CN106029945B - 反焦化涂层、其工艺和设有反焦化涂层的烃流体通道 - Google Patents

反焦化涂层、其工艺和设有反焦化涂层的烃流体通道 Download PDF

Info

Publication number
CN106029945B
CN106029945B CN201580008527.1A CN201580008527A CN106029945B CN 106029945 B CN106029945 B CN 106029945B CN 201580008527 A CN201580008527 A CN 201580008527A CN 106029945 B CN106029945 B CN 106029945B
Authority
CN
China
Prior art keywords
component
inner passage
coking
fuel
outermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580008527.1A
Other languages
English (en)
Other versions
CN106029945A (zh
Inventor
M.A.麦克马斯特斯
W.C.哈什
C.C.张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN106029945A publication Critical patent/CN106029945A/zh
Application granted granted Critical
Publication of CN106029945B publication Critical patent/CN106029945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/314Layer deposition by chemical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/177Ni - Si alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Powder Metallurgy (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种用于当与烃流体接触时处于高温的表面上,例如在用于燃气涡轮发动机中的类型的燃料喷嘴中的内部燃料通道的表面上提供反焦化涂层***(22)的方法。由于通道是通过增材制造(AM)工艺制造的构件的一部分,因此该通道的表面是粗糙的。另外,通道可具有由AM工艺制成的类型的复杂的几何结构,例如几何结构包括尖锐的弯曲部和狭窄的横截面的组合。涂层***(22)包括至少一个陶瓷阻隔层和最外层的金属层,其均利用保形的气相沉积工艺形成。

Description

反焦化涂层、其工艺和设有反焦化涂层的烃流体通道
技术领域
本发明涉及意图抑制碳质沉积成形的涂层,以及用于防止或减少沉积在当与烃流体接触时处于高温的表面上的碳质沉积的涂层***,该表面包括燃料和油所接触的粗糙且复杂的流体通道表面。
背景技术
航空燃气涡轮发动机通过进气口接收空气,压缩空气,使燃料混合到压缩空气中,在燃料/空气混合物中燃烧燃料,并利用生成的热的燃烧气体推进飞机。已经研究出了用于航空燃气涡轮发动机的分级燃烧***,以限制不符合要求的燃烧产物成分的产生,例如氮氧化物(NOx)、未燃烧的烃(HC)和一氧化碳(CO),尤其在机场附近,它们促成了城市的光化学烟雾问题。另外,燃气涡轮发动机设计为用于实现更好的燃料效率和更低的操作成本,同时保持或甚至增加发动机的输出。因此,用于航空燃气涡轮发动机燃烧***的重要设计原则包括高燃烧温度的供给,以便在各种发动机操作条件下提供高的热效率,并且最大限度地减小可能促成颗粒排放的不合适宜的燃烧条件、不合适宜的气体和燃烧产物,这可为形成光化学烟雾的前体。
将燃料喷射到压缩空气中,以便在燃烧室中形成燃料/空气混合物是发动机操作的一个重要方面,因为燃料/空气混合物的成分和喷射方法可能对整个发动机性能具有大的影响。燃料喷射器设计通常需要某些类型的燃料喷嘴,用于将燃料喷射到燃烧室中。燃料喷嘴设计可包括主喷嘴和先导喷嘴,并且它们可包括沿轴向、径向和周向延伸的燃料通道,其将燃料供给主喷嘴和先导喷嘴。这些燃料通道部分可为非常小且具有复杂的几何结构,例如尖锐的弯部或螺旋。
燃料喷嘴的构造和制造可能显著地影响燃料喷射的方法。因此,始终在寻找改善的燃料喷嘴和其制造的方法。一种这样的方法是增材制造(AM)。这里使用的AM指需要熔化粉末,以便顺序地通过一次形成物体一层,从而形成坚固的三维网状或接近网状(NNS)物体的工艺。AM工艺可包括,但不局限于三维打印(3DP)工艺、激光网状制造(LNSM)、直接金属激光熔融(DMLM)和电子束烧结。某些AM工艺使用能量束(例如电子束)或电磁辐射(例如激光束)来烧结或熔融粉末材料。物体以线性构建方向逐层地建造起来,其中各个层基本垂直于构建方向。AM工艺可集成计算机辅助设计(CAD)模型来制造具有复杂几何结构的物体。
AM工艺可能有利于燃料喷嘴的制造,因为它们容许新颖且复杂的喷嘴设计相对较快地制造并进行测试。然而,通过AM工艺制造的构件倾向于具有粗糙表面,其在燃料喷嘴的情况下包括内部通道,燃料将流过其中。在某些情况下,由AM工艺制造的燃料通道的内表面粗糙度的范围可能高达大约1200微英寸(大约30微米)Ra或更大,例如大约300至大约1200微英寸(大约8至30微米)Ra(粗糙度参数通过表面上的竖向偏差的绝对值的算术平均来限定)。因此,以如此方式制造的燃料喷嘴的复杂设计和粗糙的内表面提出了其自身的挑战。
焦炭沉积是暴露于高温下的航空燃料和润滑***中的普遍问题。焦炭沉积可为由于烃流体的催化-热降解而引起的,导致碳作为沉积附着和累积在燃料或油所接触的表面上。如果流体回路在减少的流速下操作或被关闭,那么可能形成碳沉积,而没有清除保持停滞的燃料。随着沉积的汇集,它们可能变得足够大,以致减少或甚至堵塞流体流动。在燃料回路的情况下,这种碳沉积可能导致退化的发动机特性,减少热传递效率,增加压力降,并增加材料腐蚀和侵蚀的速率,所有这些可能需要使用昂贵的去焦化程序。
合适的焦碳累积的对抗措施可包括将涂层(有时被称为焦炭阻隔涂层(CBC)或反焦化涂层***)应用于构件例如燃料喷嘴的内表面或其它表面上,这些表面在与烃流体接触时将处于高温下。反焦化涂层***的示例包括内层,其可为陶瓷材料,其应用于流体通道的表面上,在该表面上沉淀了将与流体接触的外层,其可为铂。内层可用作扩散阻隔层,其将外层与涂层***沉淀的表面分开。外层阻碍碳沉积黏附在流体通道的表面上,并且在某些形式中可用作催化剂,以形成非黏着颗粒,从而减少焦化和沉积的累积。在涂层***就位的情况下,小片焦炭很快从通道壁上剥落,而很少阻塞下游可能存在的小孔或计量通道的风险。涂层***优选是连续的,并且完全覆盖了构件的所有表面,否则其将接触烃流体。这种涂层***可进一步包含额外的层,只要烃流体将接触外层即可,外层在某些实施例中可包括或由涂层***的最外层表面的铂组成。
为了最大限度地减小烃流体的温度和从而流体形成碳质沉积的倾向性,最外层优选呈现较低的发射率。这种低的发射率最大限度地减小了对流体的辐射热传递。为了这个目的,用于最外层的优选的表面粗糙度可为大约40微英寸(大约1.0微米)Ra或更小。反焦化涂层***的内层和最外层可利用化学气相沉积(CVD)技术来应用,其中包含一个或多个合适的化学前体的蒸气可沉积在预期的表面上,其中前体可起反应或分解,从而形成其中一层所需的材料。因为化学气相沉积工艺能够沉积保形(conformal)层,使得涂层***的表面光洁度几乎复制了下层表面的光洁度,从而达到反焦化涂层***的最外层通常所需要的表面光洁度,即,大约1.0微米Ra或更少,传统的智慧将建议有待涂布涂层的表面可需要经历处理,以改善其表面光洁度,之后进行涂层***的沉积,其最终的表面光洁度可能且经常仅仅略好于下层表面。
虽然由CVD沉积的反焦化涂层***已经证明对于某些发动机构件(包括滑润剂和换气管线)是有效的,但是这种构件具有大部分直的或仅仅轻微弯曲的通道和平滑的内表面。对于相似的反焦化***存在需求,其可应用于具有复杂形状和粗糙内表面的构件(其非限制性的示例包括由AM工艺制造的构件)的流体通道上。
发明内容
本发明提供了涂层***和方法,其能够减少烃流体在高温下形成碳质沉积的倾向性,碳质沉积倾向于黏附到流体通道的内表面或其它流体密闭表面上。
根据本发明的一个方面,提供了一种制造构件的方法,该构件具有内部通道,其内表面配置成接触烃流体并适合于接触烃流体。该方法包括利用增材制造工艺制造构件、其内部通道和其内表面,并执行气相沉积工艺,其包括使第一前体流过内部通道,以便使保形的内层直接沉积在内表面上,并使第二前体流过内部通道,以便使保形的最外层沉积而覆盖在内层上。内层和最外层在内表面限定了保形的反焦化涂层***,并且最外层限定了反焦化涂层***的最外层的表面。
根据本发明的另一方面,提供了一种通过增材制造工艺制造的构件,该构件具有内部通道,其内表面配置成接触烃流体并适合于接触烃流体。该构件包括直接位于内表面上的保形的内层,以及覆盖在内层上的保形的最外层。内层和最外层在内表面限定了保形的反焦化涂层***,并且最外层限定了反焦化涂层***的最外层的表面。在某些优选的实施例中,构件可为燃料喷嘴,并且烃流体可为燃料。
本发明的技术效果是在通过增材制造(AM)工艺制造的表面上(尤其在由此制造的内表面上)制造有效的反焦化涂层***的能力,表面之前被认为是过度粗糙且过于复杂,以致不能接受并形成有效的反焦化涂层***。
从以下详细说明中将更好地理解本发明的其它的方面和优点。
附图说明
图1是涂布了反焦化涂层***的燃料通道内表面的示意图。
图2是柱形图,其比较了对有涂层的和没有涂层的样本执行焦化试验的结果,包括设有本发明的范围内的反焦化涂层***的样本。
具体实施方式
本发明涉及反焦化涂层***和涂层方法,其能够减少烃流体形成碳质沉积的倾向性,烃流体的非限制性的示例包括例如燃料和油,碳质沉积黏附在流体通道的内表面或其它密闭表面上。这种表面可包括位于燃料喷嘴、燃料/空气热交换器、油槽以及燃气涡轮发动机的其它燃料和液压***构件中的通道。本发明可找到具有复杂几何结构和非常粗糙表面的流体通道上的特殊用途,例如通过AM工艺制造的燃气涡轮发动机燃料喷嘴的内部燃料通道。本发明可利用保形的气相沉积工艺将包含所需涂层***前体的一种或多种蒸气推送或抽送过流体通道,气相沉积工艺的非限制性的示例是金属-有机(有机金属化合)化学气相沉积(MO-CVD)工艺。
作为非限制性的示例,图1示意性地显示了如之前所述通过AM工艺制造的构件10中的流体通道12。作为非限制性的示例,构件10可为燃料喷嘴、燃料/空气热交换器、油槽或燃气涡轮发动机的其它燃料或液压***构件。金属粉末的成分可经过选择,以便为构件10和其通道12提供相对于其外部操作环境和流过其通道12的燃料所需要的机械和化学属性。典型的材料包括不锈钢、耐腐蚀的镍和铬的合金、以及高强度镍基合金。
图1中所示的通道12的受限部分可为通道12的沿轴向、径向或周向延伸的部分。在燃料喷嘴或燃气涡轮发动机的其它燃料***构件的非限制性的示例中,这种部分可将燃料供给主喷嘴和先导喷嘴。通道12的壁14示意性地表示为在线性构建方向16上已经逐层建造起来了,其中各个单个层18设置在与构建方向16基本垂直定向的平面中。如之前所述,这种AM工艺能够集成计算机辅助设计(CAD)模型来制造具有复杂的非线性几何结构的构件10,包括流体通道12中的尖锐的、多次转向的、螺旋形的和环形的弯部、曲部、环路和螺旋等等(未显示)。作为非限制性的示例,可设想小于一英寸(大约25mm)的通道弯曲半径,并且在某些情况下为0.1英寸(大约2.5mm)和更少。另外,可制成通道12,以具有任何横截面形状(例如圆形或矩形),并具有相对较窄的通道宽度,例如大约0.1英寸(大约2.5mm)或更小的横截面尺寸。然而,AM工艺的其中一个后果是在逐层建造工艺中,壁14的内表面20可为非常粗糙的,例如大约8至30微米Ra且甚至更高,其中单个层18定向在基本垂直于通道12的内表面20的方向上,作为一个非限制性的示例,单个层18具有大约50至250微米的离散厚度。
部分地由于其成分,当在燃气涡轮发动机的高温环境中被烃流体润湿时,该构件通道12的表面20可能倾向于催化焦炭沉积。传统智慧提出通道12的表面粗糙度还可能促进焦炭沉积。图1进一步显示了流体通道12的粗糙内表面20上的反焦化涂层***22。图1中显示涂层***22具有直接沉积在内表面20上的内层24以及最外层26,其覆盖和接触内层24,从而形成涂层***22的最外层表面28,其将接触流过通道12的流体。只要烃流体接触到作为涂层***22的最外层表面28的最外层26,涂层***22还可包括额外的层。在某些优选的实施例中,涂层***22优选是壁14的内表面20的连续且完全覆盖部分,否则其将接触流过通道12的烃流体。根据本发明的优选方面,内层24是陶瓷阻隔层,其可由以下材料制成,包括例如二氧化硅(SiO2)、氧化铝(Al2O3)、钽酸盐(Ta2O5)、氧化铪(HfO2)、氧化钇(Y2O3)或二氧化硅与硼和/或荧光体和/或氧化铝的化合物,并且在某些实施例中可能整个地由这些陶瓷材料中的一种或多种组成。根据本发明的其它优选方面,最外层26可包括铂,并且在某些实施例中可整个地由铂组成,或者在最外层表面28上由铂组成。然而,这些层24和26的成分可能根据应用和设计而变化,并且涂层***22的成分不是本发明的本质。
各个层24和26可通过气相沉积工艺进行沉积,其需要抽送合适的包含前体的蒸气穿过通道12,如下面进一步详细所述。各个层24和26可沉积在一个或多个通道中。内层24和最外层26可组合地提供反焦化涂层***22,其具有在高温且被烃流体,例如燃料或油润湿时防止或至少阻碍碳(焦炭)沉积和/或附着在流体接触的最外层表面28上的能力。然而,同之前用于反焦化涂层的实践相反,涂层***22的层24和26并不沉积在具有例如大约1.0微米Ra或更小表面粗糙度的平滑的下层表面上,或者在涂层***22的最外层表面28上复制或以别的方式实现这种平滑的表面。相反,涂层***22的层24和26可沉淀在通过AM工艺制造的通道12的相对粗糙的下层表面20上,例如,具有大约250微英寸(大约6.4微米)Ra或更大,和潜在高达大约750微英寸(大约19微米)Ra或更大的表面粗糙度,并且是基本保形的,从而在涂层***22的最外层表面28上复制或以别的方式实现相似的粗糙表面。虽然本发明能够利用涂层工艺涂布粗糙的表面,其通常沉积相对保形的涂层,但是涂层工艺可导致最外层26具有比下层通道表面20略微平滑的表面粗糙度,在这种情况下,可为最外层26取得上述表面粗糙度,虽然下层通道表面20的表面粗糙度可能大于250微英寸(大约6.4微米)Ra,并且潜在地大于750微英寸(大约19微米)Ra。
通道12的潜在复杂性(非直线性)和小的横截面促成了将层24和26应用于通道12的内表面20上的困难,尤其在包括沿轴向、径向和/或周向延伸的流体通道的设计方面,这些通道可携带燃气涡轮发动机的燃料或液压***中的燃料或油,例如将燃料供给燃料喷射器的主喷嘴和先导喷嘴的通道。如之前提到的那样,涂层***22的内层24和最外层26可通过将包含所需涂料前体的合适的蒸气抽送过通道12而应用于燃料通道表面20上。作为一个非限制性的示例,燃料喷射器可传统地配置为用于包括一个或多个入口,通过该入口将燃料供给注射器和一个或多个喷嘴,通过该喷嘴将燃料喷射到燃烧器中,并且蒸气可通过构件10的一个或多个燃料入口进行抽送,并通过一个或多个喷嘴顶端而离开构件10。用于内层24的合适的前体的一个非限制性的示例是钽(V)乙醇盐(Ta(OC2H5)5),其作为钽酸盐的化学前体。用于最外层26的合适的前体的一个非限制性的示例是铂(II)2,4-戊二醛(Pt(C5H7O2)2,其作为铂的化学前体。
用于沉积内层24的蒸气可多次抽送穿过通道12,以便将内层24沉积到所需的厚度,在此之后可用蒸气重复工艺,以便沉积最外层26。用于内层24的合适的厚度通常为大约1至大约2微米。用于最外层26的合适的厚度通常为大约0.03至大约0.1微米。在这种厚度下,对于涂层***22的最外层表面28的表面粗糙度而言,内层24比最外层26具有更大的影响。涂层***22优选在构件10上执行任何铜焊操作之后以及在其它部件安装于构件10中之前加以应用。
在导致本发明的研究中,确定了这里所述的工艺能够制造涂层***,其具有关于焦炭沉积有利的效果。图2是绘制了在三个管道中的不同样本位置(No.1,2和3)形成的焦炭沉积程度的柱形图,其中两个利用不同的涂布工艺进行处理,从而在其内表面上制造反焦化涂层***。所有三个管道是利用相同AM工艺由CoCr合金粉末制造的。管道是笔直的,并且具有6英寸(大约15cm)的长度和大约0.180英寸(大约46mm)的内径。管道的内表面具有大约250至大约750微英寸(大约6.4至大约19微米)Ra的表面粗糙度。在图2中,管道1被指定为“如建成那样”,即缺乏任何反焦化涂层***,而管道2和3的内表面设有反焦化涂层***,其包括内层钽酸盐和最外层铂。管道2的涂层***是利用MO-CVD应用的,并制造具有大约1微米厚度的内层以及具有大约0.003至大约0.10微米厚度的最外层。内层的沉积是在大约700至大约900℉(大约370至大约480℃)的沉积温度和大约50至大约150托的沉积压力下利用MO-CVD设备执行的。最外层的沉积是通过将管道悬吊在丙酮铂粉中,并在鼓风炉中加热到大约500至大约600℉(大约260至大约315℃)一小时而执行的。管道3的涂层***是利用凝胶液体沉积工艺应用的,产生其组合厚度在大约0.216至大约1.860微米范围内的内层和最外层,并因此包围用于管道2上的MO-CVD涂层***的内层和最外层的组合厚度范围。
管道遭遇大约300至大约800℉(大约150至大约425℃)的温度和大约7至大约15pph(大约3.2至大约6.8kg/hr)的流速下的燃料达大约160小时的持续时间,然后沿着其内表面长度在七个大约0.5英寸(大约13mm)间隔开的不同位置检查焦炭沉积。生成的焦炭沉积在大约0.006英寸至大约0.0075英寸(大约150至大约190微米)的厚度范围内。从图2中所示的结果可以看出,应用方法显著地影响了生成的涂层***的反焦化效应。通过凝胶工艺(管道3)制造的涂层***没有在任何七个评估位置呈现与气相沉积工艺(管道2)所制造的涂层***等效的反焦化效应。令人惊讶地是,在大多数评估位置,同裸露的样本(管道1)相比,管道3具有更大的焦炭沉积。虽然不希望受限于任何特殊的理论,但得出的研究结果意外之处在于,通过凝胶工艺沉积的更厚的基本非保形的并因此更平滑的涂层***(管道3)不会具有如同气相沉积工艺所沉积的保形的并因此更粗糙的涂层***(管道2)那样好的性能。
虽然已经根据特殊的实施例描述了本发明,但是应该懂得,本领域中的技术人员可采用其它形式。例如,流体通道的物理结构可能不同于所示或所述的流体通道,并且可使用不同于所述的那些材料和工艺。最后,虽然附属权利要求陈述了据信是与本发明相关联的某些方面,如上面的研究所指出的那样,但是它们不必用于限制本发明的范围。

Claims (18)

1.一种用于制造构件(10)的方法,所述构件(10)具有内部通道(12),所述内部通道(12)的内表面(20)配置成接触烃流体并适合于接触烃流体,所述方法包括:
利用增材制造工艺制造所述构件(10)和其内部通道(12)以及其内表面(20);和
执行气相沉积工艺,其包括使第一前体流过所述内部通道(12),以便将保形的内层(24)直接沉积在所述内表面(20)上,并使第二前体流过所述内部通道(12),从而使保形的最外层(26)沉积而覆盖在所述内层(24)上,所述内层(24)和所述最外层(26)在所述内表面(20)上限定了保形的反焦化涂层***(22),并且所述最外层(26)限定所述反焦化涂层***(22)的最外层表面(28),其中通过所述最外层(26)限定的所述反焦化涂层***(22)的最外层表面(28)具有6.4微米至19微米Ra的表面粗糙度。
2.根据权利要求1所述的方法,其特征在于,所述内部通道(12)具有非线性的形状。
3.根据前述权利要求中的任一权利要求所述的方法,其特征在于,所述内部通道(12)包括至少一个通道区域,其具有的几何结构为下者中的至少一种:尖锐的、多次转向的、螺旋形的和环形的弯部、曲部、环路和螺旋。
4.根据权利要求1所述的方法,其特征在于,所述内层(24)包括由二氧化硅、氧化铝、钽、氧化铪、氧化钇、或二氧化硅与硼和/或磷和/或氧化铝的化合物组成的成分。
5.根据权利要求1所述的方法,其特征在于,所述最外层(26)包括由铂组成的成分。
6.根据权利要求1所述的方法,其特征在于,所述构件(10)是燃料喷嘴,并且所述烃流体是燃料,所述方法还包括使所述燃料流过所述内部通道(12)。
7.根据权利要求1所述方法,其特征在于,所述构件(10)是液压***构件(10),并且所述烃流体是油,所述方法还包括使所述油流过所述内部通道(12)。
8.根据权利要求1所述的方法,其特征在于,所述构件(10)和所述内部通道(12)及其内表面(20)由合金形成,所述合金选自由不锈钢、耐腐蚀的镍铬合金和高强度镍基合金组成的组。
9.一种用于引导流体的构件(10),其通过增材制造工艺制造成并具有内部通道(12),所述内部通道(12)的内表面(20)配置成接触烃流体并适合于接触烃流体,所述构件(10)包括:
直接在所述内表面(20)上的保形的内层(24);和
覆盖在所述内层(24)上的保形的最外层(26),所述内层(24)和所述最外层(26)在所述内表面(20)上限定保形的反焦化涂层***(22),并且所述最外层(26)限定所述反焦化涂层***(22)的最外层表面(28),其中通过所述最外层(26)限定的所述反焦化涂层***(22)的最外层表面(28)具有6.4微米至19微米Ra的表面粗糙度。
10.根据权利要求9所述的构件(10),其特征在于,所述内部通道(12)具有非线性的形状。
11.根据权利要求9所述的构件(10),其特征在于,所述内部通道(12)包括至少一个通道区域,其具有的几何结构为下者中的至少一种:尖锐的、多次转向的、螺旋形的和环形的弯部、曲部、环路和螺旋。
12.根据权利要求9所述的构件(10),其特征在于,所述内层(24)包括由二氧化硅、氧化铝、钽、氧化铪、氧化钇、或二氧化硅与硼和/或磷和/或氧化铝的化合物组成的成分。
13.根据权利要求9所述的构件(10),其特征在于,所述内层(24)具有1微米至2微米的厚度。
14.根据权利要求9所述的构件(10),其特征在于,所述最外层(26)包括由铂组成的成分。
15.根据权利要求9所述的构件(10),其特征在于,所述最外层(26)具有0.03微米至0.1微米的厚度。
16.根据权利要求9所述的构件(10),其特征在于,所述构件(10)是燃料喷嘴,所述烃流体是燃料,并且所述燃料处于所述内部通道(12)中。
17.根据权利要求9所述的构件(10),其特征在于,所述构件(10)是液压***构件(10),所述烃流体是油,并且所述油处于所述内部通道(12)中。
18.根据权利要求9所述的构件(10),其特征在于,所述构件(10)和所述内部通道(12)及其内表面(20)由合金形成,所述合金选自由不锈钢、耐腐蚀的镍铬合金和高强度镍基合金组成的组。
CN201580008527.1A 2014-02-13 2015-02-13 反焦化涂层、其工艺和设有反焦化涂层的烃流体通道 Active CN106029945B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461939316P 2014-02-13 2014-02-13
US61/939316 2014-02-13
PCT/US2015/015801 WO2015123513A1 (en) 2014-02-13 2015-02-13 Anti-coking coatings, processes therefor, and hydrocarbon fluid passages provided therewith

Publications (2)

Publication Number Publication Date
CN106029945A CN106029945A (zh) 2016-10-12
CN106029945B true CN106029945B (zh) 2018-10-12

Family

ID=53800654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580008527.1A Active CN106029945B (zh) 2014-02-13 2015-02-13 反焦化涂层、其工艺和设有反焦化涂层的烃流体通道

Country Status (7)

Country Link
US (1) US10683807B2 (zh)
EP (1) EP3105364B1 (zh)
JP (1) JP6567537B2 (zh)
CN (1) CN106029945B (zh)
BR (1) BR112016017255A8 (zh)
CA (1) CA2938876C (zh)
WO (1) WO2015123513A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123513A1 (en) 2014-02-13 2015-08-20 General Electric Company Anti-coking coatings, processes therefor, and hydrocarbon fluid passages provided therewith
CA2959625C (en) * 2017-03-01 2023-10-10 Nova Chemicals Corporation Anti-coking iron spinel surface
US20180313225A1 (en) 2017-04-26 2018-11-01 General Electric Company Methods of cleaning a component within a turbine engine
US11242800B2 (en) * 2017-11-07 2022-02-08 General Electric Company Systems and methods for reducing coke formation of fuel supply systems
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US11794382B2 (en) * 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components
GB201908055D0 (en) * 2019-06-06 2019-07-24 Renishaw Plc Additive manufacture
US20240001445A1 (en) * 2020-11-04 2024-01-04 Proterial, Ltd. Alloy member manufacturing method, alloy member, and product using alloy member
US11846026B2 (en) * 2021-01-15 2023-12-19 General Electric Company Coated article for hot hydrocarbon fluid and method of preventing fuel thermal degradation deposits
US20220251970A1 (en) * 2021-02-10 2022-08-11 GM Global Technology Operations LLC Turbocharger with anti-coking coating
US20220349342A1 (en) * 2021-04-29 2022-11-03 General Electric Company Fuel mixer
US11686003B2 (en) 2021-06-03 2023-06-27 General Electric Company Surfaces for contacting a hydrocarbon fluid and methods for preparing the same
CN113321983B (zh) * 2021-08-02 2021-10-29 清大国华环境集团股份有限公司 一种窑尾抗结焦涂层及其涂覆方法
WO2023055656A1 (en) * 2021-09-30 2023-04-06 Entegris, Inc. Additive manufactured articles having coated surfaces and related methods
US20230266012A1 (en) * 2022-02-18 2023-08-24 General Electric Company Mixer assembly with a catalytic metal coating for a gas turbine engine
CN116927953A (zh) 2022-03-31 2023-10-24 通用电气公司 具有形状记忆合金颗粒的表面

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805973A (en) 1991-03-25 1998-09-08 General Electric Company Coated articles and method for the prevention of fuel thermal degradation deposits
US5891584A (en) 1991-03-25 1999-04-06 General Electric Company Coated article for hot hydrocarbon fluid and method of preventing fuel thermal degradation deposits
US5547706A (en) 1994-07-27 1996-08-20 General Electric Company Optical thin films and method for their production
US5923944A (en) 1995-10-20 1999-07-13 General Electric Company Fluid containment article for hot hydrocarbon fluid and method of forming a coating thereon
US6156439A (en) 1997-10-21 2000-12-05 General Electric Company Coating for preventing formation of deposits on surfaces contacting hydrocarbon fluids and method therefor
DE19953459A1 (de) 1999-11-05 2001-05-10 Gva Ges Fuer Verfahren Der Abw Reinigungssystem für Abwasserbehandlungsanlagen
US6354072B1 (en) 1999-12-10 2002-03-12 General Electric Company Methods and apparatus for decreasing combustor emissions
DE10029410A1 (de) 2000-06-15 2002-01-03 Bfgoodrich Diamalt Gmbh Verfahren zur Herstellung von 5-Aminosalicylsäure
US6389815B1 (en) 2000-09-08 2002-05-21 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
US6367262B1 (en) 2000-09-29 2002-04-09 General Electric Company Multiple annular swirler
US6363726B1 (en) 2000-09-29 2002-04-02 General Electric Company Mixer having multiple swirlers
US6381964B1 (en) 2000-09-29 2002-05-07 General Electric Company Multiple annular combustion chamber swirler having atomizing pilot
US6453660B1 (en) 2001-01-18 2002-09-24 General Electric Company Combustor mixer having plasma generating nozzle
US6418726B1 (en) 2001-05-31 2002-07-16 General Electric Company Method and apparatus for controlling combustor emissions
US6484489B1 (en) 2001-05-31 2002-11-26 General Electric Company Method and apparatus for mixing fuel to decrease combustor emissions
US6865889B2 (en) 2002-02-01 2005-03-15 General Electric Company Method and apparatus to decrease combustor emissions
US6808816B2 (en) 2002-09-13 2004-10-26 General Electric Company Method and coating system for reducing carbonaceous deposits on surfaces exposed to hydrocarbon fuels at elevated temperatures
JP2006056976A (ja) 2004-08-19 2006-03-02 Dainippon Ink & Chem Inc 星型高分子化合物及び星型高分子化合物の製造方法
US7326469B2 (en) * 2004-09-16 2008-02-05 General Electric Company Coating system and process and apparatus for depositing a coating system
US20060249332A1 (en) 2005-05-06 2006-11-09 General Electric Company Oil supply and scavenge system
US20090255256A1 (en) * 2008-04-11 2009-10-15 General Electric Company Method of manufacturing combustor components
US20090255118A1 (en) 2008-04-11 2009-10-15 General Electric Company Method of manufacturing mixers
US20100263382A1 (en) 2009-04-16 2010-10-21 Alfred Albert Mancini Dual orifice pilot fuel injector
US8668442B2 (en) 2010-06-30 2014-03-11 Honeywell International Inc. Turbine nozzles and methods of manufacturing the same
WO2015123513A1 (en) 2014-02-13 2015-08-20 General Electric Company Anti-coking coatings, processes therefor, and hydrocarbon fluid passages provided therewith

Also Published As

Publication number Publication date
EP3105364B1 (en) 2020-05-27
JP2017512250A (ja) 2017-05-18
BR112016017255A8 (pt) 2020-06-16
CA2938876C (en) 2019-10-22
CN106029945A (zh) 2016-10-12
CA2938876A1 (en) 2015-08-20
US20170051675A1 (en) 2017-02-23
US10683807B2 (en) 2020-06-16
EP3105364A1 (en) 2016-12-21
WO2015123513A1 (en) 2015-08-20
JP6567537B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
CN106029945B (zh) 反焦化涂层、其工艺和设有反焦化涂层的烃流体通道
EP3786525B1 (en) Thermal management for injectors
US20210262387A1 (en) Feature based cooling using in wall contoured cooling passage
EP2868973B1 (en) Gas turbine engines having fuel injector shrouds with interior ribs
US10288293B2 (en) Fuel nozzle with fluid lock and purge apparatus
Oberste Berghaus et al. Injection conditions and in-flight particle states in suspension plasma spraying of alumina and zirconia nano-ceramics
JP6940233B2 (ja) 空力的形状の本体及び高温流体流中に設けられる本体を冷却する方法
US20120034471A1 (en) Thermal barrier systems including yttrium gradient layers and methods for the formation thereof
CH703549B1 (de) Brennkammerflammrohr mit Kühlsystem.
CN104791848A (zh) 一种采用叶栅通道多斜孔冷却方式的燃烧室火焰筒壁面
JP2009250240A (ja) 物品上への炭化水素熱劣化堆積を防止するための表面処理
CN105927284B (zh) 用于发动机构件的内部热涂层
GB2461898A (en) Shield for preventing coating build up
CA3031657A1 (en) Thermal insulation for fluid carrying components
CN109667668A (zh) 用于燃气涡轮过渡件的后框架组件
Yang et al. Experimental and numerical studies of the film cooling effectiveness downstream of a curved diffusion film cooling hole
US11274828B2 (en) Article with bond coat layer and layer of networked ceramic nanofibers
US20170176007A1 (en) Article having multi-layered coating
MICKLOW et al. Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers
CN111566410A (zh) 对金属粉尘具有高耐受性的具有浆料涂层的燃烧器
EP2876185A1 (en) Coated article and method of applying a coating to an article
Katanoda et al. Numerical simulation on supersonic flow in high-velocity oxy-fuel thermal spray gun
CN112745012A (zh) 燃料气体和氧气燃烧器
Mansour et al. A new hybrid airblast nozzle
Wielage et al. Gas-Dynamic Improvement of HVOF Systems–Development Aspects and Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant