绕行可行点与机器人当前位置的距离,根据距离从小到大对绕行可行点进行排序,即距离越大,编号越靠后,得到排序后的绕行可行点的集合P。
S702:初始化参数:
令绕行点序号k=1,第0个绕行点为机器人当前位置。
S703:选择第k个绕行点:
按照顺序依次连接第k-1个绕行点与绕行可行点集合P中序号大于第k-1个绕行点的绕行可行点,将连接线段按照机器人半径划分为小段,计算每个分段点与其最近障碍物点的距离,如果所有分段点与最近障碍点的距离都大于机器人半径,则将该绕行可行点放入集合Z,否则不作任何操作。在集合Z中选择编号最大的绕行可行点作为第k个绕行点。
S704:判断第k个绕行点是否存在,如果存在,进入步骤S705,否则进入步骤S706。
S705:令k=k+1,返回步骤S702。
S706:得到绕行路径:
将得到的绕行点按照其序号连接,得到机器人的绕行路径。
以图6所示的10个绕行可行点为例,按照与机器人当前位置的距离进行排序,得到P1~P10,假设当前位置所能到达的最远点为P7,那么第1个绕行点即为P7。然后再从P7开始,判断P8、P9和P10,从P7开始所有到达的距离机器人当前位置最远的点为P8,即第2个绕行点即为P8。那么再从P8开始,判断P9和P10,从P8开始所能到达的距离机器人当前位置最远的点为P10,第3个绕行点即为P10。那么绕行路径即为机器人从当前位置出发,先直线行进至P7,然后行进至P8,最后行进至P10,从而绕开障碍物。
S108:绕行路径映射:
根据机器人当前位置在全局地图中的坐标,将步骤S110中得到的绕行路径所经过的绕行点坐标映射到全局地图中,将映射后绕行路径的末点与原始全局导航路径上的下一个行进节点连接,机器人根据绕行路径行进。根据绕行路径,可以指引机器人回到原始全局导航路径上,完成障碍物绕行。
根据本发明中局部环境地图的坐标系建立方式可知,在局部环境地图中机器人当前位置的坐标为(0,0),假设机器人当前位置在全局地图中的坐标是(X,Y),那么绕行点在两个坐标系下的是简单的(X,Y)的平移关系。
图8是本实施例中绕行路径映射至全局地图的绕行路径图。由于在全局地图中障碍物是不可见的,因此图8中没有需要绕行的障碍物点云。如图8所示,原始全局导航路径为直线,但是由于中间出现了障碍物,需要进行临时避障,采用本发明得到的绕行路径为右侧所示折线。可见,本发明可以有效实现机器人在行进过程中的临时避障,且能在避障绕行后回到原始全局导航路径,提高机器人的智能性。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (5)

1.一种基于深度摄像头的机器人临时避障方法,其特征在于,包括以下步骤:
S1:机器人在沿既定的全局导航路径行进的过程中,对行进方向上的障碍物进行检测,一旦检测到障碍物,进入步骤S2;
S2:在检测到障碍物后,机器人上所安装的深度摄像头分别向左、右偏转一定角度,拍摄得到两幅深度图,将两幅深度图转换为3D点云图,分层压缩得到2D局部点云地图,将两幅2D局部点云地图进行旋转拼接,得到局部环境地图;
S3:在步骤S2得到的局部环境地图中,以机器人当前位置为坐标原点、正前方为X轴、左边为Y轴建立坐标系,然后检测得到障碍物点云的上、下、左、右边界,并且检测得到障碍物左、右两侧的行进空间;
S4:判断是否有左、右两侧任意一侧行进空间宽度大于机器人直径D,如果是,进入步骤S5,否则进机器人停止前进;
S5:选择障碍物左、右两侧行进空间宽度较大的一侧作为绕行行进空间,在局部环境地图中沿机器人在全局导航路径的行进方向上绘制一个标识绕行移动范围的矩形,该矩形包含机器人、障碍物和绕行行进空间,且在机器人后方和障碍物前方根据预设尺寸预留空余范围;
S6:在绕行移动范围矩形内,采用绕行可行点搜索算法生成绕行可行点;
S7:在步骤S6得到的绕行可行点中选择绕行点,生成绕行路径;
S8:根据机器人当前位置在全局地图中的坐标,将步骤S7中得到的绕行路径所经过的绕行点坐标映射到全局地图中,将映射后绕行路径的末点与原始全局导航路径上的下一个行进节点连接,机器人根据绕行路径行进。
2.根据权利要求1所述的机器人临时避障方法,其特征在于,所述步骤S1中障碍物检测采用基于深度图像的障碍物检测算法,具体方法为:超声波传感器采用超声波检测机器行进方向上的障碍物,当检测到存在障碍物时,机器人后退若干米,直到障碍物进入深度摄像头的可视范围,然后由深度摄像头拍摄机器人正前方的深度图,将深度图转化为3D点云,对于每一帧3D点云图,将其分层压缩成2D局部点云地图,在2D局部点云地图上建立以机器人当前位置为坐标原点、正前方为X轴、左边为Y轴的坐标系,判断在{(x,y)|x∈(-a,a),y∈(0,b)}范围内是否有点云,如果在该范围内有点云,则判断存在障碍物,否则判断不存在障碍物。
3.根据权利要求1所述的机器人避障方法,其特征在于,所述步骤S6中绕行可行点搜索算法为基于作圆法的绕行可行点搜索算法,其具体步骤为:
S6.1:以机器人当前位置作为圆点、大于机器人半径的预设半径r为半径作圆,并将圆进行K等分,对等分点进行编号,将位于绕行移动范围内的等分点作为第1代候选可行点;令可行点代数i=1,初始化绕行可行点集合
S6.2:从第i代候选可行点中,依次计算每个候选可行点到最近障碍物点的距离h,如果r<h<λr,其中λ>1,则将该候选可行点作为本代的绕行可行点,放入第i代绕行可行点集合si和绕行可行点集合S,否则不作为绕行可行点;
S6.3:如果第i代绕行可行点数量为零,搜索结束,否则进入步骤S6.4;
S6.4:从第i代绕行可行点集合si中取出1个绕行可行点,以该绕行可行点为圆心、该绕行可行点到最近障碍物点的距离h为半径作圆,并将圆进行K等分,筛选位于绕行移动范围内、之前所绘制的所有历史圆的覆盖范围以外的等分点作为候选可行点,将绕行可行点集合S中位于该绕行可行点所绘制圆以内的绕行可行点删除,并将该绕行可行点和位于该绕行可行点所绘制圆以内的绕行可行点从第i代绕行可行点集合si中删除,然后从第i代绕行可行点集合si中重新取出1个绕行可行点搜索第i+1代候选可行点,直到第i代绕行可行点集合si为空;
S6.5:令i=i+1,返回步骤S6.2。
4.根据权利要求3所述的机器人临时避障方法,其特征在于,所述步骤S6.2中λ的取值范围为2≤λ≤5。
5.根据权利要求1所述的机器人临时避障方法,其特征在于,所述步骤S7中绕行路径生成方法的具体步骤包括:
S7.1:分别求取步骤S6得到的每个绕行可行点与机器人当前位置的距离,根据距离从小到大对绕行可行点进行排序,得到排序后的绕行可行点的集合P;
S7.2:令绕行点序号k=1,第0个绕行点为机器人当前位置;
S7.3:按照顺序依次连接第k-1个绕行点与绕行可行点集合P中序号大于第k-1个绕行点的绕行可行点,将连接线段按照机器人半径划分为小段,计算每个分段点与其最近障碍物点的距离,如果所有分段点与最近障碍点的距离都大于机器人半径,则将该绕行可行点放入集合Z,否则不作任何操作;在集合Z中选择编号最大的绕行可行点作为第k个绕行点;
S7.4:如果第k个绕行点是否存在,进入步骤S7.5,否则令令k=k+1,返回步骤S7.2;
S7.5:将得到的绕行点按照其序号连接,得到机机器人的绕行路径。
CN201610643767.5A 2016-08-08 2016-08-08 基于深度摄像头的机器人临时避障方法 Active CN106054900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610643767.5A CN106054900B (zh) 2016-08-08 2016-08-08 基于深度摄像头的机器人临时避障方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610643767.5A CN106054900B (zh) 2016-08-08 2016-08-08 基于深度摄像头的机器人临时避障方法

Publications (2)

Publication Number Publication Date
CN106054900A true CN106054900A (zh) 2016-10-26
CN106054900B CN106054900B (zh) 2018-11-09

Family

ID=57480981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610643767.5A Active CN106054900B (zh) 2016-08-08 2016-08-08 基于深度摄像头的机器人临时避障方法

Country Status (1)

Country Link
CN (1) CN106054900B (zh)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324619A (zh) * 2016-10-28 2017-01-11 武汉大学 一种变电站巡检机器人自动避障方法
CN106406320A (zh) * 2016-11-29 2017-02-15 重庆重智机器人研究院有限公司 机器人路径规划方法及规划路线的机器人
CN106774335A (zh) * 2017-01-03 2017-05-31 南京航空航天大学 基于多目视觉和惯导的导引装置、地标布局及导引方法
CN106767833A (zh) * 2017-01-22 2017-05-31 电子科技大学 一种融合rgbd深度传感器与编码器的机器人定位方法
CN107053171A (zh) * 2016-12-25 2017-08-18 湖南晖龙股份有限公司 机器人临时空间避障方法、装置及机器人
CN107229903A (zh) * 2017-04-17 2017-10-03 深圳奥比中光科技有限公司 机器人避障的方法、装置及存储装置
CN107422731A (zh) * 2017-06-19 2017-12-01 中国烟草总公司广东省公司 农用智能耕地***的耕地控制方法及控制***
CN107595561A (zh) * 2017-09-11 2018-01-19 太仓博轩信息科技有限公司 一种基于触觉反馈的智能导盲机器人及其工作方法
CN107995962A (zh) * 2017-11-02 2018-05-04 深圳市道通智能航空技术有限公司 一种避障方法、装置、可移动物体及计算机可读存储介质
CN108127661A (zh) * 2016-12-01 2018-06-08 发那科株式会社 机器人控制装置
CN108196544A (zh) * 2018-01-02 2018-06-22 联想(北京)有限公司 一种信息处理方法及信息处理设备
CN108303986A (zh) * 2018-03-09 2018-07-20 哈工大机器人(昆山)有限公司 一种激光slam导航的临时障碍物处理方法
CN108469814A (zh) * 2018-02-08 2018-08-31 广东雷洋智能科技股份有限公司 应用于家庭服务机器人的路径巡航方法
CN108829094A (zh) * 2018-05-07 2018-11-16 北京三辰环卫机械有限公司 移动路径的确定方法和洗地机
CN109018762A (zh) * 2018-05-07 2018-12-18 北京三辰环卫机械有限公司 移动路径的确定方法和移动垃圾桶
CN109141364A (zh) * 2018-08-01 2019-01-04 北京进化者机器人科技有限公司 障碍物检测方法、***及机器人
CN109272481A (zh) * 2018-07-13 2019-01-25 南京理工大学 一种基于深度摄像头的障碍物检测方法
CN109324615A (zh) * 2018-09-20 2019-02-12 深圳蓝胖子机器人有限公司 办公楼送货控制方法、装置以及计算机可读存储介质
CN109540022A (zh) * 2019-01-03 2019-03-29 沈阳天骄科技有限公司 基于tof深度相机的平仓机器人路径规划与决策方法
CN109582032A (zh) * 2018-10-11 2019-04-05 天津大学 多旋翼无人机在复杂环境下的快速实时避障路径选择方法
CN109682381A (zh) * 2019-02-22 2019-04-26 山东大学 基于全向视觉的大视场场景感知方法、***、介质及设备
CN109839930A (zh) * 2019-01-16 2019-06-04 江苏理工学院 一种避障装置、***及方法
CN109891351A (zh) * 2016-11-15 2019-06-14 深圳市大疆创新科技有限公司 基于图像的对象检测和对应的移动调整操纵的方法和***
CN109901567A (zh) * 2017-12-08 2019-06-18 百度在线网络技术(北京)有限公司 用于输出障碍物信息的方法和装置
CN109947114A (zh) * 2019-04-12 2019-06-28 南京华捷艾米软件科技有限公司 基于栅格地图的机器人全覆盖路径规划方法、装置及设备
CN109990782A (zh) * 2017-12-29 2019-07-09 北京欣奕华科技有限公司 一种避开障碍物的方法及设备
CN110955249A (zh) * 2019-12-23 2020-04-03 浙江华消科技有限公司 机器人通过障碍物的方法及装置、存储介质、电子装置
CN110991708A (zh) * 2019-11-15 2020-04-10 云南电网有限责任公司电力科学研究院 一种基于路径判断的设备配送***和方法
CN111026114A (zh) * 2019-12-12 2020-04-17 南京苏美达智能技术有限公司 一种绕障方法及自行走设备
CN111046776A (zh) * 2019-12-06 2020-04-21 杭州成汤科技有限公司 基于深度相机的移动机器人行进路径障碍物检测的方法
CN111376258A (zh) * 2018-12-29 2020-07-07 纳恩博(常州)科技有限公司 控制方法、装置、设备和存储介质
CN111624997A (zh) * 2020-05-12 2020-09-04 珠海市一微半导体有限公司 基于tof摄像模块的机器人控制方法、***及机器人
CN112363495A (zh) * 2020-09-28 2021-02-12 华南农业大学 一种畜禽养殖场巡检机器人的导航方法
CN113359692A (zh) * 2020-02-20 2021-09-07 杭州萤石软件有限公司 一种障碍物的避让方法、可移动机器人
CN113359720A (zh) * 2021-05-31 2021-09-07 上海高仙自动化科技发展有限公司 移动设备避障方法、装置、电子设备及计算机可读存储介质
CN113678082A (zh) * 2019-03-25 2021-11-19 索尼集团公司 移动体、移动体的控制方法和程序
CN113759905A (zh) * 2021-08-30 2021-12-07 北京盈迪曼德科技有限公司 机器人路径规划方法、装置及机器人
CN114043493A (zh) * 2021-11-10 2022-02-15 华南农业大学 笼养鸡舍巡检机器人及巡检方法
WO2022095488A1 (zh) * 2020-11-04 2022-05-12 北京石头创新科技有限公司 一种检测未知障碍物的方法、装置、介质和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520721A (zh) * 2011-12-08 2012-06-27 北京控制工程研究所 一种基于双目立体视觉的巡视探测器自主避障规划方法
CN104267728A (zh) * 2014-10-16 2015-01-07 哈尔滨工业大学 一种基于可达区域质心矢量的移动机器人避障方法
CN104536445A (zh) * 2014-12-19 2015-04-22 深圳先进技术研究院 移动导航方法和***
CN105469445A (zh) * 2015-12-08 2016-04-06 电子科技大学 一种步长可变地图生成方法
CN105652873A (zh) * 2016-03-04 2016-06-08 中山大学 一种基于Kinect的移动机器人避障方法
CN105761306A (zh) * 2016-01-29 2016-07-13 珠海汇迪科技有限公司 一种基于景深图像或者点云的路面模型及其建立方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520721A (zh) * 2011-12-08 2012-06-27 北京控制工程研究所 一种基于双目立体视觉的巡视探测器自主避障规划方法
CN104267728A (zh) * 2014-10-16 2015-01-07 哈尔滨工业大学 一种基于可达区域质心矢量的移动机器人避障方法
CN104536445A (zh) * 2014-12-19 2015-04-22 深圳先进技术研究院 移动导航方法和***
CN105469445A (zh) * 2015-12-08 2016-04-06 电子科技大学 一种步长可变地图生成方法
CN105761306A (zh) * 2016-01-29 2016-07-13 珠海汇迪科技有限公司 一种基于景深图像或者点云的路面模型及其建立方法
CN105652873A (zh) * 2016-03-04 2016-06-08 中山大学 一种基于Kinect的移动机器人避障方法

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324619A (zh) * 2016-10-28 2017-01-11 武汉大学 一种变电站巡检机器人自动避障方法
CN109891351B (zh) * 2016-11-15 2022-05-06 深圳市大疆创新科技有限公司 基于图像的对象检测和对应的移动调整操纵的方法和***
CN109891351A (zh) * 2016-11-15 2019-06-14 深圳市大疆创新科技有限公司 基于图像的对象检测和对应的移动调整操纵的方法和***
CN106406320B (zh) * 2016-11-29 2019-08-20 重庆重智机器人研究院有限公司 机器人路径规划方法及规划路线的机器人
CN106406320A (zh) * 2016-11-29 2017-02-15 重庆重智机器人研究院有限公司 机器人路径规划方法及规划路线的机器人
CN108127661A (zh) * 2016-12-01 2018-06-08 发那科株式会社 机器人控制装置
CN108127661B (zh) * 2016-12-01 2019-09-10 发那科株式会社 机器人控制装置
US10481571B2 (en) 2016-12-01 2019-11-19 Fanuc Corporation Robot controller which automatically sets interference region for robot
CN107053171A (zh) * 2016-12-25 2017-08-18 湖南晖龙股份有限公司 机器人临时空间避障方法、装置及机器人
CN106774335B (zh) * 2017-01-03 2020-01-21 南京航空航天大学 基于多目视觉和惯导的导引装置、地标布局及导引方法
CN106774335A (zh) * 2017-01-03 2017-05-31 南京航空航天大学 基于多目视觉和惯导的导引装置、地标布局及导引方法
CN106767833A (zh) * 2017-01-22 2017-05-31 电子科技大学 一种融合rgbd深度传感器与编码器的机器人定位方法
CN106767833B (zh) * 2017-01-22 2019-11-19 电子科技大学 一种融合rgbd深度传感器与编码器的机器人定位方法
CN107229903A (zh) * 2017-04-17 2017-10-03 深圳奥比中光科技有限公司 机器人避障的方法、装置及存储装置
CN107422731A (zh) * 2017-06-19 2017-12-01 中国烟草总公司广东省公司 农用智能耕地***的耕地控制方法及控制***
CN107595561A (zh) * 2017-09-11 2018-01-19 太仓博轩信息科技有限公司 一种基于触觉反馈的智能导盲机器人及其工作方法
CN107995962B (zh) * 2017-11-02 2021-06-22 深圳市道通智能航空技术股份有限公司 一种避障方法、装置、可移动物体及计算机可读存储介质
CN107995962A (zh) * 2017-11-02 2018-05-04 深圳市道通智能航空技术有限公司 一种避障方法、装置、可移动物体及计算机可读存储介质
US11281229B2 (en) 2017-12-08 2022-03-22 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Method and apparatus for outputting obstacle information
CN109901567A (zh) * 2017-12-08 2019-06-18 百度在线网络技术(北京)有限公司 用于输出障碍物信息的方法和装置
CN109990782A (zh) * 2017-12-29 2019-07-09 北京欣奕华科技有限公司 一种避开障碍物的方法及设备
CN108196544A (zh) * 2018-01-02 2018-06-22 联想(北京)有限公司 一种信息处理方法及信息处理设备
CN108469814A (zh) * 2018-02-08 2018-08-31 广东雷洋智能科技股份有限公司 应用于家庭服务机器人的路径巡航方法
CN108303986B (zh) * 2018-03-09 2021-02-26 哈工大机器人(昆山)有限公司 一种激光slam导航的临时障碍物处理方法
CN108303986A (zh) * 2018-03-09 2018-07-20 哈工大机器人(昆山)有限公司 一种激光slam导航的临时障碍物处理方法
CN109018762A (zh) * 2018-05-07 2018-12-18 北京三辰环卫机械有限公司 移动路径的确定方法和移动垃圾桶
CN108829094A (zh) * 2018-05-07 2018-11-16 北京三辰环卫机械有限公司 移动路径的确定方法和洗地机
CN109272481A (zh) * 2018-07-13 2019-01-25 南京理工大学 一种基于深度摄像头的障碍物检测方法
CN109141364B (zh) * 2018-08-01 2020-11-03 北京进化者机器人科技有限公司 障碍物检测方法、***及机器人
CN109141364A (zh) * 2018-08-01 2019-01-04 北京进化者机器人科技有限公司 障碍物检测方法、***及机器人
CN109324615A (zh) * 2018-09-20 2019-02-12 深圳蓝胖子机器人有限公司 办公楼送货控制方法、装置以及计算机可读存储介质
CN109582032A (zh) * 2018-10-11 2019-04-05 天津大学 多旋翼无人机在复杂环境下的快速实时避障路径选择方法
CN109582032B (zh) * 2018-10-11 2021-10-12 天津大学 多旋翼无人机在复杂环境下的快速实时避障路径选择方法
CN111376258B (zh) * 2018-12-29 2021-12-17 纳恩博(常州)科技有限公司 控制方法、装置、设备和存储介质
CN111376258A (zh) * 2018-12-29 2020-07-07 纳恩博(常州)科技有限公司 控制方法、装置、设备和存储介质
CN109540022A (zh) * 2019-01-03 2019-03-29 沈阳天骄科技有限公司 基于tof深度相机的平仓机器人路径规划与决策方法
CN109540022B (zh) * 2019-01-03 2020-07-07 沈阳天骄科技有限公司 基于tof深度相机的平仓机器人路径规划与决策方法
CN109839930A (zh) * 2019-01-16 2019-06-04 江苏理工学院 一种避障装置、***及方法
CN109682381A (zh) * 2019-02-22 2019-04-26 山东大学 基于全向视觉的大视场场景感知方法、***、介质及设备
CN113678082B (zh) * 2019-03-25 2024-07-05 索尼集团公司 移动体、移动体的控制方法和程序
CN113678082A (zh) * 2019-03-25 2021-11-19 索尼集团公司 移动体、移动体的控制方法和程序
CN109947114B (zh) * 2019-04-12 2022-03-15 南京华捷艾米软件科技有限公司 基于栅格地图的机器人全覆盖路径规划方法、装置及设备
CN109947114A (zh) * 2019-04-12 2019-06-28 南京华捷艾米软件科技有限公司 基于栅格地图的机器人全覆盖路径规划方法、装置及设备
CN110991708A (zh) * 2019-11-15 2020-04-10 云南电网有限责任公司电力科学研究院 一种基于路径判断的设备配送***和方法
CN111046776B (zh) * 2019-12-06 2023-06-09 杭州成汤科技有限公司 基于深度相机的移动机器人行进路径障碍物检测的方法
CN111046776A (zh) * 2019-12-06 2020-04-21 杭州成汤科技有限公司 基于深度相机的移动机器人行进路径障碍物检测的方法
CN111026114A (zh) * 2019-12-12 2020-04-17 南京苏美达智能技术有限公司 一种绕障方法及自行走设备
CN110955249A (zh) * 2019-12-23 2020-04-03 浙江华消科技有限公司 机器人通过障碍物的方法及装置、存储介质、电子装置
CN110955249B (zh) * 2019-12-23 2023-11-07 浙江华消科技有限公司 机器人通过障碍物的方法及装置、存储介质、电子装置
CN113359692A (zh) * 2020-02-20 2021-09-07 杭州萤石软件有限公司 一种障碍物的避让方法、可移动机器人
CN111624997A (zh) * 2020-05-12 2020-09-04 珠海市一微半导体有限公司 基于tof摄像模块的机器人控制方法、***及机器人
CN112363495A (zh) * 2020-09-28 2021-02-12 华南农业大学 一种畜禽养殖场巡检机器人的导航方法
WO2022095488A1 (zh) * 2020-11-04 2022-05-12 北京石头创新科技有限公司 一种检测未知障碍物的方法、装置、介质和电子设备
CN113359720A (zh) * 2021-05-31 2021-09-07 上海高仙自动化科技发展有限公司 移动设备避障方法、装置、电子设备及计算机可读存储介质
CN113359720B (zh) * 2021-05-31 2024-05-24 上海高仙自动化科技发展有限公司 移动设备避障方法、装置、电子设备及计算机可读存储介质
CN113759905A (zh) * 2021-08-30 2021-12-07 北京盈迪曼德科技有限公司 机器人路径规划方法、装置及机器人
CN114043493A (zh) * 2021-11-10 2022-02-15 华南农业大学 笼养鸡舍巡检机器人及巡检方法

Also Published As

Publication number Publication date
CN106054900B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN106054900A (zh) 基于深度摄像头的机器人临时避障方法
Chen et al. 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM
CN105160702B (zh) 基于LiDAR点云辅助的立体影像密集匹配方法及***
CN104238560B (zh) 一种非线性路径规划方法及***
CN103278170B (zh) 基于显著场景点检测的移动机器人级联地图创建方法
CN108415032A (zh) 一种基于深度学习与激光雷达的点云语义地图构建方法
CN102867057B (zh) 一种基于视觉定位的虚拟向导构建方法
CN109798909A (zh) 一种全局路径规划的方法
CN110220521B (zh) 一种高精地图的生成方法和装置
CN107817798A (zh) 一种基于深度学习***的农用机械避障方法
CN108983781A (zh) 一种无人车目标搜索***中的环境探测方法
CN107214701A (zh) 一种基于运动基元库的带电作业机械臂自主避障路径规划方法
CN107886120A (zh) 用于目标检测跟踪的方法和装置
CN109643127A (zh) 构建地图、定位、导航、控制方法及***、移动机器人
CN106826833A (zh) 基于3d立体感知技术的自主导航机器人***
CN103258345A (zh) 一种基于地面激光雷达三维扫描的树木枝干参数提取方法
CN107544501A (zh) 一种智能机器人智慧行走控制***及其方法
CN106845515A (zh) 基于虚拟样本深度学习的机器人目标识别和位姿重构方法
CN103869820A (zh) 一种巡视器地面导航规划控制方法
CN107402018A (zh) 一种基于连续帧的导盲仪组合路径规划方法
CN110298914A (zh) 一种建立果园中果树冠层特征地图的方法
CN114782626A (zh) 基于激光与视觉融合的变电站场景建图及定位优化方法
CN107833250A (zh) 语义空间地图构建方法及装置
CN112991487A (zh) 一种多线程实时构建正射影像语义地图的***
CN104848991A (zh) 基于视觉的主动式泄漏气体检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant