CN105956329A - 换热器各通道增益的机理建模计算方法 - Google Patents

换热器各通道增益的机理建模计算方法 Download PDF

Info

Publication number
CN105956329A
CN105956329A CN201610369509.2A CN201610369509A CN105956329A CN 105956329 A CN105956329 A CN 105956329A CN 201610369509 A CN201610369509 A CN 201610369509A CN 105956329 A CN105956329 A CN 105956329A
Authority
CN
China
Prior art keywords
formula
heat exchanger
delta
heat
computational methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610369509.2A
Other languages
English (en)
Other versions
CN105956329B (zh
Inventor
康英伟
归数
归一数
杨平
陈欢乐
李芹
王松
于会群
王念龙
徐春梅
吴周晶
余洁
张经纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Shanghai Minghua Electric Power Technology and Engineering Co Ltd
University of Shanghai for Science and Technology
Original Assignee
Shanghai University of Electric Power
Shanghai Minghua Electric Power Technology and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power, Shanghai Minghua Electric Power Technology and Engineering Co Ltd filed Critical Shanghai University of Electric Power
Priority to CN201610369509.2A priority Critical patent/CN105956329B/zh
Publication of CN105956329A publication Critical patent/CN105956329A/zh
Application granted granted Critical
Publication of CN105956329B publication Critical patent/CN105956329B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种换热器各通道增益的机理建模计算方法,用于换热器的机理建模,或在***辨识建模时用于确定换热器各通道增益的取值范围,所述的计算方法基于换热器的工艺过程机理,根据换热器的结构参数及热力参数,计算出各通道的增益。与现有技术相比,本发明具有简单、高效等优点。

Description

换热器各通道增益的机理建模计算方法
技术领域
本发明涉及一种换热器建模技术,尤其是涉及一种换热器各通道增益的机理建模计算方法。
背景技术
换热器是一种重要的工业设备,在化工、石油、动力、食品及其它许多工业生产中都有广泛应用,其作用在于加热冷介质或冷却热介质至合适的工艺参数。为了设计换热器控制***,需要建立换热器的数学模型,各过程通道的增益是换热器数学模型的重要参数。
建立换热器动态数学模型的方法通常可以分为两类:机理建模方法和***辨识方法。机理建模方法是根据换热器工艺过程所遵循的物理、化学规律,建立其数学模型;***辨识方法则将换热器视为一个“黑箱”,根据测量的输入输出数据,按照事先确定的准则在模型集中选出一个与数据吻合最好的模型。
运用***辨识方法建立换热器的数学模型,解决好以下两个问题十分重要:1)确定换热器模型的结构;2)确定待估计模型参数的范围。选择合理的模型结构是建立准确的换热器模型的重要前提;而恰当地确定模型参数的范围,可以显著提高参数估计的精度和速度。目前,对这两个问题尚缺乏完善的解决方法。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种简单、高效的换热器各通道增益的机理建模计算方法。
本发明的目的可以通过以下技术方案来实现:
一种换热器各通道增益的机理建模计算方法,用于换热器的机理建模,或在***辨识建模时用于确定换热器各通道增益的取值范围,所述的计算方法基于换热器的工艺过程机理,根据换热器的结构参数及热力参数,计算出各通道的增益。
所述的换热器的结构参数及热力参数包括:换热面的物性参数、换热面积、换热系数;冷、热介质的物性参数;换热器的工作点参数,冷、热介质流量及焓值。
所述的冷、热介质的物性参数包括定压比热容。
该计算方法对换热器的特点作如下限定:
(1)换热器的冷、热介质均为单相,无相变发生;
(2)冷、热介质与换热面间的传热方式均为对流换热。
所述换热器的工艺过程如附图1所示,该计算方法所涉及的过程通道增益Ki(i=1,2,3,4,5,6,7,8)、Kj(j=a,b,c,d)的具体含义见表1及附图2。
该计算方法具体包括以下步骤:
对换热器中的冷介质分别应用质量守恒定律和能量守恒定律可得:
Dcs,in-Dcs,out=0 (1)
Dcs,inHcs,in-Dcs,inHcs,out+Qcs=0 (2)
式(1)和式(2)中,D为介质流量,H为介质比焓,Q为换热量;下脚标cs代表冷介质,in代表入口,out代表出口;
将式(1)代入式(2),并将式(2)线性化后得:
Cp,cs(Tcs,in-Tcs,out)|0ΔDcs,in+Cp,csDcs|0ΔTcs,in+ΔQcs=Cp,csDcs|0ΔTcs,out (3)
式中,Cp为定压比热容,T为温度;下脚标0代表工作点;
进而得到Kc的计算公式:
K c = ΔT c s , o u t ΔQ c s = 1 C p , c s D c s | 0 - - - ( 4 )
式(2)中的对流换热量根据Newton冷却公式计算:
Qcs=αcsA(Tw-Tcs,out) (5)
式中,α为换热系数,A为换热面积;下脚标w代表换热面;
将式(5)和式(1)代入式(2),并取换热面温度Tw不变,将式(2)线性化后得:
Cp,cs(Tcs,in-Tcs,out)|0ΔDcs,in+Cp,csDcs|0ΔTcs,in=(Cp,csDcscsA)|0ΔTcs,out (6)
进而得到K1和K2的计算公式:
K 1 = ΔT c s , o u t ΔD c s , i n = C p , c s ( T c s , i n - T c s , o u t ) | 0 ( C p , cs D c s + α c s A ) | 0 - - - ( 7 )
K 2 = ΔT c s , o u t ΔT c s , i n = C p , c s D c s | 0 ( C p , cs D c s + α c s A ) | 0 - - - ( 8 )
取换热面温度Tw不变,将式(5)线性化后得:
ΔQcs=-αcsAΔTcs,out (9)
进而得到Ka的计算公式:
K a = ΔQ c s ΔT c s , o u t = - α c s A - - - ( 10 )
对热介质侧做类似推导,得到以下增益的计算公式:
K b = ΔT h s , o u t ΔQ h s = 1 C p , h s D h s | 0 - - - ( 11 )
K 3 = ΔT h s , o u t ΔD h s , i n = C p , h s ( T h s , i n - T h s , o u t ) | 0 ( C p , h s D h s + α h s A ) | 0 - - - ( 12 )
K 4 = ΔT h s , o u t ΔT h s , i n = C p h s D h s | 0 ( C p , h s D h s + α h s A ) | 0 - - - ( 13 )
K d = ΔQ h s ΔT h s , o u t = α h s A - - - ( 14 )
式(11)至式(14)中,下脚标hs代表热介质;
根据图2,得到K5至K8的计算公式:
K5=K1KaKb (15)
K6=K2KaKb (16)
K7=K3KdKc (17)
K8=K4KdKc (18)。
与现有技术相比,本发明主要基于换热器的工艺过程机理,根据换热器的结构参数及热力参数,即可计算出各通道的增益,计算结果对于确定换热器各通道增益的范围具有较强的指导作用和实用价值。
附图说明
图1为换热器工艺过程示意图;
图2为换热器各通道增益计算关系图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
换热器的工艺过程如图1所示,冷、热介质分别流过换热器的不同通道,同时通过换热面进行热量交换。换热器工艺的目的,或者是利用热介质加热冷介质,或者是利用冷介质冷却热介质。对所考虑的换热器的特点作如下限定:
(1)换热器的冷、热介质均为单相,无相变发生。
(2)冷、热介质与换热面间的传热方式均为对流换热。
表1列出了换热器主要的过程通道。从换热器的工艺过程机理出发,根据换热器的结构参数和热力参数,可以计算出这些通道的增益。图2给出了各通道增益的计算关系图。
表1
本发明提出了一个换热器各过程通道增益的计算方法,该方法的具体实施步骤为:
获取换热器的结构参数及热力参数。所需参数主要有:换热面的物性参数、换热面积、换热系数;冷、热介质的物性参数,如定压比热容;换热器的工作点参数,冷、热介质流量及焓值,等。
根据式(4)、式(7)、式(8)、式(10)及式(11)至式(18),计算出换热器各过程通道的增益Ki(i=1,2,3,4,5,6,7,8)。

Claims (5)

1.一种换热器各通道增益的机理建模计算方法,用于换热器的机理建模,或在***辨识建模时用于确定换热器各通道增益的取值范围,其特征在于,所述的计算方法基于换热器的工艺过程机理,根据换热器的结构参数及热力参数,计算出各通道的增益。
2.根据权利要求1所述的一种换热器各通道增益的机理建模计算方法,其特征在于,所述的换热器的结构参数及热力参数包括:换热面的物性参数、换热面积、换热系数;冷、热介质的物性参数;换热器的工作点参数,冷、热介质流量及焓值。
3.根据权利要求2所述的一种换热器各通道增益的机理建模计算方法,其特征在于,所述的冷、热介质的物性参数包括定压比热容。
4.根据权利要求1所述的一种换热器各通道增益的机理建模计算方法,其特征在于,该计算方法对换热器的特点作如下限定:
(1)换热器的冷、热介质均为单相,无相变发生;
(2)冷、热介质与换热面间的传热方式均为对流换热。
5.根据权利要求1所述的一种换热器各通道增益的机理建模计算方法,其特征在于,该计算方法具体包括以下步骤:
对换热器中的冷介质分别应用质量守恒定律和能量守恒定律可得:
Dcs,in-Dcs,out=0 (1)
Dcs,inHcs,in-Dcs,inHcs,out+Qcs=0 (2)
式(1)和式(2)中,D为介质流量,H为介质比焓,Q为换热量;下脚标cs代表冷介质,in代表入口,out代表出口;
将式(1)代入式(2),并将式(2)线性化后得:
Cp,cs(Tcs,in-Tcs,out)|0ΔDcs,in+Cp,csDcs|0ΔTcs,in+ΔQcs=Cp,csDcs|0ΔTcs,out (3)
式中,Cp为定压比热容,T为温度;下脚标0代表工作点;
进而得到Kc的计算公式:
K c = ΔT c s , o u t ΔQ c s = 1 C p , c s D c s | 0 - - - ( 4 )
式(2)中的对流换热量根据Newton冷却公式计算:
Qcs=αcsA(Tw-Tcs,out) (5)
式中,α为换热系数,A为换热面积;下脚标w代表换热面;
将式(5)和式(1)代入式(2),并取换热面温度Tw不变,将式(2)线性化后得:
Cp,cs(Tcs,in-Tcs,out)|0ΔDcs,in+Cp,csDcs|0ΔTcs,in=(Cp,csDcscsA)|0ΔTcs,out (6)
进而得到K1和K2的计算公式:
K 1 = ΔT c s , o u t ΔD c s , i n = C p , c s ( T c s , i n - T c s , o u t ) | 0 ( C p , cs D c s + α c s A ) | 0 - - - ( 7 )
K 2 = ΔT c s , o u t ΔT c s , i n = C p , c s D c s | 0 ( C p , cs D c s + α c s A ) | 0 - - - ( 8 )
取换热面温度Tw不变,将式(5)线性化后得:
ΔQcs=-αcsAΔTcs,out (9)
进而得到Ka的计算公式:
K a = ΔQ c s ΔT c s , o u t = - α c s A - - - ( 10 )
对热介质侧做类似推导,得到以下增益的计算公式:
K b = ΔT h s , o u t ΔQ h s = 1 C p , h s D h s | 0 - - - ( 11 )
K 3 = ΔT h s , o u t ΔD h s , i n = C p , h s ( T h s , i n - T h s , o u t ) | 0 ( C p , h s D h s + α h s A ) | 0 - - - ( 12 )
K 4 = ΔT h s , o u t ΔT h s , i n = C p h s D h s | 0 ( C p , h s D h s + α h s A ) | 0 - - - ( 13 )
K d = ΔQ h s ΔT h s , o u t = α h s A - - - ( 14 )
式(11)至式(14)中,下脚标hs代表热介质;
得到K5至K8的计算公式:
K5=K1KaKb (15)
K6=K2KaKb (16)
K7=K3KdKc (17)
K8=K4KdKc (18)。
CN201610369509.2A 2016-05-30 2016-05-30 换热器各通道增益的机理建模计算方法 Expired - Fee Related CN105956329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610369509.2A CN105956329B (zh) 2016-05-30 2016-05-30 换热器各通道增益的机理建模计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610369509.2A CN105956329B (zh) 2016-05-30 2016-05-30 换热器各通道增益的机理建模计算方法

Publications (2)

Publication Number Publication Date
CN105956329A true CN105956329A (zh) 2016-09-21
CN105956329B CN105956329B (zh) 2019-04-09

Family

ID=56909926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610369509.2A Expired - Fee Related CN105956329B (zh) 2016-05-30 2016-05-30 换热器各通道增益的机理建模计算方法

Country Status (1)

Country Link
CN (1) CN105956329B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065515A (zh) * 2017-04-17 2017-08-18 河南工程学院 基于模糊pid控制的板式换热器模型构建方法
CN107085384A (zh) * 2017-04-25 2017-08-22 杭州百子尖科技有限公司 一种用于动态仿真***的换热器建模方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177489A (en) * 1989-09-26 1993-01-05 Magnavox Electronic Systems Company Pseudolite-aided method for precision kinematic positioning
US5317514A (en) * 1992-05-29 1994-05-31 Alliedsignal Inc. Integrity monitoring of navigation systems using Baye's rule
CN103822758A (zh) * 2014-03-06 2014-05-28 中国石油大学(北京) 换热器漏流异常工况在线诊断与选择性控制方法及装置
CN104536292A (zh) * 2014-12-05 2015-04-22 北京航空航天大学 一种基于stf和mb的飞机环境控制***换热器故障诊断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177489A (en) * 1989-09-26 1993-01-05 Magnavox Electronic Systems Company Pseudolite-aided method for precision kinematic positioning
US5317514A (en) * 1992-05-29 1994-05-31 Alliedsignal Inc. Integrity monitoring of navigation systems using Baye's rule
CN103822758A (zh) * 2014-03-06 2014-05-28 中国石油大学(北京) 换热器漏流异常工况在线诊断与选择性控制方法及装置
CN104536292A (zh) * 2014-12-05 2015-04-22 北京航空航天大学 一种基于stf和mb的飞机环境控制***换热器故障诊断方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YW KANG: "《A High Precision Simulation Model for Single Phase Heated Tubes of Power Plant Boilers》", 《SPRINGER BERLIN HEIDELBERG》 *
YW KANG: "《A reduced 1D dynamic model of a planar direct internal reforming solid oxide fuel cell for system research》", 《JOURNAL OF POWER SOURCES》 *
康英伟 等: "《电站锅炉过热器的集总参数动态建模与仿真》", 《计算机仿真》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065515A (zh) * 2017-04-17 2017-08-18 河南工程学院 基于模糊pid控制的板式换热器模型构建方法
CN107065515B (zh) * 2017-04-17 2020-04-24 河南工程学院 基于模糊pid控制的板式换热器模型构建方法
CN107085384A (zh) * 2017-04-25 2017-08-22 杭州百子尖科技有限公司 一种用于动态仿真***的换热器建模方法及装置

Also Published As

Publication number Publication date
CN105956329B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
Jamshidi et al. Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers
Taler Mathematical modeling and control of plate fin and tube heat exchangers
CN103558046A (zh) 一种换热器能效评价***
Carl et al. The theoretical and experimental investigation of the heat transfer process of an automobile radiator
US20170130982A1 (en) Inferential sensor for internal heat exchanger parameters
CN110610037B (zh) 逆流式回热器热力仿真方法
Zhou et al. Prediction of temperature distribution in shell-and-tube heat exchangers
Du et al. Experimental study and numerical simulation of flow and heat transfer performance on an offset plate-fin heat exchanger
Kishan et al. CFD Analysis of heat exchanger models design using ansys fluent
Torregrosa-Jaime et al. Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles
CN105956329A (zh) 换热器各通道增益的机理建模计算方法
Alabrudziński et al. The influence of fouling build-up in condenser tubes on power generated by a condensing turbine
Zhang The Monte Carlo based virtual entropy generation analysis
Alam et al. Experimental and numerical investigation of an air to water heat exchanger
Chopra et al. Thermal performance analysis of cross-flow unmixed-unmixed heat exchanger by the variation of inlet condition of hot fluid
Lubis et al. Design of a heat exchanger of three concentric tube layer on contrary flow
Ali et al. Innovative algorithmic approach of determining the overall heat transfer coefficient of concentric tube heat exchangers
Wu et al. An area method for visualizing heat-transfer imperfection of a heat exchanger network in terms of temperature–heat-flow-rate diagrams
Sarmiento et al. A numerical method for shell and thermosyphon heat exchanger analysis
CN110955984A (zh) 板式换热器的仿真方法及***
Yehia et al. Computational investigations of thermal simulation of shell and tube heat exchanger
CN104992066B (zh) 基于两个无量纲数的凝汽器传热系数计算方法
Dhoria et al. CFD analysis on concentric tube heat exchanger in parallel and counter flow direction
Lopata et al. Verification of applicability of the two-equation turbulence models for temperature distribution in transitional flow in an elliptical tube
Patil et al. CFD analysis of heat transfer enhancement in double pipe heat exchanger using single and double triangular tape as inserts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190409

Termination date: 20200530

CF01 Termination of patent right due to non-payment of annual fee