CN106054339A - 一种超宽谱波长不敏感光分路器的设计方法 - Google Patents

一种超宽谱波长不敏感光分路器的设计方法 Download PDF

Info

Publication number
CN106054339A
CN106054339A CN201610676975.5A CN201610676975A CN106054339A CN 106054339 A CN106054339 A CN 106054339A CN 201610676975 A CN201610676975 A CN 201610676975A CN 106054339 A CN106054339 A CN 106054339A
Authority
CN
China
Prior art keywords
wavelength
optical branching
branching device
ultra
insensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610676975.5A
Other languages
English (en)
Other versions
CN106054339B (zh
Inventor
王亮亮
安俊明
张家顺
吴远大
尹小杰
王红杰
李建光
王玥
胡雄伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd
Original Assignee
HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd filed Critical HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd
Priority to CN201610676975.5A priority Critical patent/CN106054339B/zh
Publication of CN106054339A publication Critical patent/CN106054339A/zh
Application granted granted Critical
Publication of CN106054339B publication Critical patent/CN106054339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4431Protective covering with provision in the protective covering, e.g. weak line, for gaining access to one or more fibres, e.g. for branching or tapping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种超宽谱波长不敏感光分路器的设计方法,采用调整Y分支弯曲半径和缝隙,平横短波和长波泄露损耗和辐射损耗,改善Y分支波长相关损耗,实现了超宽谱范围内波长不敏感Y分支结构,通过Y分支级联,形成超宽谱波长不敏感的1×N光分路器结构,实现超宽谱范围内波长平坦化。

Description

一种超宽谱波长不敏感光分路器的设计方法
技术领域
本发明属于光纤到户光分配器件技术领域,具体涉及一种平面光波导的超宽谱波长不敏感光分路器的设计方法。
背景技术
随着三网融合、光纤到户(FTTH)的大力发展,光分路器作为FTTH解决方案无源光网络***(PON)的关键器件,越来越受到关注。但随着人民上网速率、带宽的要求愈来愈高,传统工作在1310nm、1490nm和1550nm光通信***已不能满足人们的需求。同时对于一些工作在特殊波段的通信***,需要相应波段的光分路器,这就需要工作于更宽波长范围的光分路器。传统的光分路器工作在1250nm~1650nm波长范围内,且边缘波长处性能较差,无法满足更宽的波长范围。
发明内容
本发明要解决的是传统光分路器的波长范围有限和波长相关损耗较大,从而提供一种超宽谱波长不敏感光分路器的设计方法。
为解决上述技术问题,本发明所采用的技术方案如下:
一种超宽谱波长不敏感光分路器的设计方法,包括如下步骤:
步骤1:选择光分路器的波导材料并计算波导材料的相对折射率差△n。
步骤2:根据步骤1选择的波导材料,利用三维光束传播法仿真单模波导传输条件,得出高阶模截止条件,从而确定波导宽度及厚度;
步骤3:根据步骤2得出的波导宽度和截面尺寸,利用弯曲波导损耗公式,计算出最小弯曲半径,并根据最小弯曲半径构造光分路器的Y分支结构。
弯曲波导损耗公式具体如下:
Rn=n2R/λ0
ε=Δn3/21.137Δ-0.01
其中,Aθ为弯曲损耗,Δn为波导材料相对折射率差,R为波导弯曲半径,ε为相对介电常数,n2为波导芯区材料折射率,λ0为真空中光传输波长。
步骤4:在最小弯曲半径±30%~50%范围内对光分路器的Y分支结构进行超宽谱扫描,得到损耗随波长的变化趋势,并计算波长相关损耗WDL。
步骤5:对光分路器的Y分支结构不同缝隙进行扫描,得到损耗随缝隙变化趋势。
步骤6:根据步骤4和步骤5,调整缝隙和弯曲半径,得到波长不敏感的弯曲半径,并平衡长波、短波的泄露和辐射损耗,得到波长不敏感的Y分支结构。
步骤7:将波长不敏感的Y分支结构作为基本单元,通过级联方式形成1×N型光分路器结构。
在步骤1中,所述波导材料为二氧化硅波导材料,折射率差为0.45%;所述二氧化硅波导材料的芯层、衬底和包层的折射率分别为1.4502、1.445和1.445。
在步骤1中,所述波导材料的芯层和包层材料为硅或二氧化硅或磷化铟或砷化镓。
所述波导材料的折射率差△n的计算公式如下:
Δ n = n 1 2 - n 2 2 2 n 2 2
其中,n1是芯层折射率,n2是包层和衬底折射率。
在步骤2中,在折射率差0.45%下,所述波导宽度为8μm,所述截面尺寸8μm×8μm。
在折射率差0.45%时,所述最小弯曲半径为15mm。
在步骤4中,所述波长相关损耗WDL的计算公式如下:
WDL i = - 10 lg ( P out i ) m i n ( P out i ) max
其中,i为输出通道的编号,Pout为输出通道功率。
在折射率差0.45%时,所述波长不敏感的弯曲半径为16mm。
所述超宽谱的范围为1.05μm~1.75μm。
本发明在选定波导材料的情况下,首先用基于三维光束传播法的Rsoft软件仿真单模波导传输条件,从而确定波导宽度及截面尺寸;然后利用弯曲波导损耗,计算出最小弯曲半径;在最小弯曲半径附近进行超宽谱扫描,得到损耗随弯曲半径的变化趋势;对Y分支缝隙扫描,得到损耗随缝隙的变化趋势;通过调整合适缝隙和弯曲半径,平衡长波短波的泄露和辐射损耗,得到波长不敏感Y分支结构;将Y分支作为基本单元,通过级联方式形成1×N型光分路器结构。
本发明采用调整Y分支弯曲半径和缝隙,平横短波和长波泄露损耗和辐射损耗,改善 Y分支波长相关损耗,实现了超宽谱范围内波长不敏感Y分支结构,通过Y分支级联,形成超宽谱波长不敏感的1×N光分路器结构,实现超宽谱范围内波长平坦化。
附图说明
图1为本发明中Y分支结构的光分路器结构示意图。
图2为本发明中0.45%折射率下波导模式折射率随宽度变化趋势图。
图3为本发明中Y分支结构损耗随弯曲半径变化趋势图。
图4为本发明中Y分支结构损耗随分支缝隙变化趋势图。
图5为本发明中优化后Y分支结构损耗随波长变化趋势。
图6为本发明中Y分支结构级联形成的1×8波长不敏感光分路器结构。
图7为本发明中1×8波长不敏感光分路器结构的损耗随波长变化趋势。
具体实施方式
实施例:
一种超宽谱波长不敏感光分路器的设计方法,包括如下步骤:
步骤1:选择光分路器的波导材料并计算波导材料的折射率差△n。
所述波导材料为二氧化硅波导材料,折射率差为0.45%;所述二氧化硅波导材料的芯层、衬底和包层的折射率分别为1.4502、1.445和1.445。
在本实施例中,所述波导材料的芯层和包层材料还可为硅或二氧化硅或磷化铟或砷化镓。
所述波导材料的折射率差△n的计算公式如下:
Δ n = n 1 2 - n 2 2 2 n 2 2
其中,n1是芯层折射率,n2是包层和衬底折射率。
步骤2:根据步骤1选择的波导材料,利用基于三维光束传播法Rsoft软件仿真单模波导传输条件,得出高阶模截止条件,从而确定波导宽度及厚度;
从图2中可以看出,在波导宽度大约8.4μm时,出现了1阶模,可以认为单模条件为小于8.4μm,为满足单模条件,在折射率差0.45%下,所述波导宽度width为8μm,所述截面尺寸8μm×8μm。
步骤3:根据步骤2得出的波导宽度和截面尺寸,利用弯曲波导损耗公式,计算出最小弯曲半径,并根据最小弯曲半径构造光分路器的Y分支结构。
弯曲波导损耗公式具体如下:
Rn=n2R/λ0
ε=Δn3/21.137Δ-0.01
其中,Aθ为弯曲损耗,Δn为波导材料相对折射率差,R为波导弯曲半径,ε为相对介电常数,n2为波导芯区材料折射率,λ0为真空中光传输波长。
计算得出,在折射率差0.45%时,所述最小弯曲半径为15mm。
步骤4:在最小弯曲半径±30%~50%范围内对光分路器的Y分支结构进行超宽谱扫描,得到损耗随弯曲半径的变化趋势,并计算波长相关损耗WDL。
所述波长相关损耗WDL的计算公式如下:
WDL i = - 10 lg ( P out i ) m i n ( P out i ) max
其中,i为输出通道的编号,Pout为输出通道功率。
在本实施例中,采用1×2Y分支结构,如图1所示。并选取Y分支结构的弯曲半径的变化范围为10mm~20mm,利用三维光束传播法(Three-Dimension Beam PropagationMethod,3D-BPM)对Y分支结构进行模拟,模拟结果如图3所示。
从图3可以看出,弯曲半径较小时,由于长波辐射损耗较大,长波损耗相对偏大。
步骤5:对光分路器的Y分支结构不同缝隙进行扫描,得到损耗随缝隙变化趋势。
由于光刻工艺的限制,小于1微米缝隙重复性较差,考虑到工艺重复性,选取Y分支结构的缝隙变化范围从1~5μm,利用三维光束传播法(Three-Dimension BeamPropagation Method,3D-BPM)对不同缝隙Y分支结构进行模拟,结果如图4所示。
从图4中可以看出,在缝隙较大时,由于短波损耗主要集中在波导中心部分,泄露损耗较大,导致缝隙偏大时损耗偏大。
步骤6:根据步骤4和步骤5,调整缝隙和弯曲半径,得到波长不敏感的弯曲半径,并平衡长波、短波的泄露和辐射损耗,得到波长不敏感的Y分支结构。
结合步骤4和步骤5得出的损耗随弯曲半径和缝隙变化趋势,弯曲半径较小时,由于长波辐射损耗较大,长波损耗相对偏大。在缝隙较大时,由于短波损耗主要集中在波导中心部 分,泄露损耗较大,导致缝隙偏大时损耗偏大。利用这一现象,通过调整弯曲半径和缝隙,平衡不同波长下辐射损耗和泄露损耗,达到超超宽谱范围波长不敏感。
图5为优化后1×2Y分支损耗随波长变化趋势,从图5中可以看出,在超宽谱波长1.05μm~1.75μm波长范围内,短波和长波损耗基本保持一致,Y分支波长相关损耗WDL<0.01dB。
步骤7:将波长不敏感的Y分支结构作为基本单元,通过级联方式形成1×N型光分路器结构。
图6是,1×2Y分支结构级联形成的1×8波长不敏感光分路器结构。图7是1×8波长不敏感光分路器结构的损耗随波长变化趋势,因输出波导对称,输出只选取了前四个通道,从图7中可以看出,在超宽谱波长1.05μm~1.75μm波长范围内,1×8波长不敏感光分路器波长相关损耗WDL<0.13dB。

Claims (8)

1.一种超宽谱波长不敏感光分路器的设计方法,其特征在于:包括如下步骤:
步骤1:选择光分路器的波导材料并计算波导材料的相对折射率差Δn
步骤2:根据步骤1选择的波导材料,利用三维光束传播法仿真单模波导传输条件,得出高阶模截止条件,从而确定波导宽度及厚度;
步骤3:根据步骤2得出的波导宽度和截面尺寸,利用弯曲波导损耗公式,计算出最小弯曲半径,并根据最小弯曲半径构造光分路器的Y分支结构;
弯曲波导损耗公式具体如下:
Rn=n2R/λ0
ε=Δn3/21.137Δ-0.01
其中,Aθ为弯曲损耗,Δn为波导材料相对折射率差,R为波导弯曲半径,ε为相对介电常数,n2为波导芯区材料折射率,λ0为真空中光传输波长。
步骤4:在最小弯曲半径±30%~50%范围内对光分路器的Y分支结构进行超宽谱扫描,得到损耗随波长的变化趋势,并计算波长相关损耗WDL;
步骤5:对光分路器的Y分支结构不同缝隙进行扫描,得到损耗随缝隙变化趋势;
步骤6:根据步骤4和步骤5,调整缝隙和弯曲半径,得到波长不敏感的弯曲半径,并平衡长波、短波的泄露和辐射损耗,得到波长不敏感的Y分支结构;
步骤7:将波长不敏感的Y分支结构作为基本单元,通过级联方式形成1×N型光分路器结构。
2.根据权利要求1所述的一种超宽谱波长不敏感光分路器的设计方法,其特征在于:在步骤1中,所述波导材料为二氧化硅波导材料,折射率差为0.45%;所述二氧化硅波导材料的芯层、衬底和包层的折射率分别为1.4502、1.445和1.445。
3.根据权利要求1所述的一种超宽谱波长不敏感光分路器的设计方法,其特征在于:在步骤1中,所述波导材料的芯层和包层材料为硅或二氧化硅或磷化铟或砷化镓。
4.根据权利要求2所述的一种超宽谱波长不敏感光分路器的设计方法,其特征在于:所述波导材料的折射率差Δn的计算公式如下:
&Delta; n = n 1 2 - n 2 2 2 n 2 2
其中,n1是芯层折射率,n2是包层和衬底折射率。
5.根据权利要求1所述的一种超宽谱波长不敏感光分路器的设计方法,其特征在于:在步骤2中,在折射率差0.45%下,所述波导宽度为8μm,所述截面尺寸8μm×8μm。
6.根据权利要求1或5所述的一种超宽谱波长不敏感光分路器的设计方法,其特征在于:在折射率差0.45%时,所述最小弯曲半径为15mm。
7.根据权利要求1所述的一种超宽谱波长不敏感光分路器的设计方法,其特征在于:在步骤4中,所述波长相关损耗WDL的计算公式如下:
WDL i = - 10 l g ( P out i ) m i n ( P out i ) max
其中,i为输出通道的编号,Pout为输出通道功率。
8.根据权利要求1或7所述的一种超宽谱波长不敏感光分路器的设计方法,其特征在于:在折射率差0.45%时,所述波长不敏感的弯曲半径为16mm。
CN201610676975.5A 2016-08-16 2016-08-16 一种超宽谱波长不敏感光分路器的设计方法 Active CN106054339B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610676975.5A CN106054339B (zh) 2016-08-16 2016-08-16 一种超宽谱波长不敏感光分路器的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610676975.5A CN106054339B (zh) 2016-08-16 2016-08-16 一种超宽谱波长不敏感光分路器的设计方法

Publications (2)

Publication Number Publication Date
CN106054339A true CN106054339A (zh) 2016-10-26
CN106054339B CN106054339B (zh) 2018-10-23

Family

ID=57195156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610676975.5A Active CN106054339B (zh) 2016-08-16 2016-08-16 一种超宽谱波长不敏感光分路器的设计方法

Country Status (1)

Country Link
CN (1) CN106054339B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329209A (zh) * 2017-08-18 2017-11-07 中国科学院半导体研究所 M×n多播传送光开关
CN111679385A (zh) * 2020-06-04 2020-09-18 无锡市芯飞通光电科技有限公司 一种波长不敏感不均分光分路器的实现方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030133662A1 (en) * 2002-01-14 2003-07-17 Heu-Gon Kim Optical power splitter having a stabilizing waveguide
US20060023989A1 (en) * 2003-09-12 2006-02-02 Masashiro Yanagisawa Wavelength multiplexer/demultiplexer
US20100046890A1 (en) * 2008-08-25 2010-02-25 Fujitsu Limited Optical Beam Splitter
CN102354023A (zh) * 2011-10-27 2012-02-15 电子科技大学 一种1×n波导型可调光功率分束器
CN205067786U (zh) * 2015-10-09 2016-03-02 烟台市皓辰光电科技有限公司 低损耗波导光分路器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030133662A1 (en) * 2002-01-14 2003-07-17 Heu-Gon Kim Optical power splitter having a stabilizing waveguide
US20060023989A1 (en) * 2003-09-12 2006-02-02 Masashiro Yanagisawa Wavelength multiplexer/demultiplexer
US20100046890A1 (en) * 2008-08-25 2010-02-25 Fujitsu Limited Optical Beam Splitter
CN102354023A (zh) * 2011-10-27 2012-02-15 电子科技大学 一种1×n波导型可调光功率分束器
CN205067786U (zh) * 2015-10-09 2016-03-02 烟台市皓辰光电科技有限公司 低损耗波导光分路器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张小康等: "波导弯曲半径与弯曲损耗的关系", 《光子学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329209A (zh) * 2017-08-18 2017-11-07 中国科学院半导体研究所 M×n多播传送光开关
CN107329209B (zh) * 2017-08-18 2019-08-09 中国科学院半导体研究所 M×n多播传送光开关
CN111679385A (zh) * 2020-06-04 2020-09-18 无锡市芯飞通光电科技有限公司 一种波长不敏感不均分光分路器的实现方法

Also Published As

Publication number Publication date
CN106054339B (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
Okamoto Wavelength-division-multiplexing devices in thin SOI: Advances and prospects
KR20070001102A (ko) 광대역파장합분파필터 및 광신호합분파기능을 가진광스플리터
CN205941972U (zh) 一种偏振分束器
JPH04172308A (ja) Y分岐光回路
Butt et al. Compact design of a polarization beam splitter based on silicon-on-insulator platform
CN102902010B (zh) 信道损耗均匀的波导光栅器件
CN104914508A (zh) 一种Bragg齿面结构的蚀刻衍射光栅波分复用器及其设计方法
Gargallo et al. Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response
CN106054339A (zh) 一种超宽谱波长不敏感光分路器的设计方法
US6873766B2 (en) Efficient waveguide arrays with nearly perfect element patterns
Dai et al. Optimal design of an MMI coupler for broadening the spectral response of an AWG demultiplexer
Leng et al. Ultra-broadband, fabrication tolerant optical coupler for arbitrary splitting ratio using particle swarm optimization algorithm
Idris et al. 6.4-THz-spacing, 10-channel cyclic arrayed waveguide grating for T-and O-band coarse WDM
CN113721319A (zh) 一种宽波段高消光比片上集成偏振器及设计方法
CN202870343U (zh) 基于多模干涉器反射镜的反射式阵列波导光栅
Kuno et al. Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection
CN202904056U (zh) 一种信道损耗均匀的波导光栅器件
Juhari et al. 12-channel tapered SOI-based AWG for CWDM system
JP2848144B2 (ja) チューナブル光フィルタ
JP2537147B2 (ja) 光伝送系用のマルチプレクサ/デマルチプレクサ
Yi et al. Ultra-short silicon MMI duplexer
CN112630887A (zh) 一种光波导模式转换器的制造方法及模式转换器
Salameh et al. Wavelength-division demultiplexing using graded-index planar structures
Mu et al. Facet-rotated echelle grating for cyclic wavelength router with uniform loss and flat passband
US20200142130A1 (en) Adjustable Wide-Spectrum Wavelength-Insensitive Directional Coupler

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant