CN105977317B - 一种铜铟镓硒太阳电池吸收层的制备方法 - Google Patents

一种铜铟镓硒太阳电池吸收层的制备方法 Download PDF

Info

Publication number
CN105977317B
CN105977317B CN201610550956.8A CN201610550956A CN105977317B CN 105977317 B CN105977317 B CN 105977317B CN 201610550956 A CN201610550956 A CN 201610550956A CN 105977317 B CN105977317 B CN 105977317B
Authority
CN
China
Prior art keywords
layer
solar cell
preparation
cigs solar
absorbed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610550956.8A
Other languages
English (en)
Other versions
CN105977317A (zh
Inventor
黄勇亮
孟凡英
沈文忠
吴敏
刘正新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610550956.8A priority Critical patent/CN105977317B/zh
Publication of CN105977317A publication Critical patent/CN105977317A/zh
Application granted granted Critical
Publication of CN105977317B publication Critical patent/CN105977317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种铜铟镓硒太阳电池吸收层的制备方法,包括:步骤一,在基底上制备一层In‑Se化合物层;步骤二,在所述In‑Se化合物层上制备Cu‑In‑Ga层,得到预制层为In‑Se/Cu‑In‑Ga的双层预制层;步骤三,将所述双层预制层进行硒化热处理,得到铜铟镓硒吸收层。本发明制备的铜铟镓硒太阳电池吸收层可以促进铜铟镓硒吸收层背表面处的晶粒生长,同时调节吸收层的带隙结构,从而提高铜铟镓硒太阳电池的开路电压、填充因子和转化效率。

Description

一种铜铟镓硒太阳电池吸收层的制备方法
技术领域
本发明涉及薄膜太阳电池制造技术领域,尤其涉及一种铜铟镓硒(CIGS)太阳电池吸收层的制备方法。
背景技术
太阳电池作为清洁环保的可再生能源,正越来越受到人们的重视。铜铟镓硒薄膜太阳电池是一种新型的太阳电池技术,相比常见的基于硅材料的太阳电池,具有使用材料少、成本低、抗辐射性能好等优点,而且还有可能在柔性基底上制备柔性的太阳电池,可减轻电池质量,进一步拓展太阳电池的安装使用范围。另外,铜铟镓硒太阳电池具有较高的转换效率,实验室最高效率可以达到22.6%,已经接近甚至超过晶体硅电池效率。
在CIGS太阳电池的生产中,CIGS吸收层的质量是决定电池效率的关键。CIGS吸收层薄膜主要有两种制备工艺,一种是以单质的铜(Cu)、铟(In)、镓(Ga)和硒(Se)为原料,在真空腔室内以共蒸发的方式在基底上沉积;另一种是先以单质或合金靶材为原料采用磁控溅射方式在基底上沉积铜铟镓预制层,再将预制层硒化为CIGS吸收层薄膜。真空蒸发的工艺容易获得较高的转换效率,但在大面积的制备中很难达到很好的均匀性,而溅射后硒化的工艺,更有利于大规模生产。目前日本的Solar Frontier公司,采用溅射后硒化的工艺已经实现了CIGS太阳电池的量产。
在溅射后硒化的工艺制备的CIGS吸收层中有一个很关键的问题就是,在硒化时由于硒与铟的反应比硒与镓的反应快得多,In会快速的迁移到吸收层表面,这就造成硒化时会在吸收层表面快速形成镓含量低的CIGS相,而大量的镓元素聚集到基底与CIGS吸收层的界面处。这会导致吸收层的表面带隙低,背面带隙高,而且由于镓元素在背面聚集,导致背面的结晶质量差,从而降低了电池的转换效率。为了优化CIGS吸收层中镓元素的分布,以及吸收层的结晶质量,高温退火和硫化工艺都被广泛使用。但是硒化工艺制备的CIGS吸收层始终存在背表面附近镓含量高,晶粒尺寸小的问题。
发明内容
有鉴于现有技术的不足,本发明所要解决的技术问题是改善吸收层的结晶性和镓元素的分布,从而提高CIGS太阳电池的转换效率。
为实现上述目的,本发明提供了一种新的制备CIGS吸收层的方法,具体地,本发明提供的技术方案如下:
一种铜铟镓硒太阳电池吸收层的制备方法,包括以下步骤:
步骤一,在基底上制备一层In-Se化合物层;
步骤二,在In-Se化合物层上制备Cu-In-Ga层,得到预制层为In-Se/Cu-In-Ga的双层预制层;
步骤三,将双层预制层进行硒化热处理,得到铜铟镓硒吸收层。
优选地,步骤一中In-Se化合物层可以采用溅射、蒸发、电沉积或硒化热处理铟薄膜等方法制备。
优选地,步骤一中In-Se化合物层厚度为50-200nm,且满足原子比In/Se=1.1-2.0。
优选地,步骤二中Cu-In-Ga层利用磁控溅射方法制备,可以采用Cu-Ga、Cu-In、Cu-In-Ga合金靶和In靶为靶材,溅射气氛为氩气,气压为0.3-1.0Pa。
优选地,双层预制层总厚度为300-1000nm,整体的原子组分比例满足Cu/(In+Ga)=0.70-0.99。
优选地,步骤三中双层预制层进行的硒化热处理包括在有硒源存在的气氛下的硒化反应,和惰性气体保护下的退火处理。
进一步地,硒源包括硒粉、硒蒸气、硒化氢或有机硒化物。
优选地,基底上溅射有一层钼薄膜作为背电极。
优选地,基底包括钠钙玻璃、低Fe玻璃、太阳能浮法玻璃、不锈钢箔、Al箔、Mo箔、Cu箔、聚酰亚胺(PI)或聚对苯二甲酸乙二醇酯树脂(PET)。
本发明提供的铜铟镓硒太阳电池吸收层的制备方法提出了In-Se/Cu-In-Ga双层预制层的技术方案,In-Se在钼表面形成之后,In不易在后续的硒化热处理中迁移到表面,故可以增加CIGS吸收层中背表面处的In含量,In含量的提高可以有效改善吸收层背部的晶粒尺寸。同时,In-Se相在550℃以上会出现液相,可以进一步促进晶粒生长和镓元素的扩散,从而改善CIGS吸收层的结晶性和镓元素的分布。因此,采用这种双层的预制层,可以提高CIGS太阳电池的开路电压、填充因子和转化效率。
以下将结合附图对本发明的方法及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是铜铟镓硒太阳电池的结构示意图
图2是本发明实施例1的制备铜铟镓硒吸收层的工艺流程图
具体实施方式
图1所示为CIGS太阳电池的一般结构,包括依次排列的基底1、钼薄膜2、CIGS吸收层3、过渡层4、窗口层5、减反射膜6和栅状电极7。
基底可以为钠钙玻璃,低Fe玻璃,太阳能浮法玻璃,不锈钢箔,Al箔,Mo箔,Cu箔,聚酰亚胺(PI),聚对苯二甲酸乙二醇酯树脂(PET)及其他适合的衬底。为了后续的CIGS电池工艺,在基底材料上溅射有一层钼薄膜作为背电极材料。
下面通过具体实施例详细地说明本发明提出的CIGS太阳电池吸收层的制备方法。
实施例1
工艺流程如图2所示:
步骤一,在钼薄膜2覆盖的钠钙玻璃基底1上通过磁控溅射一层铟硒(In-Se)化合物层9,靶材中In/Se原子比为1.3,溅射气氛为氩气,气压为0.3-1.0Pa,In-Se层的厚度约为100nm。
步骤二,在In-Se层上,以Cu-Ga合金靶(Ga含量at.25%)和In靶为靶材,采用磁控溅射的方式溅射铜铟镓(Cu-In-Ga)层10,溅射气氛为氩气,气压为0.3-1.0Pa,厚度为0.6μm,得到双层预制层薄膜,整体的原子组分比例Cu/(In+Ga)=0.91。
步骤三,将制备的双层预制层的薄膜转入硒化炉内,采用H2Se作为硒源,400℃硒化40min,580℃氮气气氛中退火30min,然后自然冷却,得到CIGS吸收层3,厚度约为1.5μm。
实施例2
步骤一,在钼薄膜2覆盖的钠钙玻璃基底1上通过磁控溅射一层In层,溅射气氛为氩气,气压为0.3-1.0Pa,In层的厚度约为60nm。
步骤二,将溅射有In层的基底转入硒化炉内,采用H2Se作为硒源,190℃硒化15min,然后自然冷却至室温,得到In-Se化合物层9。硒化后In-Se层厚度约100nm,In/Se原子比为1.36。
步骤三,将制备有In-Se层的基底转入到溅射设备内,在In-Se层上,以Cu-Ga合金靶(Ga含量at.25%)和In靶为靶材,采用磁控溅射的方式溅射铜铟镓层10,溅射气氛为氩气,气压为0.3-1.0Pa,厚度约为0.6μm,得到双层预制层薄膜。双层预制层整体的原子组分比例为Cu/(In+Ga)=0.85。
步骤四,将制备的双层预制层的薄膜转入硒化炉内,采用H2Se作为硒源,400℃硒化30min,580℃氮气气氛中退火30min,然后自然冷却,得到CIGS吸收层3,厚度约为1.4μm。
在其他实施例中,In-Se化合物可以采用溅射、蒸发、电沉积及硒化铟薄膜等各种方法制备,只需要保证In-Se层中原子比In/Se=1.1-2.0,In-Se层的厚度为50-200nm,而且不引入其他有害杂质即可。
预制层需要保证总厚度为300-1000nm,整体的原子组分比例为Cu/(In+Ga)=0.70-0.99。
硒化热处理可以使用硒粉、硒蒸气、硒化氢、有机硒化物(如二乙基硒(C4H10Se)、二甲基硒(C2H6Se)、二甲基硒醚(C2H6Se))等作为硒源。硒化工艺过程(如硒化温度、时间,升温、降温时间等)需要随硒源、预制层厚度和组分的变化作出调整。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种铜铟镓硒太阳电池吸收层的制备方法,其特征在于,包括以下步骤:
步骤一,在基底上制备一层In-Se化合物层,且使得所述In-Se化合物层满足原子比In/Se=1.1-2.0;
步骤二,在所述In-Se化合物层上制备Cu-In-Ga层,得到预制层为In-Se/Cu-In-Ga的双层预制层;
步骤三,将所述双层预制层进行硒化热处理,所述硒化热处理包括硒化和退火过程,退火过程的温度高于550℃,得到铜铟镓硒吸收层。
2.如权利要求1所述的铜铟镓硒太阳电池吸收层的制备方法,其中步骤一中所述In-Se化合物层采用溅射、蒸发、电沉积或硒化热处理铟薄膜方法制备。
3.如权利要求1所述的铜铟镓硒太阳电池吸收层的制备方法,其中步骤一中所述In-Se化合物层厚度为50-200nm。
4.如权利要求1所述的铜铟镓硒太阳电池吸收层的制备方法,其中步骤二中所述Cu-In-Ga层利用磁控溅射方法制备,采用Cu-Ga、Cu-In、Cu-In-Ga合金靶和In靶为靶材,溅射气氛为氩气,气压为0.3-1.0Pa。
5.如权利要求1所述的铜铟镓硒太阳电池吸收层的制备方法,其中所述双层预制层总厚度为300-1000nm,整体的原子组分比例满足Cu/(In+Ga)=0.70-0.99。
6.如权利要求1所述的铜铟镓硒太阳电池吸收层的制备方法,其中步骤三中所述双层预制层进行硒化热处理包括在有硒源存在的气氛下的硒化反应,和惰性气体保护下的退火处理。
7.如权利要求6所述的铜铟镓硒太阳电池吸收层的制备方法,其中所述硒源包括硒粉、硒蒸气、硒化氢或有机硒化物。
8.如权利要求6所述的铜铟镓硒太阳电池吸收层的制备方法,其中所述退火处理为在580℃氮气气氛中退火30min,然后自然冷却。
9.如权利要求1所述的铜铟镓硒太阳电池吸收层的制备方法,其中所述基底上溅射有一层钼薄膜作为背电极。
10.如权利要求1所述的铜铟镓硒太阳电池吸收层的制备方法,其中所述基底包括钠钙玻璃、低Fe玻璃、太阳能浮法玻璃、不锈钢箔、Al箔、Mo箔、Cu箔、聚酰亚胺或聚对苯二甲酸乙二醇酯树脂。
CN201610550956.8A 2016-07-13 2016-07-13 一种铜铟镓硒太阳电池吸收层的制备方法 Active CN105977317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610550956.8A CN105977317B (zh) 2016-07-13 2016-07-13 一种铜铟镓硒太阳电池吸收层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610550956.8A CN105977317B (zh) 2016-07-13 2016-07-13 一种铜铟镓硒太阳电池吸收层的制备方法

Publications (2)

Publication Number Publication Date
CN105977317A CN105977317A (zh) 2016-09-28
CN105977317B true CN105977317B (zh) 2018-04-03

Family

ID=56952339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610550956.8A Active CN105977317B (zh) 2016-07-13 2016-07-13 一种铜铟镓硒太阳电池吸收层的制备方法

Country Status (1)

Country Link
CN (1) CN105977317B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731942A (zh) * 2017-09-19 2018-02-23 荆门市格林美新材料有限公司 一种倒置结构的铜铟镓硒太阳能电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI435463B (zh) * 2011-07-26 2014-04-21 Au Optronics Corp 形成光電轉換層之方法
US9018032B2 (en) * 2012-04-13 2015-04-28 Tsmc Solar Ltd. CIGS solar cell structure and method for fabricating the same
CN105070784A (zh) * 2015-07-17 2015-11-18 邓杨 一种全新的低成本高效率cigs电池吸收层制备工艺

Also Published As

Publication number Publication date
CN105977317A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
Shi et al. Fabrication of Cu (In, Ga) Se2 thin films by sputtering from a single quaternary chalcogenide target
CN105449010B (zh) 不锈钢衬底柔性铜铟镓硒薄膜太阳电池阻挡层制备方法
TW201138144A (en) Method of manufacturing solar cell
JP2009283508A (ja) Cis系薄膜太陽電池の製造方法
JP2015045091A (ja) Cu−Ga系スパッタリングターゲット、同ターゲットの製造方法、光吸収層及び該光吸収層を用いた太陽電池
CN101908580B (zh) 一种连续制备铜铟镓硒硫太阳能电池吸收层的工艺
WO2011074685A1 (ja) Cis系薄膜太陽電池の製造方法
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
Hsu et al. Improvement of Ga distribution and enhancement of grain growth of CuInGaSe2 by incorporating a thin CuGa layer on the single CuInGa precursor
CN101752451A (zh) 一种薄膜太阳电池吸收层的制备方法
CN103474511A (zh) 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
WO2011108033A1 (ja) 化合物薄膜太陽電池及びその製造方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
CN105977317B (zh) 一种铜铟镓硒太阳电池吸收层的制备方法
CN112201709A (zh) 一种硒化锑薄膜太阳电池及其制备方法与应用
Wu et al. Characterization of Cu (In, Ga) Se2 thin films prepared via a sputtering route with a following selenization process
WO2023109712A1 (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
KR20140066189A (ko) Cigs막의 제법 및 그것을 이용하는 cigs 태양 전지의 제법
CN103469170B (zh) 一种用于薄膜太阳能电池的溅射靶
CN103548153A (zh) 具有均匀的Ga分布的CIGS薄膜的制造方法
CN102005487B (zh) 一种柔性薄膜太阳电池用光吸收层材料及其制备方法
JP5378534B2 (ja) カルコパイライト型化合物薄膜の製造方法およびそれを用いた薄膜太陽電池の製造方法
CN103346213A (zh) 一种太阳能电池吸收层的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant