CN106045500A - 一种nbt基高温度低损耗陶瓷电容器的制备方法 - Google Patents

一种nbt基高温度低损耗陶瓷电容器的制备方法 Download PDF

Info

Publication number
CN106045500A
CN106045500A CN201610370589.3A CN201610370589A CN106045500A CN 106045500 A CN106045500 A CN 106045500A CN 201610370589 A CN201610370589 A CN 201610370589A CN 106045500 A CN106045500 A CN 106045500A
Authority
CN
China
Prior art keywords
ceramic capacitor
preparation
nbt
temperature low
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610370589.3A
Other languages
English (en)
Inventor
蒲永平
万晶
吴煜蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201610370589.3A priority Critical patent/CN106045500A/zh
Publication of CN106045500A publication Critical patent/CN106045500A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种NBT基高温度低损耗陶瓷电容器的制备方法,其化学组成通式满足:0.92Na0.5Bi0.5TiO3‑0.08BaTiO3‑xLiBa2Nb5O15,其中x表示摩尔分数,0.2≤x≤0.5。本发明通过固相法分别制备主料Na0.5Bi0.5TiO3,辅料BaTiO3和LiBa2Nb5O15,然后按照配比依次进行配料、球磨、烘干、造粒、过筛后压制成生坯,生坯于1120~1150℃保温2~3小时烧结,烧渗制备电极,制得该陶瓷电容器。本发明制备的陶瓷电容器以NBT为基体,向其中加入少量BaTiO3,并采用具有LiBa2Nb5O15进行掺杂改性,LiBa2Nb5O15的掺入有利于压低NBT的介电峰,使得其在介电常数相对较高的情况下,同时可在较宽的温度范围内,保持较低的介电损耗。

Description

一种NBT基高温度低损耗陶瓷电容器的制备方法
【技术领域】
本发明涉及功能陶瓷领域,特别涉及一种NBT基高温度低损耗陶瓷电容器的制备方法。
【背景技术】
近年来,随着市场要求不断提高,电子设备所处的工作环境要求也越来越苛刻,例如航空航天、石油钻探等领域工作环境温度远高于常规工作温度。但是,随着工作温度的升高,电子设备的损耗也急剧增大,对其使用效率产生了很大影响。所以,开发使用温度尽可能高同时可以保持低损耗的的多层陶瓷电容器显得尤为重要。
目前,含铅的材料应用较为广泛,但是由于含铅的氧化物对人体的健康不利,对环境的污染严重,所以为了环保化,开发无铅陶瓷电容器很有必要。对于电容器而言,铁电介质具有大介电常数值能满足电容量大要求,同时也能适应电子设备微型化的要求。但是,大介电常数使得介电损耗也相应地增大,所以无铅化和高温度范围具有低损耗是陶瓷电容器的两个重要发展方向。
BaTiO3陶瓷由于具有良好的铁电性能、压电性能和较高的介电常数,所以常用来制备多层陶瓷电容器。目前,大多数高温度范围具有低损耗的陶瓷电容器仍是以BaTiO3为基体,向其中掺杂一些化合物改性来达到目的。以NBT为基体来进行改性的高温度低损耗材料鲜有报道。
【发明内容】
本发明的目的在于克服现有技术中存在的问题,提供一种NBT基高温度低损耗陶瓷电容器的制备方法,以NBT为基体,在高的温度范围内具有较低损耗。
为实现上述目的,本发明采取如下技术方案:
具有如下步骤:
(1)按照化学计量比为0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15,取BaTiO3粉体、Na0.5Bi0.5TiO3粉体和LiBa2Nb5O15粉体进行混合,将得到的混合物进行球磨、烘干、造粒和过筛后,形成筛分料,其中x表示摩尔分数,0.2≤x≤0.5;
(2)将步骤(1)所得筛分料制成试样,将试样在1120~1150℃保温2~3小时进行烧结,然后冷却至室温;
(3)打磨并清洗步骤(2)烧结好的试样后,在试样正反两面均匀涂覆银电极浆料,于600~650℃烧结30~40分钟,得到NBT基高温度低损耗陶瓷电容器。
进一步地,BaTiO3粉体的制备步骤包括:首先按照摩尔比1:1称取BaCO3和TiO2形成混合物A,取混合物A与锆球石及去离子水按照质量比为1:(1~2):1混合球磨3~4h,并在60~80℃烘干,再于1120~1150℃煅烧,制得BaTiO3粉体。
进一步地,Na0.5Bi0.5TiO3粉体的制备步骤包括:首先按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2形成混合物B,取混合物B与锆球石及去离子水按照质量比为1:(1~2):1混合球磨3~4h,并在60~80℃烘干,再于800~850℃煅烧,制得Na0.5Bi0.5TiO3粉体。
进一步地,LiBa2Nb5O15粉体的制备步骤包括:首先按照摩尔比4:1:5称取BaCO3,Li2CO3和Nb2O5形成混合物C,取混合物C与锆球石及去离子水按照质量比为1:(1~2):1混合球磨3~4h并在60~80℃烘干,再于1000~1100℃煅烧,制得LiBa2Nb5O15粉体。
进一步地,x=0.2、0.3、0.4或0.5。
进一步地,步骤(1)中的烘干温度为60~80℃。
进一步地,步骤(1)中,混合物、锆球石及去离子水混合、球磨、烘干后形成烘干料,将质量浓度为5~6%的粘合剂添加至烘干料中进行造粒,得到造粒料,粘合剂占烘干料质量的9~10%。
进一步地,步骤(1)中的过筛是将造粒料分别过40目和80目筛取中间料,获得筛分料;步骤(2)中筛分料在110~120MPa的压强下制成试样。
进一步地,步骤(2)中,试样先进行排胶处理再进行烧结,排胶处理是将试样在600~700℃的马弗炉中保温30~40min。
进一步地,步骤(2)中,试样置于以氧化锆为垫板的氧化铝匣钵内在高温箱式炉内,以2℃/min升温至500℃,再以5℃/min升温至1120~1150℃保温2~3小时,最后以5℃/min降温至500℃后,随炉冷却至室温。
与现有技术相比,本发明具有以下有益的技术效果:
1.本发明采用固相法制备,工艺成熟,适合产业化生产。2.以NBT为基体,向其中加入少量BaTiO3,主要采用具有超低损耗的LiBa2Nb5O15进行掺杂改性,LiBa2Nb5O15的掺入有利于压低NBT的介电峰,使得其在介电常数相对较高(>1500)的情况下,同时可在70~402℃的温度范围内,能保持较低的介电损耗(≤2%);3.通过对比得知,LiBa2Nb5O15的添加可以显著扩大损耗小于0.02的温度范围,使陶瓷在更高更宽的温度范围内保持超低的介电损耗,且本发明化学组成和制备工艺简单、原料廉价环保,因此本发明方法制备的NBT基高温度低损耗陶瓷电容器,具有广阔的应用前景,为进一步研究在高温度下具有超低损耗的陶瓷电容器奠定了基础。
【附图说明】
图1是本发明实施例1-4的介电损耗随温度的变化曲线图。
图2为陶瓷中未添加LiBa2Nb5O15的介电损耗随温度变化图。
【具体实施方式】
本发明包括如下步骤:
(1)首先制备BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15备用:
①按照摩尔比1:1称取BaCO3和TiO2形成混合物A;取混合物A与锆球石及去离子水,按照质量比1:(1~2):1,混合球磨3~4h并在60~80℃烘干,再于1120~1150℃煅烧3h,制得粉体BaTiO3
②按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2形成混合物B;取混合物B与锆球石及去离子水,按照质量比1:(1~2):1,混合球磨3~4h并在60~80℃烘干,再于800~850℃煅烧3h,制得粉体Na0.5Bi0.5TiO3
③按照摩尔比4:1:5称取BaCO3,Li2CO3和Nb2O5形成混合物C;取混合物C与锆球石及去离子水,按照质量比1:(1~2):1,混合球磨3~4h并在60~80℃烘干,再于1000~1100℃煅烧3h,制得粉体LiBa2Nb5O15
(2)将步骤(1)得到的粉体BaTiO3、Na0.5Bi0.5TiO3和LiBa2Nb5O15按照0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15配料,其中x表示摩尔分数,0.2≤x≤0.5,取混合物与锆球石及去离子水,按照质量比1:(1~2):1,混合球磨3~4h、60~80℃烘干后形成烘干料,将质量浓度为5~6%的聚乙烯醇(PVA)作为粘合剂添加至烘干料中进行造粒,并分别过40目和80目筛取中间料,得到筛分料,其中粘合剂占烘干料质量的9~10%;
(3)将步骤(2)所得筛分料在110~120MPa的压强下制成陶瓷生坯试样,先在马弗炉中排胶,排胶处理为将陶瓷生坯在600~700℃的马弗炉中保温30~40min以排去水分及有机物,然后,置于以氧化锆为垫板的氧化铝匣钵内在高温箱式炉内,以2℃/min升温至500℃,以5℃/min升温至1120~1150℃保温2~3小时,接着,以5℃/min降温至500℃后,随炉冷却至室温;
(4)打磨、清洗步骤(3)烧结好的试样后,在试样正反两面均匀涂覆银电极浆料,于600~650℃烧结30~40分钟,得到NBT基高温度低损耗陶瓷电容器。
实施例1:
本发明NBT基高温度低损耗陶瓷电容器,其配方为0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15,其中x=0.2,x表示摩尔分数。
(1)制备BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15备用:按照摩尔比1:1称取BaCO3和TiO2形成混合物A;按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2形成混合物B;按照摩尔比4:1:5称取BaCO3,Li2CO3和Nb2O5形成混合物C;
(2)取混合物A、B、C,分别与锆球石及去离子水,按照质量比1:1:1,混合球磨4h并在60℃烘干,A于1150℃煅烧,B于850℃煅烧,C于1000℃煅烧,分别制得粉体BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15
(3)将步骤(2)得到的粉体BaTiO3、Na0.5Bi0.5TiO3和LiBa2Nb5O15按照0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15配料,其中x=0.2,取混合物与去离子水,按照质量比1:1:1,混合球磨4h、60℃烘干、造粒、过筛,形成造粒料;其中烘干料中添加质量浓度为5%的聚乙烯醇进行造粒,聚乙烯醇占烘干料质量的9%;
(4)将步骤(3)所得造粒料在120MPa的压强下制成试样,先在600℃的马弗炉中保温40min排胶,然后,置于以氧化锆为垫板的氧化铝匣钵内在高温箱式炉内,以2℃/min升温至500℃,以5℃/min升温至1120℃保温2小时,接着,以5℃/min降温至500℃后,随炉冷却至室温;
(5)打磨、清洗步骤(4)烧结好的试样后,在试样正反两面均匀涂覆银电极浆料,于600℃烧结30分钟,得到NBT基高温度低损耗陶瓷电容器。
实施例2
仅将配方中的摩尔分数改为x=0.3,其它条件与实施例1相同。
实施例3
仅将配方中的摩尔分数改为x=0.4,其它条件与实施例1相同。
实施例4
仅将配方中的摩尔分数改为x=0.5,其它条件与实施例1相同。
实施例1-4的介电损耗随温度的变化见图1,从图中可以看出,实施例1当LiBa2Nb5O15的添加量为0.2mol%时,陶瓷样品在99~365℃的温度范围内损耗小于0.02,实施例3当LiBa2Nb5O15的添加量为0.4mol%时,陶瓷样品在70~402℃的温度范围内损耗小于0.02,添加量为0.5mol%时,损耗小于0.02的温度范围略小于添加量为0.4mol%时的温度范围。说明LiBa2Nb5O15添加量在某个范围内的增加可以使得介电损耗小于0.02的温度范围加宽,成功获得在高温度下具有超低损耗的介电材料。图2为陶瓷中未添加LiBa2Nb5O15的介电损耗随温度变化图,此时陶瓷样品仅在119~242℃的温度范围内损耗小于0.02。通过对比得知,LiBa2Nb5O15的添加可以显著扩大损耗小于0.02的温度范围,使陶瓷在更高更宽的温度范围内保持超低的介电损耗,具有广泛的应用前景。
实施例5:
(1)制备BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15备用:按照摩尔比1:1称取BaCO3和TiO2形成混合物A;按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2形成混合物B;按照摩尔比4:1:5称取BaCO3,Li2CO3和Nb2O5形成混合物C;
(2)取混合物A、B、C,分别与锆球石及去离子水,按照质量比1:2:1,混合球磨3h并在70℃烘干,A于1120℃煅烧,B于820℃煅烧,C于1050℃煅烧,分别制得粉体BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15
(3)将步骤(2)得到的粉体BaTiO3、Na0.5Bi0.5TiO3和LiBa2Nb5O15按照0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15配料,其中x=0.3,取混合物与去离子水,按照质量比1:2:1,混合球磨3h、70℃烘干、造粒、过筛,形成造粒料;其中烘干料中添加质量浓度为6%的聚乙烯醇进行造粒,聚乙烯醇占烘干料质量的9.5%;
(4)将步骤(3)所得造粒料在110MPa的压强下制成试样,先在650℃的马弗炉中保温30min排胶,然后,置于以氧化锆为垫板的氧化铝匣钵内在高温箱式炉内,以2℃/min升温至500℃,以5℃/min升温至1150℃保温2.5小时,接着,以5℃/min降温至500℃后,随炉冷却至室温;
(5)打磨、清洗步骤(4)烧结好的试样后,在试样正反两面均匀涂覆银电极浆料,于650℃烧结40分钟,得到NBT基高温度低损耗陶瓷电容器。
实施例6:
(1)制备BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15备用:按照摩尔比1:1称取BaCO3和TiO2形成混合物A;按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2形成混合物B;按照摩尔比4:1:5称取BaCO3,Li2CO3和Nb2O5形成混合物C;
(2)取混合物A、B、C,分别与锆球石及去离子水,按照质量比1:1.5:1,混合球磨3.5h并在80℃烘干,A于1140℃煅烧,B于800℃煅烧,C于1100℃煅烧,分别制得粉体BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15
(3)将步骤(2)得到的粉体BaTiO3、Na0.5Bi0.5TiO3和LiBa2Nb5O15按照0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15配料,其中x=0.4,取混合物与去离子水,按照质量比1:1.5:1,混合球磨3.5h、80℃烘干、造粒、过筛,形成造粒料;其中烘干料中添加质量浓度为5.5%的聚乙烯醇进行造粒,聚乙烯醇占烘干料质量的10%;
(4)将步骤(3)所得造粒料在110MPa的压强下制成试样,先在700℃的马弗炉中保温35min排胶,然后,置于以氧化锆为垫板的氧化铝匣钵内在高温箱式炉内,以2℃/min升温至500℃,以5℃/min升温至1130℃保温3小时,接着,以5℃/min降温至500℃后,随炉冷却至室温;
(5)打磨、清洗步骤(4)烧结好的试样后,在试样正反两面均匀涂覆银电极浆料,于620℃烧结35分钟,得到NBT基高温度低损耗陶瓷电容器。
实施例7:
(1)制备BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15备用:按照摩尔比1:1称取BaCO3和TiO2形成混合物A;按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2形成混合物B;按照摩尔比4:1:5称取BaCO3,Li2CO3和Nb2O5形成混合物C;
(2)取混合物A、B、C,分别与锆球石及去离子水,按照质量比1:2:1,混合球磨3h并在75℃烘干,A于1130℃煅烧,B于840℃煅烧,C于1080℃煅烧,分别制得粉体BaTiO3、Na0.5Bi0.5TiO3、LiBa2Nb5O15
(3)将步骤(2)得到的粉体BaTiO3、Na0.5Bi0.5TiO3和LiBa2Nb5O15按照0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15配料,其中x=0.5,取混合物与去离子水,按照质量比1:2:1混合球磨3h、75℃烘干、造粒、过筛,形成造粒料;其中烘干料中添加质量浓度为5%的聚乙烯醇进行造粒,聚乙烯醇占烘干料质量的10%;
(4)将步骤(3)所得造粒料在120MPa的压强下制成试样,先在680℃的马弗炉中保温32min排胶,然后,置于以氧化锆为垫板的氧化铝匣钵内在高温箱式炉内,以2℃/min升温至500℃,以5℃/min升温至1140℃保温2小时,接着,以5℃/min降温至500℃后,随炉冷却至室温;
(5)打磨、清洗步骤(4)烧结好的试样后,在试样正反两面均匀涂覆银电极浆料,于640℃烧结32分钟,得到NBT基高温度低损耗陶瓷电容器。
上述仅为本发明的几个具体实施方式,本发明的原料和工艺参数的上下限取值都能实现本发明,在此不一一进行举例说明。

Claims (10)

1.一种NBT基高温度低损耗陶瓷电容器的制备方法,具有如下步骤:
(1)按照化学计量比为0.92Na0.5Bi0.5TiO3-0.08BaTiO3-xLiBa2Nb5O15,取BaTiO3粉体、Na0.5Bi0.5TiO3粉体和LiBa2Nb5O15粉体进行混合,将得到的混合物进行球磨、烘干、造粒和过筛后,形成筛分料,其中x表示摩尔分数,0.2≤x≤0.5;
(2)将步骤(1)所得筛分料制成试样,将试样在1120~1150℃保温2~3小时进行烧结,然后冷却至室温;
(3)打磨并清洗步骤(2)烧结好的试样后,在试样正反两面均匀涂覆银电极浆料,于600~650℃烧结30~40分钟,得到NBT基高温度低损耗陶瓷电容器。
2.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:BaTiO3粉体的制备步骤包括:首先按照摩尔比1:1称取BaCO3和TiO2形成混合物A,取混合物A与锆球石及去离子水按照质量比为1:(1~2):1混合球磨3~4h,并在60~80℃烘干,再于1120~1150℃煅烧,制得BaTiO3粉体。
3.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:Na0.5Bi0.5TiO3粉体的制备步骤包括:首先按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2形成混合物B,取混合物B与锆球石及去离子水按照质量比为1:(1~2):1混合球磨3~4h,并在60~80℃烘干,再于800~850℃煅烧,制得Na0.5Bi0.5TiO3粉体。
4.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:LiBa2Nb5O15粉体的制备步骤包括:首先按照摩尔比4:1:5称取BaCO3,Li2CO3和Nb2O5形成混合物C,取混合物C与锆球石及去离子水按照质量比为1:(1~2):1混合球磨3~4h并在60~80℃烘干,再于1000~1100℃煅烧,制得LiBa2Nb5O15粉体。
5.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:x=0.2、0.3、0.4或0.5。
6.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:步骤(1)中的烘干温度为60~80℃。
7.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:步骤(1)中,混合物、锆球石及去离子水混合、球磨、烘干后形成烘干料,将质量浓度为5~6%的粘合剂添加至烘干料中进行造粒,得到造粒料,粘合剂占烘干料质量的9~10%。
8.如权利要求7所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:步骤(1)中的过筛是将造粒料分别过40目和80目筛取中间料,获得筛分料;步骤(2)中筛分料在110~120MPa的压强下制成试样。
9.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:步骤(2)中,试样先进行排胶处理再进行烧结,排胶处理是将试样在600~700℃的马弗炉中保温30~40min。
10.如权利要求1所述的一种NBT基高温度低损耗陶瓷电容器的制备方法,其特征在于:步骤(2)中,试样置于以氧化锆为垫板的氧化铝匣钵内在高温箱式炉内,以2℃/min升温至500℃,再以5℃/min升温至1120~1150℃保温2~3小时,最后以5℃/min降温至500℃后,随炉冷却至室温。
CN201610370589.3A 2016-05-30 2016-05-30 一种nbt基高温度低损耗陶瓷电容器的制备方法 Pending CN106045500A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610370589.3A CN106045500A (zh) 2016-05-30 2016-05-30 一种nbt基高温度低损耗陶瓷电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610370589.3A CN106045500A (zh) 2016-05-30 2016-05-30 一种nbt基高温度低损耗陶瓷电容器的制备方法

Publications (1)

Publication Number Publication Date
CN106045500A true CN106045500A (zh) 2016-10-26

Family

ID=57172146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610370589.3A Pending CN106045500A (zh) 2016-05-30 2016-05-30 一种nbt基高温度低损耗陶瓷电容器的制备方法

Country Status (1)

Country Link
CN (1) CN106045500A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721412A (zh) * 2017-11-13 2018-02-23 陕西科技大学 一种nbt基半导体陶瓷及其制备方法
CN112159223A (zh) * 2020-09-25 2021-01-01 陕西科技大学 一种高温度稳定性高介电常数低损耗的介电陶瓷材料、制备方法及应用
CN113321506A (zh) * 2021-07-08 2021-08-31 陕西科技大学 一种无铅弛豫铁电体陶瓷材料及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100513A (zh) * 1985-04-01 1986-08-13 中国科学院上海硅酸盐研究所 钛酸铋钠钡系超声用压电陶瓷材料
CN1562876A (zh) * 2004-03-30 2005-01-12 中国科学院上海硅酸盐研究所 小功率超声换能器用掺杂改性钛酸铋钠钡压电陶瓷及其制备方法
CN102173788A (zh) * 2011-01-27 2011-09-07 西北工业大学 钛酸铋钠基高应变无铅压电陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100513A (zh) * 1985-04-01 1986-08-13 中国科学院上海硅酸盐研究所 钛酸铋钠钡系超声用压电陶瓷材料
CN1562876A (zh) * 2004-03-30 2005-01-12 中国科学院上海硅酸盐研究所 小功率超声换能器用掺杂改性钛酸铋钠钡压电陶瓷及其制备方法
CN102173788A (zh) * 2011-01-27 2011-09-07 西北工业大学 钛酸铋钠基高应变无铅压电陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YURONG WU ET AL.: "The relaxor behavior and dielectric temperature stability of 0.85BaTiO3–0.15Na0.5Bi0.5TiO3–xLiBa2Nb5O15 ceramics", 《MATERIALS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721412A (zh) * 2017-11-13 2018-02-23 陕西科技大学 一种nbt基半导体陶瓷及其制备方法
CN112159223A (zh) * 2020-09-25 2021-01-01 陕西科技大学 一种高温度稳定性高介电常数低损耗的介电陶瓷材料、制备方法及应用
CN113321506A (zh) * 2021-07-08 2021-08-31 陕西科技大学 一种无铅弛豫铁电体陶瓷材料及制备方法

Similar Documents

Publication Publication Date Title
CN103342556A (zh) 一种两相低温共烧温度稳定型电介质陶瓷材料的制备方法
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN101811866B (zh) 无铅x8r型电容器陶瓷材料及其制备方法
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN111995383A (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN106045500A (zh) 一种nbt基高温度低损耗陶瓷电容器的制备方法
CN102992756B (zh) 一种高介电常数x8r型电容器陶瓷材料及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN102976748B (zh) 高致密钛酸锶钡陶瓷及其制备方法
CN105174944A (zh) 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN104058741A (zh) 一种超宽温稳定的介质陶瓷及其制备方法
CN104030678B (zh) 一种BaTiO3基无铅弛豫型陶瓷电介质材料及其制备方法
CN106316395B (zh) 一种高介电常数、高品质因子的微波介质陶瓷及制备方法
CN104291811A (zh) 高介电常数超宽工作温度的陶瓷电容器介质的制备方法
CN102976750A (zh) 一种氧化镁改性的锆钛酸铅热释电陶瓷材料及其制备方法
CN103864416A (zh) 一种低烧结温度钛酸钡基陶瓷电容器介质的制备方法
CN102515746A (zh) 一种钛酸锶钡复合钼酸盐的微波介电可调材料及其制备方法
CN104725036B (zh) 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法
CN105367052B (zh) 一种高温陶瓷电容器介质材料及其制备方法
CN102531579B (zh) 陶瓷介质材料及其制备方法和陶瓷电容器及其制备方法
CN101723665B (zh) 中温烧结的高温度稳定性电介质陶瓷及其制备方法
CN104291821A (zh) 一种铌酸钾钠基多层陶瓷电容器介质材料的制备方法
CN110304916A (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
CN109650886A (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN105130424A (zh) 一种BiYO3掺杂BaTiO3基弛豫铁电体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026

WD01 Invention patent application deemed withdrawn after publication